• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A MULTIGRID-ACCELERATED THREE-DIMENSIONAL TRANSIENTFLOW CODE AND ITS APPLICATION TO A NEW TEST PROBLEM*

    2010-04-13 14:49:52KUMARSanthosh

    KUMAR D. Santhosh

    School of Mechanical and Building Science, Vellore Institute of Technology, Vellore-632014, India

    DASS Anoop K.

    Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati-781039, India

    DEWAN Anupam

    Department of Applied Mechanics, Indian Institute of Technology Delhi Hauz Khas, New Delhi-110016, India, E-mail: adewan@am.iitd.ac.in

    A MULTIGRID-ACCELERATED THREE-DIMENSIONAL TRANSIENTFLOW CODE AND ITS APPLICATION TO A NEW TEST PROBLEM*

    KUMAR D. Santhosh

    School of Mechanical and Building Science, Vellore Institute of Technology, Vellore-632014, India

    DASS Anoop K.

    Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati-781039, India

    DEWAN Anupam

    Department of Applied Mechanics, Indian Institute of Technology Delhi Hauz Khas, New Delhi-110016, India, E-mail: adewan@am.iitd.ac.in

    (Received August 26, 2009, Revised August 10, 2010)

    A multigrid-assisted solver for the three-dimensional time-dependent incompressible Navier-Stokes equations on graded Cartesian meshes is developed. The spatial accuracy is third-order for the convective terms and fourth-order for the viscous terms, and a fractional-step strategy ensures second-order time accuracy. To achieve good time-wise efficiency a multigrid technique is used to solve the highly time-consuming pressure-Poisson equation that requires to be solved at every time step. The speed-up achieved by multigrid is shown in tabular form. The performance and accuracy of the code are first ascertained by computing the flow in a single-sided lid-driven cubic cavity with good grid-economy and comparing the results available in the literature. The code, thus validated, is then applied to a new test problem we propose and various transient and asymptotically obtained steady-state results are presented. Given the care taken to establish the credibility of the code and the good spatio-temporal accuracy of the discretization, these results are accurate and may be used for ascertaining the performance of any computational algorithm applied to this test problem.

    incompressible flows, three-dimensional cavity flow, fractional-step method, multigrid method, Taylor-Gotler-Like (TGL) vortices, grid transformation

    1. Introduction

    The flow of an incompressible fluid in a lid-driven cubic cavity has been used extensively by numerical modelers as a test case for newly developed computational schemes. Its simple geometry and easily posed boundary conditions have made this flow a popular test case for computational schemes, giving rise to a need for an accurate database against which such schemes may be validated.

    The transformed governing equations contain a larger number of terms than the original equations, which may result in some increase in the computational cost. Particularly, in the computation of transient flows, the pressure-Poisson equation that requires very accurate solution at every time step and consumes more than eighty percent of the total computational time needs special attention and an efficient algorithm for its numerical solution is highly desirable. The multigrid method which is arguably the best general convergence acceleration technique[13]is used in the present article to solve the pressure-Poisson equation numerically. Here the performance of multigrid method in the numerical solution of the pressure-Poisson equation on graded Cartesian meshes is examined in some details. Expectedly multigrid accelerates the convergence of the Gauss-Seidel iterations significantly, which in turn brings about a substantial reduction in the computational cost in the overall transient flow computation.

    Thus it can be summarized that the main purpose of the present article is to develop a useful and efficient numerical tool for computing incompressible transient-viscous flows using multigrid method on graded Cartesian meshes and also to record our experiences on the application of multigrid to nonuniform meshes through the two problems studied, including the one-sided and two-sided 3-D lid-driven cavity problems. Other aims of this work are to carry out a comparison of the transient and steady-state results between 2-D and 3-D geometries and apply the present code to produce accurate transient and steady results for a new test case in the shape of the two-sided 3-D lid-driven cavity problem.

    The article is organized in seven sections. Section 2 describes the governing equations in the physical plane (x, y, z) and computational plane (ξ, η, ζ). Section 3 gives a brief description of the fractional-step method employed and Section 4 provides some basics of the multigrid algorithm. Section 5 deals with the numerical method and Section 6 with the new test problem. Finally in Section 7 we list our observations and conclusions.

    2. Governing equations

    The 3-D unsteady, incompressible N-S equations in the primitive variable formulation and non-dimensional form can be written as

    Here u, v and w denote the velocities along the x, y and z directions respectively, t the time and p the pressure. The solution of governing Eqs.(1) - (4) on the graded Cartesian meshes using the finite difference method makes it necessary to transform the equations from the physical to the computational planes. The details of the transformation are presented in the next subsection.

