• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    NUMERICAL SIMULATION OF SLOSHING IN RECTANGULAR TANK WITH VOF BASED ON UNSTRUCTURED GRIDS*

    2010-04-13 14:49:52MINGPingjian

    MING Ping-jian

    College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China

    College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China, E-mail: pingjianming@hrbeu.edu.cn

    DUAN Wen-yang

    College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China

    NUMERICAL SIMULATION OF SLOSHING IN RECTANGULAR TANK WITH VOF BASED ON UNSTRUCTURED GRIDS*

    MING Ping-jian

    College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China

    College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China, E-mail: pingjianming@hrbeu.edu.cn

    DUAN Wen-yang

    College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China

    (Received June 15, 2010, Revised August 30, 2010)

    A new method for sloshing simulation in a sway tank is present, in which the two phase interface is treated as a physical discontinuity, which can be captured by a well-designed high order scheme. Based on Normalized Variable Diagram (NVD), a high order discretization scheme with unstructured grids is realized, together with a numerical method for free surface flow with a fixed grid. This method is implemented in an in-house code General Transport Equation Analyzer ( GTEA ) which is an unstructured grids finite volume solver. The present method is first validated by available analytical solutions. A simulation for a 2-D rectangular tank at different excitation frequencies of the sway is carried out. A comparison with experimental data in literature and results obtained by commercial software CFX shows that the sloshing load on the monitor points agrees well with the experimental data, with the same grids, and the present method gives better results on the secondary peak. It is shown that the present method can simulate the free surface overturning and breakup phenomena.

    sloshing, numerical simulation, unstructured grid, Volume Of Fluid (VOF)

    1. Introduction

    Sloshing occurs in partially filled tank subjected to external excitations or with fluid of changing states. The larger the volume of a ship, the more possible its exposure to excessive sloshing loads during the ship operation life. In recent years, the demand for Liquefied Natural Gas (LNG) is increasing for the environmental and other reasons. It is an urgent task to develop new generation LNG ships with super-large capacity, from the current 140 000 m3or so to 250 000 m3. For such a large LNG ship, an important prerequisite for its safe operation is an accurate prediction of the sloshing loads, therefore the slamming load calculation for tank liquid sloshing attracts a worldwide attention. As the fluid sloshing is in essence a non-linear movement, there is no theoretical solution so far. The experimental and numerical simulations are two main methods at present. Sloshing problems have received extensive attentions over the past few years, and a lot of research methods have been proposed. Experimental studies provide verifications for the numerical and theoretical methods[1-3]. Sloshing problems are solved based on potential theory, analytical method[4,5], the boundary element method[6]and the finite element method[7,8]. In many situations, the fluid viscosity effect cannot be neglected and the Navier-Stokes equation has to be used to describe sloshing. Hirt and Nicols firstly proposed the Volume Of Fluid (VOF) method, in which the free surface is constructed by segments parallel to the coordinates, which was applied widely subsequently. It is called Simple Linear Interface Construction (SLIC). Youngs improved the SLIC method and put forward thePiecewise Linear Interface Construction (PLIC), with good results[9]. Yang simulated the interaction between extreme wave and freely-floating structure with VOF method based on unstructured grid[10]. Ai proposed an unstructured grid method to simulate non-hydrostatic free surface flow[11]. But neither method can guarantee that the free surface on either side of the cell face calculated would completely overlap. So the calculation result may be difficult to converge, or even to diverge. A number of improved methods were proposed, with good results[12]. A new SPH method was adapted to simulate the water wave[13]. The advantages and disadvantages of various numerical methods are reviewed[14,15].

    With the VOF mentioned above, the free surface is constructed by geometric method. However, the reconstruction of the surface takes up a large amount of computation resources, mainly based on structured grids. This article proposes a new concept that the free surface is treated as a physical discontinuity, which can be captured by a well designed high-order scheme the same as the shock captured scheme on unstructured grids. Therefore the sloshing process can be simulated on fixed unstructured grids.

    This article is organized as follows. In Section 2, the mathematical models and numerical methods are presented. In Section 3, computation models and the analytical solution are given. Section 4 shows the results and contains a discussion. Conclusions are in the final Section 5.

    2. Mathematical models and numerical methods

    2.1 Mathematical models

    The Navier-Stockes equations are used in this article as the governing equations for sloshing. A homogeneous model is adopted in which the two phases share the same pressure and velocity. The gas-liquid interface is looked as a physical discontinuity where the properties change sharply. Hence, the control equation is the same as a single-phase flow.

    Physical parameters in the two-phase flow can be calculated as follows

    where α is defined as

    The equation of state is needed to determine the relationship between pressure and density and to close the control equations for compressible flow, such as the ideal gas EOS as

    For incompressible flow, ρ is constant, Eq.(1) can be written in the following form

    In all calculations without special statement in this article, it is assumed that both phases are incompressible.

