• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    NUMERICAL WAVE FLUME WITH IMPROVED SMOOTHED PARTICLE HYDRODYNAMICS*

    2010-04-13 14:49:52ZHENGJinhai

    ZHENG Jin-hai

    State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China, E-mail: jhzheng@hhu.edu.cn

    SOE Mee Mee, ZHANG Chi

    State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China

    HSU Tai-Wen

    Department of Hydraulic and Ocean Engineering, National Cheng Kung University, Tainan 701, China

    NUMERICAL WAVE FLUME WITH IMPROVED SMOOTHED PARTICLE HYDRODYNAMICS*

    ZHENG Jin-hai

    State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China, E-mail: jhzheng@hhu.edu.cn

    SOE Mee Mee, ZHANG Chi

    State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China

    HSU Tai-Wen

    Department of Hydraulic and Ocean Engineering, National Cheng Kung University, Tainan 701, China

    (Received April 25, 2010, Revised August 8, 2010)

    This article presents an improved Nearest Neighboring Particle Searching (NNPS) technique for numerical modeling of water waves with the Smoothed Particle Hydrodynamics (SPH) method. The proposed technique differs from others by introducing the concept of Inner and Outer Particle Searching (IOPS) and shifting most of advanced CPU operations into simple addition operations. The IOPS method is shown to significantly improve the computational efficiency and reduce the CPU time especially for large number of particles, based on comparisons with other two NNPS methods. This method is implemented in a 2DV numerical wave flume conducted by the SPH method. Three test cases are examined, including generations and propagations of dam-breaking induced waves, solitary wave and irregular wave. Calculated results are in good agreements with experimental data and theoretical solutions with fairly satisfactory CPU time-consuming. The wave motions observed in physical facilities are successfully reproduced by the SPH numerical wave flume, revealing its robust capability of modeling realistic wave propagation and substantial potential for a wide variety of hydrodynamic problems.

    particle searching technique, Smoothed Particle Hydrodynamics (SPH), numerical wave flume, Navier-Stokes equation

    1. Introduction

    Smoothed Particle Hydrodynamics (SPH) method was originally developed for astrophysical applications, and has later been extended to a number of other fields. The basic idea of SPH is to use the collective motions of large number of particles to represent a flow in a Lagrangian way rather than Eulerian way. In a particle approach, the governing equations are discretized and solved with respect to the individual particles filled within the computational domain. This method is conceptually simple without adding new physics and high accuracy can be achieved by increasing number of particles.

    To date, the SPH becomes increasingly popular and finds wide applications in computational fluid mechanics, including free surface flow[1], porous flow[2], landslide-induced flow[3]and fluid-structure interactions[4]. In particular, the SPH method has been adapted in a variety of numerical wave flumes for studying green water overtopping[5,6], wave breaking in the surf zone[7,8], and wave-structure interaction[9-11]. The most attracting feature of SPH for wave modeling is that it naturally needs no special approach for dealing with the free surface. It is meshfree and every particle at the free surface can be easily tracked in the Lagrangian frame. When conducting a numerical wave flume involved with flow separation and large deformation, this appears a significant advantage over other traditional Eulerian methods, including those

    2. Numerical method

    The basic concept of SPH method is to treat a flow as a sum of moving particles. Each particle has its own physical quantities such as mass, velocity, density and pressure gradient. During flow motions, all particles change their positions and corresponding properties with time. The SPH model then solves the trajectory of each particle. Through the use of integral interpolations, the field variables are expressed by integrals approximated by summation interpolations over neighboring particles. Firstly, the functions of variables at an arbitrary location are transformed into integral forms, referred to the kernel approximation. Secondly, those integral expressions are approximated by summations of variables of relevant scattered particles.

    2.1 Kernel approximation

    In a continuous variable field, any function can be expressed in terms of its values at a set of particles by use of a weighting function

    where A is the function with respect to the spatial tensor, Ω denotes the computational domain, and δ(r?r′) is Dirac delta function. Replacing the Dirac delta function by a kernel W, leads to

    where h is the smoothing length which controls the size of the area around a given particle where the contribution from other particles can not be neglected, and W is a cubic spline kernel. Representing the approximation process with a sign of〈〉and introducing the gradient of A(r), we get

    Equation (4) can be written as

    provided that the filtering range kh is inside the computational domain . Ω

    Note that, if the filtering range extends beyond the computational domain, Eq.(5) will break down for the lack of particles and a special treatment should be applied at the boundary[19].