    2.1 Transformation of governing equations

    It may be noted that when the governing Eqs.(1)- (4) are transformed from the physical plane to a computational plane in which the mesh is uniform, the mathematical characteristics of the equations do not change. The transformed version of the governing equations is then solved in the computational plane by a higher order approximation and mapping of the results back to the physical plane is done. The transformation from the physical (x, y, z) plane to the computational (ξ, η, ζ) plane is of the form

    Using the transformations the governing equations in the computational plane can now be written as

    3. Fractional-step procedure

    The four-step fractional-step method[10]employed in the present article is now described in some detail. In the first step the momentum Eq.(10) is solved for an auxiliary velocity fieldiu using the pressure from the previous time step, the convective terms and viscous terms are solved explicitly using the second-order Adams-Bashforth method.

    where H is an operator representing the discretized convective and diffusive terms. In the second step Eq.(11) is solved to advance the auxillary velocity field ?iu toiu?which is, of course, not divergence-free.

    In the third step, the incompressibility condition is enforced by solving the pressure Poisson Eq.(12), which is obtained by taking the divergence of Eq.(13) satisfying continuity equation for the next time step.

    Finally in the fourth step the velocity which satisfies the incompressibility condition is obtained by using the following correction step:

    The Poisson equation in the physical plane is given by Eq.(12) in the tensor form. This equation in thetransformed plane, solved using the multigrid method at each time step to satisfy the divergence-free condition, may be written in the expanded form as

    where σdenotes the source term with the form

    The pressure Poisson equation (Eq.(12)) is derived by taking the divergence of the intermediate velocity field Eq.(13) denoted by “?” subjected to the continuity constraint for the next time step. For computing the transient flow accurately the pressure Poisson equation has to be solved accurately at every time step. As is opposed to the solution of the transient momentum Eqs.(7) - (9), which is a relatively simple matter with an explicit technique, the solution of the pressure Poisson Eq.(14) is a nontrivial task that consumes almost 90% of the total CPU time required to update the primitive variables over one time step. For an efficient computation of transient flow using the pressure-velocity formulation it is therefore imperative that this equation is solved with an algorithm involving low computational cost. Here we use a four-level V-cycle multigrid method to solve the pressure Poisson equation.

    4. Description of multigrid algorithm

    The multigrid method has been chosen to accelerate the convergence rate, as it is highly suitable for elliptic equations such as the Poisson equation. There are two broad categories of multigrid methods: (1) Correction Schemes (CS) and (2) Full Approximation Schemes (FAS). The correction scheme is applicable to linear systems only. It involves corrections to the solution on coarse grids, which are eventually added to the fine-grid solution. As the Poisson equation is a linear equation, the correction scheme is used in the present work.

    4.1 Linear two-grid algorithm

    A two-grid algorithm for linear problems consists of smoothing on the fine grid, approximation of the required correction on the coarse grid, prolongation of the coarse grid correction to the fine grid and again smoothing on the fine grid. Let the equation to be solved iswhere S denotes the source term. This equation after discretization by the finite difference method can be written as L(p)i,j=Si,j, where L denotes the Laplacian operator. A two-grid correction scheme is described below:

    (1) Perform n iterations on a fine grid, L(p)i,j=Si,j.

    (2) Compute the residual Rfi,j=L(p)i,j?Si,j

    and store at each point. This residual is restricted to the next coarser grid so that their lower frequency error components can be smoothened and the restricted residual is denoted by IcRf.

    fi,j

    (3) The correction equation, given by

    is iterated few times on the coarser grid using zero as the initial guess while keeping the residual fixed at each grid point. The solution Δpi,jrepresents the correction to the fine-grid solution.

    (4) The corrections obtained on the coarsest grid are prolongated on to the next finer grid and denoted by Ifc(Δp)ci,j

    (5) Correct the fine grid approximations using pnewi,j=poldi,j+Ifc(Δp)ci,j. It is necessary to repeat the above two-level cycle until desired convergence is achieved.

    5. Numerical method

    The governing equations are discretized in space, using a finite difference formulation on a staggered, Cartesian grid, where velocities and pressure are calculated at different locations. The main advantage of the staggered grid arrangement is the strong coupling between the pressure and velocities without requiring special interpolation techniques. This helps avoid convergence problems and oscillations in pressure fields. Another advantage of using the staggered grid for incompressible flows is that the pressure boundary conditions are not required when the momentum equations are evaluated. For the pressure Poisson equation, the pressure gradient normal to the walls is assumed zero, i.e.,

    The convective terms of the momentum equations are approximated with Kuwahara’s third-order upwind scheme[14](Eq.(17)) and viscous terms are discretized with a fourth-order central-difference scheme (Eq.(18))as given below:

    6. Computations, results and discussions

    The code is based on the fractional-step method for the time integration of 3-D N-S equations. The performance of the code is already evaluated by the same authors in regard to time-wise efficiency and accuracy[15]. The results show that the 2-D code is capable of capturing transient results accurately and the methods used to develop the code seems to be sound. Initially the transient 3-D incompressible laminar lid-driven flow in a cubic cavity is computed through the developed code for code validation and to show the performance of multigrid.