    For the tank sway process, the non-inertial coordinates (XOY) show in Fig.1 are used, with the origin at tank center. The movement of the tanks in the XOY coordinate system is described as

    The acceleration is

    The movement of the coordinate system XOY at O point is

    The acceleration

    Therefore, the volume force is

    2.2 Numerical method

    A second order Crank-Nicolson scheme is used for time integral discretization and the unstructured finite volume method for spatial terms. A Semi-Implicit Method for Pressure Link Equations ( SIMPLEs ) algorithm is adopted for the pressure velocity coupling. It is a prediction-correction two stage method.

    (1) Momentum prediction

    Assuming or knowing the pressure distribution, we solve Eq.(2) to obtain the velocity distribution. At this time, the velocity satisfies the momentum conservation equation, but may not satisfy the mass conservation equation. The velocity field needs to be corrected according to the mass conservation equation.

    (2) Pressure-correction

    Unfortunately, there is no control equation for pressure. The pressure velocity relation should be derived from the moment equation and then a control equation for pressure correction can be obtained based on the mass conservation. We can correct the velocity and update the pressure field at the same time.

    The above procedure is used in many studies and in almost all popular CFD commercial softwares. The special step for sloshing is the solution of the volume fraction equation, which will be discussed below in details.

    2.3 NVD and high-order scheme

    For a collocated grid finite volume method, all variables are referred to the cell center. For the convection term, variable values on the cell face are required and there are many different interpolation method based discretization schemes.

    For clearness, 1-D case is used to explain the Normalized Variable Diagram ( NVD) procedure[16]. Based on the NVD, several TVD schemes can be designed[17]. As shown in Fig.2, the cell face value

    is under consideration. According to the flow direction of the cell face, we can define its upstream and downstream cell valuesDαandAα, and the next upstream valueUα, and then dimensionless variables can be defined accordingly,

    Therefore, the dimensionless variables of the upstream cell take the form

    And the cell interface dimensionless variables take the form

    Different discretization forms can be expressed by NVD as shown in Fig.3[18].

    Different discretization forms can be expressed by the following relationship.

    The face value can be expressed as

    The next upstream variable value is

    And then the face value can be expressed as a normal interpolation by cell center values related with the face. All related information is included in the weight coefficientfβ.

    in which

    For a multi-dimensional unstructured grid as shown in Fig.4,Uα is not available, we can calculate Uα?as follows.

    In order to ensure thatUα?is bounded, we assume that

    From Eq.(20), it can be seen that the variable value at the interface is obtained from the central interpolation values of upstream and downstream.

    This concept is firstly proposed by Onno Ubbink in 1997 in his doctoral thesis article and since then has received much attention[19]. An algorithm named Compressive Interface Capturing Scheme for Arbitrary Meshes (CICSAMS) is constructed in his thesis. This method is implemented in the in-house solver to simulate the sloshing in a swaying rectangular tank.

    4. Simulations and discussions

    4.1 Simulation model

    The experimental data published by South Korea’s Daewoo Shipping and Marine Engineering Company in 2005 and used by Many authors[20], recommended by the 23rd ITTC Committee as a benchmark case[21], are used to verify the present method.

    The rectangular tank used in the experiment is 0.8 m long, 0.5 m high and 0.35 m wide. The simulation is carried out with 30% filling height liquid of the tank. The dimensionless excitation frequency defined as the ratio between the excitation frequency and the liquid natural frequency, is 0.8, 0.9, 1.0, 1.2, respectively. The arrangement of the pressure monitoring points is shown in Fig.5, and sway displacement amplitudes are all 0.02 m. The sample frequency is 20 kHz in the experiments.

    4.2 Analytical results

    For a small amplitude wave, a linear analytical solution can be derived and used to verify the numerical results[22,23]. The wave height of the free surface can be formulated as follows[24]

    Here a case of 30% filling height of liquid with excitation frequency ratio 0.8 and amplitude of 5×10-4m is simulated and the results are shown in Fig.6. The numerical results agree well with the analytical solution, which shows that the present method is reasonable and can be used to simulate the sway tank sloshing.

    4.3 Comparison of 2-D and 3-D results

    Firstly a 3-D real size model is used to simulate sloshing. The pressure time history is shown in Fig.7. A 3-D simulation is carried out with the same size as the experiment and a 2-D simulation is carried out of the middle plane in the span-wise direction. Pressures on four monitor points which cover areas both under and above the static water surface are obtained. The results show that the 2-D simulation is well consistent with the 3-D simulation and the 3-D effect on the pressure is negligible. Therefore, only 2-D simulation is carried out hereafter.

    4.4 Grid independency

    With the 2-D numerical model, the grid is generated with the pre-processor GAMBIT, a commercial software. Non-uniform quadrilateral grids with three different grid sizes 80×50, 160×100 and 240×150 are used to test the grid-independence. The grid is refined in a bi-exponential law with the ratio of 0.8. Time step is adjusted dynamically by a given courant number. As can be seen from Table 1, different grids do not affect the time history of the pressure, and affect its amplitude only slightly. However, the amount of computation will increase greatly with the grid refining. So 80×50 grids are used in this article.