    2.2 Particle approximation

    If the number of particles constructing the whole domain is N, Eq.(5) can be approximated by a summation, given as

    where r, m and ρ represent the spatial vector, mass and density of an individual particle, respectively. Subscript b represents the index number.

    It can be seen from Eq.(6) that the variable A at the point r is affected by all N particles in the computation domain. In practice, the influence of kernel is restricted to a radial distance of an order of kh. That means only the particles within this distance (so-called neighboring particles) are considered to contribute to the summation in Eq.(6). While particles keep moving with flow motions, the relative positions of all particles should be calculated to find the effective particles for each point at every time step. This work is done by the NNPS method.

    2.3 IOPS method

    This section describes in detail the concept and implementation of the IOPS method proposed in this study. The IOPS method saves the computational time by shifting most of advanced CPU operations (e.g., multiplication, division) into simple addition operations. Firstly, each individual particle is marked by the so-called inner and outer grids. Secondly, for a given particle inside the domain, the particles in its filtering control unit in the inner grid is marked. Finally, the distances between this particle and other particles in the filtering control unit are computed to find the nearest neighboring particles.

    If the number of particles is N and the number of inner grids is m for the whole domain, the number of particles in each inner grid would be N/m . Figure 1 shows the grid structures. Overlaps can be seen between boundaries of neighboring outer grids. The number of particles in each outer grid is larger than that in each inner grid. When total number of particles is relatively large, however, that difference can be neglected in the estimation of computational effort. Therefore, the computation order of marking all particles by inner and outer grids is O(2×N×m).

    For a given particle in an inner grid, a square filtering control unit is defined with its side length of kh. Then, particles belonging to both the filtering unit and the outer grid are marked, with a computation order of O(N2/m2). For the whole domain, that is O(N2/m). Till now, only particles inside the filtering control unit need to be considered to search the nearest neighboring ones. The computation order for this process appears a constant and can no longer be reduced. Eventually, it is easy to find that the smallest total computation order can only be obtained when 2×N×m+N2/m is smallest. That is whenwe get the minimum CPU time consuming.

    2.4 Numerical wave flume

    In Lagrangian form, the conservation of mass and the conservation of momentum for a Newtonian incompressible fluid can be expressed as

    where u is the particle velocity tensor, p the fluid pressure,ν the kinematic viscosity, F the body force per unit mass.

    The pressure of each particle is obtained from the equation of state. By artificially enhancing the fluid compressibility, the following form is proposed

    then the particle is regarded as a free-surface particle (constant β=0.8-0.98) for which a density equal to ρ0is imposed. This treatment is based on the fact that the calculated particle density on the free surface drops abruptly for the lack of particles in the outer region of the free surface.

    3. Model results

    where H is the wave height, d the water depth, and C the wave celerity.

    The time-evolution of surface elevation at threemeasuring points x=1.5m , x=2.5m and x=3.5mare collected to verify the numerical results, as shown in Fig.8. The three surface profiles show the good consistency. For each point, the surface elevation remains stationary before wave passing through it and the peak value of surface displays no significant deviation from other two points. That means a stable pressure field is obtained in computation. The observed time lag between two adjacent points is 0.917 s, and the corresponding calculated wave celerity is 1.09 m/s, which agrees well with the analytical value of 1.08 m/s.

    Figure 9 presents the simulated free surface at t=4s, as well as the first-order Boussinesq solution. The overall agreement is satisfactory. The calculated profile is steeper than the theoretical result in front of wave crest while milder behind it, which is due to the kinematic viscosity included in the numerical model but not presented in the analytical solution.

    Figure 10 illustrates the velocity field at t=3s. Realistic result is shown. The horizontal velocity increases with decreasing depth with its peak value locating at the wave crest, where the vertical velocity is negligible. In the water column where wave has passed through, some minor disturbances are found. Nevertheless, generally realistic distributions of both value and direction of velocity are maintained for the whole domain, justifying the ability of the numerical wave flume developed in the present study.