    In the present study a 4-level V-cycle multigrid shown in Fig.1(a) has been used in all the computations to solve the pressure Poisson equation and the number of sweeps used in various grid-levels is given inside the corresponding circles. At Re=1000 on a 65 × 65 × 65 grid, it is observed that using four levels is good enough and a further increase of level produces no time-wise gain. To gain an insight into the convergence behavior after 100 time steps, at t=0.1 a plot between the pressure error and number of iterations required to solve the pressure Poisson equation is shown in Fig.1(b). Before examining overall quantitative performance data, it is instructive to consider the convergence histories in Fig.1(b) obtained with the single grid and with the sequences of 2- and 4-levels. Expectedly the convergence curves relating to multigrid are considerably steeper than those relating to the single grid. The ratio of the computational effort in work units for the single grid to that for the multigrid may be termed speed-up. As the convergence limit of error is lowered speed-up is seen to increase. This is because on a single grid, error-reduction rate becomes smaller and smaller as the iteration progresses whereas multigrid maintains more or less the same error-reduction rate throughout. The speed-up achieved by the 4-level multigrid is represented inTable 1. The CPU times of multigrid and single-grid computations to reach t=0.1 and t=0.5 for Re=1000 are shown in Table 1. For the same fall of residual, time gain by multigrid is impressive. Figure 2 shows the steady-state velocity profile of the u-component on the vertical centreline at the plane z=0.5 at Re=1000. The results show an excellent match with those of Ku etal.[4]. The 2-D results are also shown for comparison.

    The results presented in the preceding section show the accuracy and the capability of the present code to accurately compute transient viscous flows. After having thus gained confidence in the code, it is then applied to compute a hitherto unexplored flow configuration. The problem consists of a cubic cavity filled with a stationary fluid that is set into motion by the sudden simultaneous movement of the top and the bottom walls from the left to right. The physical boundary conditions of the geometry are specified for t≥0 as

    (1) At x=0 and 1, u=v=w=0.

    (2) At z=0 and 1, u=v=w=0.

    (3) At y=0, u=1, v=0, w=0.

    (4) At y=1, u=1, v=0, w=0.

    The reason for selecting this flow configuration for numerical study is that this geometry involves interesting flow features including gradual development of a free-shear layer and associated off-corner secondary vortices. The use of a grid with appropriate clustering and the use of multigrid suggest that the present computations combine accuracy, space-grid economy and time-wise efficiency. As has already been mentioned the flow in a cubic cavity with two-sided parallel wall movement has not been examined so far.

    7. Conclusion

    The present work deals with the development and application of a multigrid-accelerated 3-D code that accurately and efficiently computes incompressible transient viscous flows especially in geometries that allow the graded Cartesian meshes to be used conveniently to resolve the sharp gradients in shear layers by locally clustering the grid there. A fractional-step method is used to obtain second-order temporal accuracy and spatial discretizations of the convective and viscous terms are of third-and fourth-order spatial accuracy, respectively. The time-consuming process of computation of the Poisson equation at every time step is accelerated by using a V-cycle multigrid approach. For accurate implementation of the multigrid method, the finite difference discretization and grid transformation of the graded Cartesian meshes are employed. First, computations of transient and steady-state flows are carried out for the single-sided lid-driven cubical cavity. After having used the code to compute the flow in the single-sided cubical cavity to establish its credibility, it is then used to compute transient and steady-state flows in a hitherto unexplored configuration, namely, the two-sided cubical cavity flow induced by the motion of two facing walls in the same direction. The grid here is clustered not only near the walls but also in the free-shear layer midway between the moving walls to obtain a good grid-economy. It is observed that for the nonfacing two-sided cubic cavity, flow becomes periodic at Re=540. For the facing wall two-sided cubic cavity, however, steady solutions are obtained much beyond this Reynolds number and steady and transient results are presented here also for such values of Re. Various observations are made about this untested flow configuration. As all the steady-state results are grid independent, the transient results are time-step independent produced on the same grids and the accuracy of the spatio-temporal discretization is sufficiently high, all the steady and transient results reported for this new flow configuration are likely to be highly reliable and accurate. As has already been mentioned the results are also produced with good grid economy and time-wise efficiency. These results can thus serve as a means of verifying the performance of various algorithms that can be applied to the new test problem we propose. The code developed for the present transient computations can also be effectively used for various other 3-D rectangular geometries. It will, therefore, not be out of place to mention here that the code may have the potential of being gainfully used for LES and DNS in those geometries that allow effective use of the graded Cartesian meshes.

    [1] KOSEFF J. R., STREET R. L. The lid-driven cavity flow: A synthesis of qualitative and quantitative observations[J]. Journal of Fluids Engineering, 1984, 106(4): 390-398.

    [2] AUTERI F., PAROLINI N. and QUARTAPELLE L. Numerical investigation on the stability of singular driven cavity flow[J]. Journal of Computational Physics, 2002, 183(1): 1-25.