    4.5 Calculation results for 30% of filling height of liquid

    The grid of 80×50 with 4 000 quadrilateral elements in total is used in the following simulations. Four different excitation frequencies are consideredfor 30% of filling height of liquid , which are 0.8, 0.9, 1.0, and 1.2. The results are shown in the following figures, in which, Exp is Daewoo’s experimental data, CFX is Ansys’ CFX11 results, and Gtea is this program’s calculation results.

    It can be seen from Fig.8, for low-load conditions, the amplitude results of this method agree well with CFX’s experimental results. When the excitation frequency is low, the phase is in good agreement with the experiment. But, there is still a gap deviation near the low-level sloshing natural frequency.

    4.6 Comparison with different filling height of liquid

    The results with different filling heights of liquid with the same excitation frequency ratio ω/ωn=1.0 are shown in Fig.9. A high filling level corresponds a short period. This can be explained in this way. The high filling level means a high natural frequency or a high excitation frequency. From the pressure history at the monitor Points c1to c6, we can see that the Point c5is a transition point. Before it the pressure is low and wide, but the other points, on the other hand, see high and sharp impact.

    4.7 Free surface shape

    The snaps of the free surface in cases of different filling heights of liquid and the same excitation frequency are shown in Figs.10 through 12. Both CFX and GTEA results agree with the experiment. For the low filling height liquid case, the free surface is smooth, while in the high filling height liquid case, over-turning occurs. The present method can simulate this process well.

    The time history of the wave height at three positions is shown in Fig.13, where it is seen that the numerical results are quite different from the analytical results which is anti-symmetrical with position and divergent[22,23]. This means that thenonlinear effect is important when the excitation frequency is near the resonant frequency. The natural frequency increases with the static liquid level and the period decreases. Numerical results are reasonable.

    5. Conclusions

    This article proposes a finite volume high order numerical algorithm based on NVD to simulate the sloshing on hybrid unstructured grids. The basic concept of this algorithm is that the free surface can be treated as a physical discontinuity, which can be captured by a well designed high order scheme. Non-inertial coordinate system is used for the rectangular box motion in order to avoid the moving mesh procedure. With the above mentioned methods, the sloshing in the sway tank can be simulated on unstructured fixed grids. This model is implemented in an in-house solver GTEA.

    The experimental data published by South Korea’s Daewoo Shipping and Marine Engineering Company in 2005, recommended by the 23rd ITTC Committee as a benchmark case, are used to verify the present method. From the comparison of the pressure history on the monitor points, numerical results of both present GTEA and commercial software CFX agree well with the experiment data while GTEA shows some advantages on the secondary peak simulation. It is found that there is a transient zone for all simulation cases on one side (such as Point c1to c5) of which the impact is in a low and wide area, but the other side (such as Point c6) sees a high and sharp impact. The present method can simulate the free surface shape well and the wave height change is reasonable.

    [1] PANIGRAHY P. K., SAHA U. K. and MAITY D. Experimental studies on sloshing behavior due to horizontal movement of liquids in baffled tanks[J]. Ocean Engineering, 2009, 36(3): 213-222.

    [2] YAMAMOTO S., KATAOKA F. and SHIODA S. et al. Study on impact pressure due to sloshing in midsized LNG carrier[J]. International Journal of Offshore and Polar Engineering, 1995, 1(5): 10-16.

    [3] TABRI K., MATUSIAK J. and VARSTA P. Sloshing interaction in ship collisions-An experimental and numerical study[J]. Ocean Engineering, 2009, 36(17-18): 1366-1376.

    [4] FALTINSEN O. M., ROGNEBAKKE O. F. and LUKOVSKY I. A. et al. Multidimensional modal analysis of nonlinear sloshing in a rectangular tank with finite water depth[J]. Journal of Fluid Mechanics, 2000, 407: 201-234.

    [5] HILL D. F. Transient and steady-state amplitudes of forced waves in rectangular basins[J]. Physics of Fluids, 2003, 15(6): 1576-1587.

    [6] CELEBI M. S., KIM M. H. and BECK R. F. Fully non-linear 3-D numerical wave tank simulation[J]. Journal of Ship Research, 1998, 42(1): 33-45.

    [7] KIM M. H., CELEBI M. S. and KIM D. J. Fully non-linear interactions of waves with a three-dimensional body in uniform currents[J]. Applied Ocean Research, 1998, 20(5): 309-321.

    [8] LEE D. Y., CHOI H. S. Study on sloshing in cargo tanks including hydro elastic effects[J]. Journal of Marine Science and Technology, 1999, 4(1): 27-34.

    [9] MORTON K., BAINES M. Numerical methods for fluid dynamics[M]. New York: Academic Press, 1982, 273-285.