    [3] KOSEFF J. R., STREET R. L. On endwall effects in a lid-driven cavity flow[J]. Journal of Fluids Engineering, 1984, 106(4): 385-389.

    [4] KU H. C., HIRSH R. S. and TAYLOR T. D. A pseudospectral method for solution of the three-dimensional incompressible Navier-Stokes equations[J]. Journal of Computational Physics, 1987, 70(2): 439-462.

    [5] DING H., SHU C. and YEO K. S. et al. Numerical computation of three-dimensional incompressible viscous flows in the primitive variable form by local multiquadric differential quadrature method[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(7-8): 516-533.

    [6] TANG L. Q., CHENG T. and TSANG T. T. H. Transient solutions for three-dimensional lid-driven cavity flows by a least-squares finite element method[J]. International Journal of Numerical Methods and Fluids, 1995, 21(5): 413-432.

    [7] GUERMOND J. L., MIGEON C. and PINEAU G. et al. Start-up flows in a three-dimensional rectangular driven cavity for aspect ratio 1:1:2 at Re = 1000[J]. Journal of Fluid Mechanics, 2002, 450: 169-199.

    [8] BEYA B. B., LILI T. Three-dimensional incompressible flow in a two-sided non-facing lid-driven cubical cavity[J]. Comptes Rendus Mecanique, 2008, 336(11-12): 863-872.

    [9] CHORIN A. J. A numerical method for solving incompressible viscous flow problem[J]. Journal of Computational Physics, 1967, 2(1): 12-26,.

    [10] KIM J., MOIN P. Application of a fractional-step method to incompressible Navier-Stokes equation[J]. Journal of Computational Physics, 1985, 59(2): 308-323.

    [11] AI Cong-fang and JIN Sheng. Three-dimensional non-hydrostatic model for free-surface flows with unstructured grid[J]. Journal of Hydrodynamics, 2008, 20(1): 108-116.

    [12] GAO Wei, DUAN Ya-li and LIU Ru-xun. The finite volume projection method with hybrid unstructured triangular collocated grids for incompressible flows[J]. Journal of Hydrodynamics, 2009, 21(2): 201-211.

    [13] TANNNEHILL J. C., ANDERSON D. A. and PLETCHER R. H. Computational fluid mechanics and heat transfer[M]. Second Edition, New York: Hemisphere Publishing Corporation, 1984.

    [14] KAWAMURA T., TAKAMI H. and KUWAHARA K. Computation of high Reynolds number flow around a circular cylinder with surface roughness[J]. Fluid Dynamics Research, 1986 , 1(2): 145-162.

    [15] KUMAR D. S., DASS A. K. and DEWAN A. A multigrid-accelerated code on graded Cartesian meshes for 2D time-dependent incompressible viscous flows[J]. Engineering Applications of Computational Fluid Mechanics, 2010, 4(1): 71-90.

    10.1016/S1001-6058(09)60124-4

    * Biography: KUMAR D. Santhosh (1979-), Male, Ph. D., Associate Professor

    婷婷色麻豆天堂久久| 国语对白做爰xxxⅹ性视频网站| 看非洲黑人一级黄片| 男女下面插进去视频免费观看| 人妻一区二区av| 国产精品.久久久| 欧美日韩成人在线一区二区| 国产男人的电影天堂91| 午夜91福利影院| 免费观看a级毛片全部| 亚洲国产欧美在线一区| 欧美国产精品va在线观看不卡| 男人舔女人的私密视频| 久久久久精品人妻al黑| 国产精品一国产av| 色视频在线一区二区三区| 精品少妇一区二区三区视频日本电影 | 国产麻豆69| 亚洲 欧美一区二区三区| 激情视频va一区二区三区| 久热这里只有精品99| 国产成人精品久久久久久| 亚洲国产av新网站| 亚洲欧美清纯卡通| 亚洲欧美色中文字幕在线| 久久女婷五月综合色啪小说| 天天躁夜夜躁狠狠久久av| 亚洲七黄色美女视频| 欧美在线一区亚洲| 国产一区二区三区av在线| 国产成人免费观看mmmm| 精品久久蜜臀av无| 日韩中文字幕视频在线看片| 高清av免费在线| 亚洲av电影在线观看一区二区三区| 久久精品久久精品一区二区三区| 婷婷色综合www| 成年人午夜在线观看视频| 久久人人爽人人片av| 亚洲精品国产av蜜桃| 精品一品国产午夜福利视频| 高清视频免费观看一区二区| 亚洲成色77777| 男女免费视频国产| 亚洲色图 男人天堂 中文字幕| 久久久久精品国产欧美久久久 | 777米奇影视久久| 一区二区三区乱码不卡18| 午夜精品国产一区二区电影| 精品国产一区二区三区四区第35| 亚洲,欧美,日韩| 国产伦人伦偷精品视频| 亚洲国产欧美一区二区综合| 日韩一本色道免费dvd| 天堂中文最新版在线下载| 午夜福利网站1000一区二区三区| 免费女性裸体啪啪无遮挡网站| 男女下面插进去视频免费观看| 亚洲精品视频女| 久久这里只有精品19| 多毛熟女@视频| netflix在线观看网站| 一本久久精品| 九色亚洲精品在线播放| 熟妇人妻不卡中文字幕| 两个人免费观看高清视频| 中文字幕人妻丝袜一区二区 | 夫妻午夜视频| 久久久精品94久久精品| 日韩成人av中文字幕在线观看| 亚洲自偷自拍图片 自拍| 亚洲精品成人av观看孕妇| 嫩草影视91久久| 成年动漫av网址| 岛国毛片在线播放| 纵有疾风起免费观看全集完整版| 国产精品无大码| 日本wwww免费看| 啦啦啦在线观看免费高清www| 丰满迷人的少妇在线观看| 精品久久久精品久久久| 在线观看www视频免费| 波多野结衣av一区二区av| 久久亚洲国产成人精品v| 叶爱在线成人免费视频播放| 最新的欧美精品一区二区| 精品一区二区三区四区五区乱码 | 美女主播在线视频| 看非洲黑人一级黄片| 亚洲国产欧美在线一区| 久久精品久久精品一区二区三区| 五月天丁香电影| 美女视频免费永久观看网站| 精品亚洲成国产av| 国产不卡av网站在线观看| 国产精品av久久久久免费| 欧美日韩成人在线一区二区| 亚洲一级一片aⅴ在线观看| 中国国产av一级| 咕卡用的链子| 一级爰片在线观看| 丝袜人妻中文字幕| 精品少妇内射三级| 少妇精品久久久久久久| 免费高清在线观看视频在线观看| 91老司机精品| 极品少妇高潮喷水抽搐| 交换朋友夫妻互换小说| 亚洲国产精品一区三区| 日日啪夜夜爽| 免费观看人在逋| 99精品久久久久人妻精品| 一级毛片 在线播放| 国产片内射在线| 国产精品欧美亚洲77777| 王馨瑶露胸无遮挡在线观看| 国产亚洲一区二区精品| 欧美精品高潮呻吟av久久| 精品一区二区免费观看| 中国国产av一级| 老汉色∧v一级毛片| 欧美激情极品国产一区二区三区| 国产国语露脸激情在线看| 国产成人a∨麻豆精品| videos熟女内射| 天天操日日干夜夜撸| 丰满乱子伦码专区| 另类精品久久| 欧美最新免费一区二区三区| 亚洲成国产人片在线观看| 老司机在亚洲福利影院| 欧美黑人欧美精品刺激| 菩萨蛮人人尽说江南好唐韦庄| 王馨瑶露胸无遮挡在线观看| 日本欧美视频一区| 满18在线观看网站| 久久精品久久精品一区二区三区| 韩国精品一区二区三区| 久久99一区二区三区| www.