    [10] YANG Chi, L?HNER Rainald, LU Hai-dong. An unstructured grid based volume of fluid method for extreme wave and freely floating structure interactions[C]. Proceedings Conference of Global Chinese Scholars on Hydrodynamics. Shanghai, 2006, 415-422.

    [11] AI Cong-fang, JIN Sheng. Three dimensional non-hydrostatic models for free surface flows with unstructured grid[J]. Journal of Hydrodynamics, 2008, 20(1): 108-116.

    [12] YANG X. F., JAMES A. J. Analytic relations for reconstructing piecewise linear interfaces in triangular and tetrahedral grids[J]. Journal of computational physics, 2006, 214(1): 41-54.

    [13] ZHENG Kun, SUN Zhao-chen and SUN Jia-wen. Numerical simulations of water wave dynamics based on SPH methods[J]. Journal of Hydrodynamics, 2009, 21(6): 843-850.

    [14] REBOUILLAT S., LIKSONOV D. Fluid-structure interaction in partially filled liquid containers: A comparative review of numerical approaches[J]. Computers and Fluids, 2010, 39(5): 739-746.

    [15] IBRAHIM R., PILIPCHUK V. and IKEDA T. Recent advances in liquid sloshing dynamics[J]. Applied Mechanics Review, 2001, 54(2): 133-199.

    [16] LEONARD B. P. The ULTIMATE conservative difference scheme applied to unsteady one dimensional advection[J]. Computational Method in Applied Mechanics and Engineering, 1991, 88(1): 17-74.

    [17] DARWISH M. S., MOUKALLED F. TVD schemes for unstructured grids[J]. International Journal of Heat and Mass Transfer, 2003, 46(4): 599-611.

    [18] Ubbink Onno. Numerical prediction of two fluid systems with sharp interfaces[D]. Ph. D. Thesis, London, UK: University of London 1997.

    [19] TAO Wen-quan. Modern progress on computational heat transfer[M]. Beijing: Science Press, 2001, 105-158(in Chinese).

    [20] CHEN Y. G., PRICE W. G. Numerical simulation of liquid sloshing in a partially filled container with inclusion of compressibility effects[J]. Physics of Fluids, 2009, 21(11): 112105.

    [21] THE ITTC Seakeeping Committee. Final report and recommendation to the 23rd ITTC[C]. The 23rd proceedings of International Towing Tank conference. Venice, Italy, 2002,1-5.

    [22] FALTINSEN O. M. A numerical non-linear method for sloshing in tanks with two dimensional flow[J]. Journal of Ship Research, 1978, 18(4): 224-241.

    [23] WU G. X. Second order resonance of sloshing in a tank[J]. Ocean Engineering, 2007, 34(17-18): 2345-2349.

    [24] ZHENG Xing. Analysis and improvement of algorithm for SPH and application for free surface flow simulation[D]. Harbin: Harbin Engineering University, 2009(in Chinese).

    10.1016/S1001-6058(09)60126-8

    * Project supported by the China Postdoctoral Science Foundation (Grant No. 20100471016), the Fundamental Research Funds for Major Universities (Grant No. HEUCF 100307).