熟女人妻精品国产| 亚洲图色成人| 久久免费观看电影| 亚洲精品久久午夜乱码| 亚洲欧美色中文字幕在线| 一级片免费观看大全| 久久影院123| 欧美日韩亚洲高清精品| 大话2 男鬼变身卡| 日本av手机在线免费观看| 伊人久久大香线蕉亚洲五| 午夜福利免费观看在线| 精品一区二区三区四区五区乱码 | 最黄视频免费看| 国产精品欧美亚洲77777| 不卡av一区二区三区| 九九爱精品视频在线观看| 99国产精品免费福利视频| 欧美在线一区亚洲| 亚洲美女视频黄频| 午夜福利视频精品| 纯流量卡能插随身wifi吗| av有码第一页| 免费av中文字幕在线| 久久久久久免费高清国产稀缺| 国产精品.久久久| xxx大片免费视频| 亚洲欧美日韩另类电影网站| 欧美日本中文国产一区发布| 精品国产乱码久久久久久小说| 婷婷色综合www| 热99久久久久精品小说推荐| 99香蕉大伊视频| 免费观看性生交大片5| 日日摸夜夜添夜夜爱| 国产极品天堂在线| 欧美日韩一级在线毛片| 中国三级夫妇交换| 日韩中文字幕视频在线看片| 男女之事视频高清在线观看 | 少妇 在线观看| 老汉色∧v一级毛片| 亚洲人成网站在线观看播放| 黑丝袜美女国产一区| 国产极品粉嫩免费观看在线| av国产精品久久久久影院| 亚洲精品在线美女| 亚洲,欧美,日韩| 日本av免费视频播放| 久久久久精品国产欧美久久久 | 亚洲人成网站在线观看播放| 亚洲av日韩在线播放| 18禁裸乳无遮挡动漫免费视频| 亚洲婷婷狠狠爱综合网| 午夜福利乱码中文字幕| 亚洲av成人精品一二三区| 国产精品嫩草影院av在线观看| 亚洲第一青青草原| 可以免费在线观看a视频的电影网站 | 成人亚洲欧美一区二区av| 2018国产大陆天天弄谢| 18禁动态无遮挡网站| 亚洲欧美精品自产自拍| 国产免费视频播放在线视频| 久久婷婷青草| 亚洲伊人久久精品综合| 久久精品久久久久久久性| 最近中文字幕2019免费版| 国产视频首页在线观看| 国产一区有黄有色的免费视频| 中文欧美无线码| 老司机深夜福利视频在线观看 | 成年动漫av网址| 最黄视频免费看| 男人爽女人下面视频在线观看| 亚洲在久久综合| 各种免费的搞黄视频| 亚洲精品在线美女| 欧美在线一区亚洲| 一本久久精品| 岛国毛片在线播放| 亚洲国产精品一区三区| 精品一品国产午夜福利视频| 午夜老司机福利片| 亚洲熟女毛片儿| 人体艺术视频欧美日本| 精品一区二区三区av网在线观看 | 性少妇av在线| 一区二区三区激情视频| 天天添夜夜摸| 久久99热这里只频精品6学生| 日韩视频在线欧美| 99热网站在线观看| 国产精品国产三级国产专区5o| 久久国产精品大桥未久av| 制服人妻中文乱码| 久久狼人影院| 国产极品粉嫩免费观看在线| 最近2019中文字幕mv第一页| 午夜福利免费观看在线| 久久青草综合色| 丝袜喷水一区| 久久99一区二区三区| 国产成人午夜福利电影在线观看| 国产av精品麻豆| 婷婷色综合大香蕉| 不卡av一区二区三区| 亚洲在久久综合| 日本猛色少妇xxxxx猛交久久| 亚洲av成人不卡在线观看播放网 | 国产精品嫩草影院av在线观看| 国产欧美亚洲国产| 搡老乐熟女国产| 91成人精品电影| 青春草国产在线视频| av线在线观看网站| 操出白浆在线播放| 啦啦啦啦在线视频资源| 成年美女黄网站色视频大全免费| 久久99热这里只频精品6学生| 亚洲精品久久成人aⅴ小说| 又大又黄又爽视频免费| 美女视频免费永久观看网站| 日韩人妻精品一区2区三区| 精品卡一卡二卡四卡免费| 午夜免费男女啪啪视频观看| 母亲3免费完整高清在线观看| 成人漫画全彩无遮挡| 在线亚洲精品国产二区图片欧美| 国产精品二区激情视频| 日韩伦理黄色片| 久久99热这里只频精品6学生| 亚洲成人一二三区av| 亚洲男人天堂网一区| 午夜av观看不卡| 高清不卡的av网站| av线在线观看网站| 纵有疾风起免费观看全集完整版| 男女边吃奶边做爰视频| 黄网站色视频无遮挡免费观看| 国产一区二区激情短视频 | 成人黄色视频免费在线看| 曰老女人黄片| 国产免费福利视频在线观看| 热re99久久国产66热| 在线精品无人区一区二区三| 男女高潮啪啪啪动态图| h视频一区二区三区| 日本vs欧美在线观看视频| 啦啦啦啦在线视频资源| 久久性视频一级片| 一区二区三区激情视频| av在线观看视频网站免费| 色婷婷久久久亚洲欧美| 精品国产乱码久久久久久男人| xxxhd国产人妻xxx| 国产探花极品一区二区| 精品少妇久久久久久888优播| 少妇被粗大的猛进出69影院| 国产一区二区在线观看av| 蜜桃国产av成人99| 欧美亚洲 丝袜 人妻 在线| 亚洲精品av麻豆狂野| 97人妻天天添夜夜摸| 日韩成人av中文字幕在线观看| 黄色毛片三级朝国网站| 亚洲国产成人一精品久久久| 欧美成人午夜精品| 国产免费视频播放在线视频| 久久人人97超碰香蕉20202| 精品国产露脸久久av麻豆| 亚洲成国产人片在线观看| 日韩一区二区三区影片| 色精品久久人妻99蜜桃| 九色亚洲精品在线播放| a级毛片在线看网站| 国产精品久久久久成人av| 久久国产精品大桥未久av| 国精品久久久久久国模美| 深夜精品福利| 两个人看的免费小视频| 赤兔流量卡办理| 亚洲精品国产一区二区精华液| 午夜福利视频在线观看免费| 日韩制服骚丝袜av| 精品人妻一区二区三区麻豆| 精品国产一区二区久久| 嫩草影视91久久| 欧美人与性动交α欧美精品济南到| 麻豆乱淫一区二区| 在线观看免费日韩欧美大片| 亚洲欧美日韩另类电影网站| 亚洲国产欧美一区二区综合| 亚洲国产精品成人久久小说| 制服丝袜香蕉在线| a级毛片黄视频| 51午夜福利影视在线观看| 99九九在线精品视频| 美女高潮到喷水免费观看| 最近中文字幕高清免费大全6| 国产伦理片在线播放av一区| 欧美精品av麻豆av| 亚洲精华国产精华液的使用体验| 欧美另类一区| 国产午夜精品一二区理论片| 国产精品欧美亚洲77777| 久久狼人影院| 夫妻午夜视频| 亚洲欧美成人精品一区二区| 国产高清国产精品国产三级| 久久天堂一区二区三区四区| 国产精品欧美亚洲77777| 成年动漫av网址| 午夜激情久久久久久久| 美女中出高潮动态图| 国产男人的电影天堂91| 秋霞伦理黄片| 欧美国产精品一级二级三级| 久久精品aⅴ一区二区三区四区| 高清av免费在线| 男女无遮挡免费网站观看| 又粗又硬又长又爽又黄的视频| 午夜影院在线不卡| 午夜久久久在线观看| h视频一区二区三区| 国产精品免费大片| 午夜福利一区二区在线看| 色综合欧美亚洲国产小说| 国产亚洲精品第一综合不卡| 性少妇av在线| 国产精品久久久av美女十八| 国产成人欧美在线观看 | 亚洲一区中文字幕在线| 人妻一区二区av| 成人国产av品久久久| 欧美黄色片欧美黄色片| 国产精品女同一区二区软件| a级片在线免费高清观看视频| 久久久精品94久久精品| 久久av网站| av天堂久久9| a级片在线免费高清观看视频| 青春草亚洲视频在线观看| 亚洲成人国产一区在线观看 | 超碰97精品在线观看| 91国产中文字幕| 亚洲三区欧美一区| 国产精品无大码| 美女视频免费永久观看网站| 少妇被粗大猛烈的视频| 国产亚洲一区二区精品| 欧美激情高清一区二区三区 | 男女免费视频国产| 国语对白做爰xxxⅹ性视频网站| 天天添夜夜摸| 2021少妇久久久久久久久久久| 国产成人精品久久久久久| 99久久精品国产亚洲精品| 国产在线一区二区三区精| 99久久精品国产亚洲精品| 亚洲成人免费av在线播放| 中文字幕色久视频| 久久精品aⅴ一区二区三区四区| 丰满乱子伦码专区| 99re6热这里在线精品视频| 观看美女的网站| 99re6热这里在线精品视频| 两个人看的免费小视频| 亚洲久久久国产精品| 天美传媒精品一区二区| 精品人妻熟女毛片av久久网站| 丁香六月欧美| 欧美日韩亚洲综合一区二区三区_| av电影中文网址| 中文字幕另类日韩欧美亚洲嫩草| 在线 av 中文字幕| 日韩av不卡免费在线播放| 最近的中文字幕免费完整| 一区二区三区精品91| 欧美成人午夜精品| 亚洲一区二区三区欧美精品| 免费看av在线观看网站| 亚洲av成人精品一二三区| 高清在线视频一区二区三区| 大码成人一级视频| av视频免费观看在线观看| 免费av中文字幕在线| 亚洲第一青青草原| av在线播放精品| 国产成人精品在线电影| 在现免费观看毛片| 国产精品国产三级专区第一集| 国产精品久久久久久精品古装| 日本一区二区免费在线视频| 91成人精品电影| 日韩av免费高清视频| 考比视频在线观看| 久久精品久久精品一区二区三区| 免费高清在线观看日韩| av女优亚洲男人天堂| 免费高清在线观看视频在线观看| 女的被弄到高潮叫床怎么办| 国产麻豆69| 在线观看一区二区三区激情| 国产成人啪精品午夜网站| 久久亚洲国产成人精品v| 久久青草综合色| 大陆偷拍与自拍| 国产片特级美女逼逼视频| 午夜日本视频在线| 国产欧美日韩一区二区三区在线| 国产成人免费观看mmmm| 曰老女人黄片| 午夜影院在线不卡| 国产成人免费观看mmmm| 国产又爽黄色视频| 成人漫画全彩无遮挡| 国产在线免费精品| 久久精品亚洲熟妇少妇任你| 国产极品天堂在线| 久久久久久人妻| 久久久久视频综合| 日韩精品免费视频一区二区三区| 国产一区亚洲一区在线观看| 国产精品一二三区在线看| 久久精品国产a三级三级三级| 1024视频免费在线观看| 一本大道久久a久久精品| 久久精品国产亚洲av涩爱| 夫妻午夜视频| 国产精品久久久av美女十八| 菩萨蛮人人尽说江南好唐韦庄| 女人被躁到高潮嗷嗷叫费观| av在线观看视频网站免费| 一级a爱视频在线免费观看| 国产免费福利视频在线观看| 夜夜骑夜夜射夜夜干| 午夜福利在线免费观看网站| 免费av中文字幕在线| 日本爱情动作片www.