    Biography: MING Ping-jian (1980-), Male, Ph. D., Lecturer

    无遮挡黄片免费观看| av网站在线播放免费| 在线精品无人区一区二区三| 午夜视频精品福利| 一本综合久久免费| 欧美少妇被猛烈插入视频| 亚洲美女黄色视频免费看| 男女免费视频国产| 91av网站免费观看| 19禁男女啪啪无遮挡网站| 另类亚洲欧美激情| 女人高潮潮喷娇喘18禁视频| 激情视频va一区二区三区| 水蜜桃什么品种好| 超碰成人久久| 一区二区三区乱码不卡18| 啦啦啦在线免费观看视频4| 色视频在线一区二区三区| 少妇猛男粗大的猛烈进出视频| 50天的宝宝边吃奶边哭怎么回事| 一级片'在线观看视频| 三级毛片av免费| 如日韩欧美国产精品一区二区三区| 国产精品 国内视频| 天天操日日干夜夜撸| 天堂中文最新版在线下载| 一个人免费在线观看的高清视频 | 免费黄频网站在线观看国产| 成年av动漫网址| 日本五十路高清| 午夜影院在线不卡| 日韩视频在线欧美| 精品一品国产午夜福利视频| 免费少妇av软件| 丝袜喷水一区| 嫩草影视91久久| 12—13女人毛片做爰片一| 国产精品一二三区在线看| 欧美 亚洲 国产 日韩一| 亚洲精品久久午夜乱码| 黑人欧美特级aaaaaa片| 久久影院123| 韩国高清视频一区二区三区| 欧美性长视频在线观看| 在线观看舔阴道视频| 午夜日韩欧美国产| 热re99久久国产66热| 咕卡用的链子| 免费日韩欧美在线观看| 日韩免费高清中文字幕av| 国产免费视频播放在线视频| 黄色a级毛片大全视频| 黑人欧美特级aaaaaa片| 淫妇啪啪啪对白视频 | 亚洲中文日韩欧美视频| 91九色精品人成在线观看| 超碰成人久久| 欧美日韩av久久| 欧美日韩精品网址| a级毛片黄视频| 精品福利观看| 国产精品99久久99久久久不卡| 欧美性长视频在线观看| 欧美日韩av久久| 啦啦啦啦在线视频资源| 国产无遮挡羞羞视频在线观看| 午夜视频精品福利| 97在线人人人人妻| 日本91视频免费播放| 免费黄频网站在线观看国产| 国产精品香港三级国产av潘金莲| 成年动漫av网址| 在线永久观看黄色视频| 男女无遮挡免费网站观看| 欧美黄色片欧美黄色片| 人妻一区二区av| 国产精品.久久久| 亚洲性夜色夜夜综合| 精品国产一区二区三区久久久樱花| 黑丝袜美女国产一区| 天堂中文最新版在线下载| 久久天躁狠狠躁夜夜2o2o| 精品福利永久在线观看| 一进一出抽搐动态| av片东京热男人的天堂| 成人国产av品久久久| 少妇裸体淫交视频免费看高清 | 老司机影院毛片| 欧美日本中文国产一区发布| 日韩三级视频一区二区三区| 99国产精品免费福利视频| 日韩三级视频一区二区三区| 90打野战视频偷拍视频| 性色av乱码一区二区三区2| 欧美精品一区二区大全| 天天影视国产精品| 在线观看舔阴道视频| 咕卡用的链子| av免费在线观看网站| 性色av一级| 国产欧美日韩一区二区三区在线| 国产深夜福利视频在线观看| 国产精品 国内视频| 真人做人爱边吃奶动态| 亚洲成人手机| 亚洲中文日韩欧美视频| 色老头精品视频在线观看| 韩国高清视频一区二区三区| 在线亚洲精品国产二区图片欧美| 精品亚洲成国产av| 日韩精品免费视频一区二区三区| 一本一本久久a久久精品综合妖精| 国产一区二区三区综合在线观看| 午夜福利在线免费观看网站| 男女下面插进去视频免费观看| 国产精品偷伦视频观看了| 亚洲色图 男人天堂 中文字幕| 国产熟女午夜一区二区三区| 女警被强在线播放| 国产极品粉嫩免费观看在线| 2018国产大陆天天弄谢| 国产精品免费大片| 欧美久久黑人一区二区| 亚洲欧洲精品一区二区精品久久久| 人人妻人人添人人爽欧美一区卜| 在线观看免费高清a一片| 不卡av一区二区三区| 国产亚洲欧美精品永久| 极品人妻少妇av视频| 男女下面插进去视频免费观看| 日韩制服骚丝袜av| 亚洲黑人精品在线| 午夜福利免费观看在线| 国产免费视频播放在线视频| 国产熟女午夜一区二区三区| 操出白浆在线播放| 一本大道久久a久久精品| 精品一区二区三区av网在线观看 | 啦啦啦免费观看视频1| 国产淫语在线视频| 老汉色av国产亚洲站长工具| 国产av精品麻豆| 日韩人妻精品一区2区三区| 男人操女人黄网站| 成人国语在线视频| 国产一区二区 视频在线| 欧美日韩国产mv在线观看视频| 黄色视频在线播放观看不卡| 国产无遮挡羞羞视频在线观看| 成人av一区二区三区在线看 | 久久精品亚洲av国产电影网| 中文欧美无线码| 十分钟在线观看高清视频www| 老司机福利观看| 黄片播放在线免费| 亚洲av片天天在线观看| 国产亚洲精品一区二区www | 久久女婷五月综合色啪小说| 亚洲一码二码三码区别大吗| 这个男人来自地球电影免费观看| 精品熟女少妇八av免费久了| 日本vs欧美在线观看视频| 午夜成年电影在线免费观看| 啦啦啦视频在线资源免费观看| 老司机深夜福利视频在线观看 | 成年人黄色毛片网站| 一区二区三区精品91| 十分钟在线观看高清视频www| 多毛熟女@视频| 人人妻人人添人人爽欧美一区卜| 日本av手机在线免费观看| 一区二区三区乱码不卡18| 亚洲欧美激情在线| 乱人伦中国视频| 午夜福利乱码中文字幕| 亚洲国产精品999| 亚洲av日韩精品久久久久久密| 欧美精品人与动牲交sv欧美| av福利片在线| svipshipincom国产片| 黄色毛片三级朝国网站| 一级a爱视频在线免费观看| 国产在线一区二区三区精| 91麻豆精品激情在线观看国产 | 久久精品国产亚洲av高清一级| 满18在线观看网站| 久久香蕉激情| 亚洲国产欧美在线一区| 国精品久久久久久国模美| 国产精品一区二区精品视频观看| 极品少妇高潮喷水抽搐| 考比视频在线观看| 99国产综合亚洲精品| 汤姆久久久久久久影院中文字幕| 国产一区二区在线观看av| 免费av中文字幕在线| 啦啦啦中文免费视频观看日本| 亚洲午夜精品一区,二区,三区| 999久久久国产精品视频| 国产免费av片在线观看野外av| 啦啦啦 在线观看视频| 男女之事视频高清在线观看| 国产欧美日韩综合在线一区二区| 伦理电影免费视频| 精品第一国产精品| 一本久久精品| 在线观看www视频免费| 亚洲成人免费av在线播放| 亚洲成av片中文字幕在线观看| 91av网站免费观看| 日韩有码中文字幕| 青春草亚洲视频在线观看| 99国产精品一区二区三区| 国产无遮挡羞羞视频在线观看| 十八禁高潮呻吟视频| 成年人免费黄色播放视频| 国产成人精品无人区| 国产成人av教育| 国产精品欧美亚洲77777| 一级毛片女人18水好多| 日韩免费高清中文字幕av| 亚洲欧美激情在线| 一区福利在线观看| 90打野战视频偷拍视频| 这个男人来自地球电影免费观看| 亚洲男人天堂网一区| 99re6热这里在线精品视频| 天天操日日干夜夜撸| bbb黄色大片| 天堂8中文在线网| 岛国在线观看网站| 国产深夜福利视频在线观看| 欧美老熟妇乱子伦牲交| 伊人亚洲综合成人网| av片东京热男人的天堂| 久久青草综合色| 一本综合久久免费| 亚洲国产成人一精品久久久| 久久精品aⅴ一区二区三区四区| 少妇裸体淫交视频免费看高清 | 亚洲 欧美一区二区三区| 又黄又粗又硬又大视频| 欧美成人午夜精品| 在线观看人妻少妇| av有码第一页| 免费高清在线观看视频在线观看| 午夜成年电影在线免费观看| 亚洲成人手机| 一区二区三区激情视频| kizo精华| 又大又爽又粗| 两个人看的免费小视频| 国产精品免费视频内射| av视频免费观看在线观看| 国产免费福利视频在线观看| 一区在线观看完整版| av一本久久久久| 欧美 亚洲 国产 日韩一| videos熟女内射| 91成年电影在线观看| 国产精品偷伦视频观看了| 男女高潮啪啪啪动态图| 99国产精品一区二区三区| 韩国精品一区二区三区| 欧美午夜高清在线| 亚洲黑人精品在线| 国产亚洲欧美精品永久| 国产在视频线精品| 每晚都被弄得嗷嗷叫到高潮| 国产91精品成人一区二区三区 | 精品久久久久久久毛片微露脸 | 欧美国产精品一级二级三级| 日韩免费高清中文字幕av| 老熟女久久久| 91成年电影在线观看| 色婷婷av一区二区三区视频| 真人做人爱边吃奶动态| 男人舔女人的私密视频| 国产精品二区激情视频| 免费高清在线观看视频在线观看| 高清在线国产一区| av免费在线观看网站| 国产淫语在线视频| 99国产精品一区二区蜜桃av | 一区福利在线观看| 久久久久国内视频| 亚洲情色 制服丝袜| 秋霞在线观看毛片| 1024香蕉在线观看| 久久性视频一级片| 久久国产精品人妻蜜桃| 12—13女人毛片做爰片一| 欧美日本中文国产一区发布| 一区在线观看完整版| 真人做人爱边吃奶动态| 婷婷色av中文字幕| 人人妻人人爽人人添夜夜欢视频| 桃红色精品国产亚洲av| 国产日韩一区二区三区精品不卡| 久久久久久免费高清国产稀缺| 亚洲,欧美精品.