在线观看| 欧美变态另类bdsm刘玥| 男女国产视频网站| 欧美老熟妇乱子伦牲交| 久久午夜综合久久蜜桃| 国产一卡二卡三卡精品 | 天天躁日日躁夜夜躁夜夜| 久久久久久久久久久免费av| 毛片一级片免费看久久久久| 午夜福利在线免费观看网站| 亚洲欧美一区二区三区久久| 免费女性裸体啪啪无遮挡网站| 国产精品熟女久久久久浪| 天天操日日干夜夜撸| 最近的中文字幕免费完整| 日韩大码丰满熟妇| 国产日韩欧美视频二区| 国产精品成人在线| 国产日韩欧美视频二区| 香蕉国产在线看| 欧美 日韩 精品 国产| 婷婷色综合大香蕉| 晚上一个人看的免费电影| 香蕉国产在线看| 天堂俺去俺来也www色官网| 伊人亚洲综合成人网| 久久人人爽人人片av| 免费高清在线观看视频在线观看| 啦啦啦啦在线视频资源| 欧美人与性动交α欧美精品济南到| 国产爽快片一区二区三区| 国产熟女午夜一区二区三区| 免费黄网站久久成人精品| 亚洲欧美成人综合另类久久久| 99久久人妻综合| 亚洲av男天堂| 免费少妇av软件| 欧美少妇被猛烈插入视频| 亚洲视频免费观看视频| 欧美久久黑人一区二区| 亚洲在久久综合| 毛片一级片免费看久久久久| 黑丝袜美女国产一区| 超碰成人久久| 亚洲精品aⅴ在线观看| 亚洲欧美精品综合一区二区三区| 十八禁人妻一区二区| 久久精品久久久久久久性| 亚洲色图 男人天堂 中文字幕| 亚洲专区中文字幕在线 | 亚洲少妇的诱惑av| 亚洲免费av在线视频| 亚洲少妇的诱惑av| 成人国产av品久久久| 97在线人人人人妻| 精品一区二区免费观看| videos熟女内射| 可以免费在线观看a视频的电影网站 | 欧美日韩一区二区视频在线观看视频在线| 久热爱精品视频在线9| 一区二区av电影网| 午夜免费男女啪啪视频观看| 亚洲欧美一区二区三区久久| 亚洲人成电影观看| 一个人免费看片子| 日本av手机在线免费观看| 久久精品国产亚洲av高清一级| 国产一级毛片在线| 一边亲一边摸免费视频| 国产欧美亚洲国产| 丝袜脚勾引网站| 少妇被粗大猛烈的视频| 日韩欧美一区视频在线观看| 久久韩国三级中文字幕| 亚洲精品自拍成人| videos熟女内射| 久久人人爽av亚洲精品天堂| 国产成人精品久久久久久| 晚上一个人看的免费电影| 国产精品免费大片| 国产成人精品在线电影| 国产精品国产三级国产专区5o| 日韩大片免费观看网站| 国产探花极品一区二区| 曰老女人黄片| 精品一区二区三区四区五区乱码 | 成人亚洲精品一区在线观看| av不卡在线播放| 国产成人精品无人区| 国产在视频线精品| 欧美成人精品欧美一级黄| 在线观看免费午夜福利视频| 成年av动漫网址| 国产麻豆69| videos熟女内射| av又黄又爽大尺度在线免费看| 秋霞伦理黄片| 两个人看的免费小视频| 欧美激情极品国产一区二区三区| 色播在线永久视频| 国产伦人伦偷精品视频| 国产日韩欧美视频二区| 亚洲激情五月婷婷啪啪| 极品少妇高潮喷水抽搐| 色视频在线一区二区三区| 午夜福利网站1000一区二区三区| 自线自在国产av| 国产片内射在线| 一级毛片黄色毛片免费观看视频| 亚洲国产欧美日韩在线播放| 婷婷色综合大香蕉| 国产av一区二区精品久久| 欧美日韩国产mv在线观看视频| 只有这里有精品99| 巨乳人妻的诱惑在线观看| 久久97久久精品| 亚洲精品自拍成人| 天天躁狠狠躁夜夜躁狠狠躁| 一区二区三区四区激情视频| 一级,二级,三级黄色视频| 国产野战对白在线观看| 人人澡人人妻人| 成年av动漫网址| 亚洲av电影在线观看一区二区三区| 国产免费福利视频在线观看| 伊人久久大香线蕉亚洲五| 青春草亚洲视频在线观看| 亚洲av日韩在线播放| 亚洲av成人不卡在线观看播放网 | 哪个播放器可以免费观看大片| 日韩欧美一区视频在线观看| 一区二区三区乱码不卡18| 免费观看a级毛片全部| av视频免费观看在线观看| 无限看片的www在线观看| 在线观看免费午夜福利视频| 18禁国产床啪视频网站|