| 麻豆国产av国片精品| 亚洲欧美日韩高清在线视频 | 欧美性长视频在线观看| 欧美av亚洲av综合av国产av| 黄色视频,在线免费观看| 在线av久久热| 欧美 亚洲 国产 日韩一| 精品亚洲成a人片在线观看| 免费观看av网站的网址| 色婷婷av一区二区三区视频| 亚洲欧美一区二区三区久久| 中文字幕制服av| 捣出白浆h1v1| 99热网站在线观看| 亚洲欧美一区二区三区久久| 亚洲精品一区蜜桃| 肉色欧美久久久久久久蜜桃| 亚洲精品乱久久久久久| www日本在线高清视频| 日韩精品免费视频一区二区三区| 欧美在线一区亚洲| 正在播放国产对白刺激| 性色av一级| 大香蕉久久网| 日本一区二区免费在线视频| 少妇猛男粗大的猛烈进出视频| 久久精品国产a三级三级三级| 日韩欧美免费精品| 老司机福利观看| 美女国产高潮福利片在线看| 久热这里只有精品99| 这个男人来自地球电影免费观看| 欧美精品av麻豆av| 黑人巨大精品欧美一区二区mp4| 在线精品无人区一区二区三| 亚洲一卡2卡3卡4卡5卡精品中文| 两个人看的免费小视频| 性色av一级| a级片在线免费高清观看视频| 男女下面插进去视频免费观看| 久久久久视频综合| www日本在线高清视频| 亚洲精品久久成人aⅴ小说| 成人手机av| 老司机午夜福利在线观看视频 | 汤姆久久久久久久影院中文字幕| 亚洲情色 制服丝袜| 老汉色∧v一级毛片| 日韩三级视频一区二区三区| 免费在线观看黄色视频的| 亚洲成人手机| 男女午夜视频在线观看| 俄罗斯特黄特色一大片| 少妇人妻久久综合中文| 黑人操中国人逼视频| 国产在线观看jvid| 亚洲精品中文字幕一二三四区 | 亚洲天堂av无毛| 日日摸夜夜添夜夜添小说| 国产精品影院久久| 色94色欧美一区二区| 黄色片一级片一级黄色片| 91精品伊人久久大香线蕉| 国产精品久久久av美女十八| 免费观看人在逋| 一本色道久久久久久精品综合| a级毛片黄视频| 国产免费av片在线观看野外av| 欧美日韩成人在线一区二区| 色视频在线一区二区三区| 亚洲精品国产区一区二| 老司机影院毛片| 一级片'在线观看视频| 午夜两性在线视频| 久久久水蜜桃国产精品网| 久久这里只有精品19| 色老头精品视频在线观看| 欧美av亚洲av综合av国产av| 亚洲激情五月婷婷啪啪| xxxhd国产人妻xxx| 人人妻,人人澡人人爽秒播| 男女之事视频高清在线观看| 欧美另类亚洲清纯唯美| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美 亚洲 国产 日韩一| 嫩草影视91久久| 亚洲欧美一区二区三区黑人| 91麻豆av在线| 国产老妇伦熟女老妇高清| h视频一区二区三区| 国产黄色免费在线视频| 日本av手机在线免费观看| 91字幕亚洲| 国产有黄有色有爽视频| svipshipincom国产片| 不卡av一区二区三区| 精品一品国产午夜福利视频| 日韩大码丰满熟妇| 亚洲色图综合在线观看| 涩涩av久久男人的天堂| 大型av网站在线播放| 欧美中文综合在线视频| 另类精品久久| 精品久久久久久久毛片微露脸 | 搡老乐熟女国产| 九色亚洲精品在线播放| 巨乳人妻的诱惑在线观看| 色94色欧美一区二区| 777米奇影视久久| 一级黄色大片毛片| 性高湖久久久久久久久免费观看| 各种免费的搞黄视频| 欧美亚洲日本最大视频资源| 叶爱在线成人免费视频播放| 自拍欧美九色日韩亚洲蝌蚪91| 麻豆乱淫一区二区| 亚洲精品美女久久av网站| 一本色道久久久久久精品综合| 男人爽女人下面视频在线观看| 美女高潮喷水抽搐中文字幕| 免费人妻精品一区二区三区视频| 在线观看免费高清a一片| 男女无遮挡免费网站观看| 国产黄频视频在线观看| 在线观看舔阴道视频| 久久亚洲精品不卡| 99精品久久久久人妻精品| 一区二区三区乱码不卡18| 1024香蕉在线观看| 日韩制服骚丝袜av| 精品福利观看| 日本黄色日本黄色录像| 日韩一卡2卡3卡4卡2021年| 超碰成人久久| 人妻一区二区av| 免费不卡黄色视频| 丝袜脚勾引网站| 成年人免费黄色播放视频| 中文精品一卡2卡3卡4更新| 不卡一级毛片| 精品免费久久久久久久清纯 | 在线观看人妻少妇| 亚洲精品久久久久久婷婷小说| 99久久99久久久精品蜜桃| 伊人亚洲综合成人网| 免费观看av网站的网址| 精品一区在线观看国产| 91字幕亚洲| 天天操日日干夜夜撸| 亚洲中文日韩欧美视频| 考比视频在线观看| 国产精品成人在线| 中文字幕高清在线视频| 日韩欧美一区视频在线观看| 一进一出抽搐动态| 久久久久久免费高清国产稀缺| 日本a在线网址| 啦啦啦中文免费视频观看日本| 国产精品久久久av美女十八| 美女主播在线视频| 国产精品一区二区精品视频观看| 五月开心婷婷网| 正在播放国产对白刺激| 91成人精品电影| 99香蕉大伊视频| a级毛片黄视频| 亚洲久久久国产精品| 国产成人欧美在线观看 | 欧美日韩福利视频一区二区| 水蜜桃什么品种好| 国产免费现黄频在线看| av一本久久久久| tube8黄色片| 国产麻豆69| 亚洲精品国产区一区二| 啪啪无遮挡十八禁网站| 精品国内亚洲2022精品成人 | 国产福利在线免费观看视频| 日本av手机在线免费观看| 精品国产一区二区三区四区第35| 久9热在线精品视频| 欧美日韩av久久| 天天添夜夜摸| 国产日韩一区二区三区精品不卡| av线在线观看网站| 最新的欧美精品一区二区| 亚洲自偷自拍图片 自拍| www.av在线官网国产| 欧美大码av| 国产成人系列免费观看| 亚洲人成电影免费在线| 久热爱精品视频在线9| 女性生殖器流出的白浆| 丰满人妻熟妇乱又伦精品不卡| 日本欧美视频一区| 亚洲天堂av无毛| 亚洲五月色婷婷综合| 欧美日韩亚洲综合一区二区三区_| 精品国产乱子伦一区二区三区 | 99久久精品国产亚洲精品| 另类精品久久| 欧美日韩成人在线一区二区| 欧美性长视频在线观看| 国产一区二区三区在线臀色熟女 | 人人妻人人添人人爽欧美一区卜| 国产精品麻豆人妻色哟哟久久| 操出白浆在线播放| 999久久久精品免费观看国产| 亚洲精华国产精华精| 美女国产高潮福利片在线看| 国产精品自产拍在线观看55亚洲 | 人妻一区二区av| 一本色道久久久久久精品综合| 亚洲 国产 在线| 麻豆国产av国片精品| 亚洲五月色婷婷综合| 满18在线观看网站| 99久久99久久久精品蜜桃| 亚洲精品美女久久av网站| 伦理电影免费视频| 免费少妇av软件| 日韩大片免费观看网站| 久久精品国产a三级三级三级| 久久精品亚洲av国产电影网| 侵犯人妻中文字幕一二三四区| 亚洲欧美一区二区三区黑人| 久久精品国产综合久久久| 国产在线视频一区二区| 黑人猛操日本美女一级片| 免费少妇av软件| 性少妇av在线| 黄网站色视频无遮挡免费观看| 99国产精品一区二区蜜桃av | 少妇裸体淫交视频免费看高清 | 精品高清国产在线一区| 999久久久国产精品视频| 午夜福利免费观看在线| 亚洲国产欧美在线一区| 亚洲精品在线美女| 亚洲中文av在线| 桃花免费在线播放| 丝袜脚勾引网站| 色94色欧美一区二区| 日日夜夜操网爽| 1024香蕉在线观看| 男女国产视频网站| tube8黄色片| e午夜精品久久久久久久| 十八禁高潮呻吟视频| 操出白浆在线播放| 国产亚洲一区二区精品| 麻豆av在线久日| 久久久久网色| 男女之事视频高清在线观看| 一区二区三区乱码不卡18| 亚洲av电影在线进入| 窝窝影院91人妻| 国产三级黄色录像| 淫妇啪啪啪对白视频 | 欧美在线一区亚洲| 一本大道久久a久久精品| 国产av精品麻豆| 美国免费a级毛片| 俄罗斯特黄特色一大片| 美女福利国产在线| 黄色视频不卡| 啦啦啦中文免费视频观看日本| www.999成人在线观看| 法律面前人人平等表现在哪些方面 | 国产精品久久久久久精品古装| 亚洲av国产av综合av卡| 侵犯人妻中文字幕一二三四区| 国产成人精品久久二区二区91| 欧美激情久久久久久爽电影 | 一本大道久久a久久精品| 国内毛片毛片毛片毛片毛片| 在线观看舔阴道视频| 美女脱内裤让男人舔精品视频| 亚洲成人手机| 午夜福利免费观看在线| 午夜日韩欧美国产| 美女高潮到喷水免费观看| 窝窝影院91人妻| 久久久水蜜桃国产精品网| 久久久精品94久久精品| 国产精品香港三级国产av潘金莲| 欧美中文综合在线视频| 搡老岳熟女国产| 色综合欧美亚洲国产小说| 亚洲成人免费av在线播放| 狂野欧美激情性xxxx| 亚洲精品一区蜜桃| 在线av久久热| 国产又爽黄色视频| 日韩中文字幕视频在线看片| 97在线人人人人妻| 国产成人欧美在线观看 | 精品人妻1区二区| 国产麻豆69| 亚洲少妇的诱惑av| 操美女的视频在线观看| 精品人妻1区二区| 色婷婷av一区二区三区视频| av天堂在线播放| 少妇人妻久久综合中文| 午夜福利视频在线观看免费| 亚洲综合色网址| 久久毛片免费看一区二区三区| 中文字幕最新亚洲高清| 亚洲第一青青草原| 精品国内亚洲2022精品成人 | 日本一区二区免费在线视频| 亚洲av成人不卡在线观看播放网 | 国产亚洲av高清不卡|