    3.3 Irregular waves

    The numerical flume has a length of 5 m and a height of 1 m, as well as an initial water depth of 0.65 m, as shown in Fig.11. A 0.9 m high wavemaker is placed at the left boundary of flume to generate irregular waves, and an artificially absorbing sponge layer is configured in the right flume section from 13 m to 16 m. The particle setting in the SPH method is the same as in the case of solitary wave. The time-series of surface elevation are recorded at seven points located at 7.5 m, 8 m, 8.5 m, 9 m, 9.5 m, 10.0 m and 10.5 m along the horizontal axis.

    where1smf and2smf are smoothing functions expressed as

    The smoothed time-series of wavemaker position and velocity are displayed in Fig.13. With this method, a continuous signal is obtained for the numerical experiment.

    Figure 14 presents the comparisons of free surface variations at Point 3 and Point 5 between experimental data of Cox and Ortega[27]for the case without a deck, the SPH simulation results from present study and Gomez-Gesteira et al. model[5](hereafter GGM). The simulated profiles are in generally good agreements with the GGM results and the measurements, both in amplitude and phase, although there are some slight discrepancies between numerical and experimental results for secondary peaks. These discrepancies are probably due to the smoothing effects of wavemaker signal. Particularly for the phase of the first wave and the height of the highest wave, the present model provides fitter results to the observation than GGM’s.

    Figure 15 shows the particle snapshots in the righter region of flume at t=11s, t=13s and t=15s. The primary aim of this figure is to examine the efficiency of the sponge layer in the model. Wavesenter the sponge layer (x =13m-16m ) att=13s and begin to dissipate energy in this region. At t=15s, the surface variation is undistinguishable, indicating that most of wave energy has been effectively absorbed due to the viscous effect in the sponge layer.

    It can be reasonably concluded that the SPH numerical wave flume developed in this study is capable of generating reliable irregular wave trains and reproducing their propagations with good stability and boundary descriptions. Numerical results show the improvements over that of GGM to a reasonable extent. Moreover, only 25 min is needed to complete the computation for this case. This does benefit from the more efficient inner and outer particle searching technique proposed in this paper.

    4. Conclusions

    In this paper, an IOPS technique has been proposed for the SPH simulation. This technique effectively reduces the time requirement of computation by introducing inner and outer grids and shifting most of advanced CPU operations into simple addition operations. It is particularly useful to improve the SPH applications to larger study areas, at least partly. Employing the IOPS method, a SPH numerical wave flume is conducted based on the Navier-Stokes equations. Three test cases are used to investigate its performance, including dam breaking, generation and propagation of solitary wave and irregular wave. Numerical results are in good agreements with theoretical solutions, experimental data and results provided in previous studies. It is concluded that the SPH numerical wave flume with the IOPS method presented in this study can reproduce the generation and propagation of realistic waves in a physical tank, which could act as the foundation for further studies involving more complicated flows.

    [1] ZHENG Kun, SUN Zhao-chen and SUN Jia-wen et al. Numerical simulations of water wave dynamics based on SPH methods[J]. Journal of Hydrodynamics, 2009, 21(6): 843-850.

    [2] CHU Yang, LU Wen-qiang. Porescale SPH simulation of flow in porous media[J]. Journal of Engineering Thermophysics, 2009, 30(3): 437-440(in Chinese).

    [3] DU Xiao-tao, WU Wei and GONG Kai et al. Two dimensional SPH simulation of water waves generated by underwater landslide[J]. Journal of Hydrodynamics, Ser. A, 2006, 21(5): 579-586(in Chinese).

    [4] XU Qing-xin, SHEN Rong-ying. Fluid-structure interaction of hydrodynamic damper during the rush into the water channel[J]. Journal of Hydrodynamics, 2008, 20(5): 583-590.

    [5] GOMEZ-GESTEIRA M., CERQUEIRO D. and CRESPO C. et al. Green water overtopping analyzed with a SPH model[J]. Ocean Engineering, 2005, 32(2): 223-238.

    [6] SHAO S. D., JI C. M. and GRAHAM D. I. et al. Simulation of wave overtopping by an incompressible SPH model[J]. Coastal Engineering, 2006, 53(9): 723-735.

    [7] DARLYMPLE R. A., ROGER B. D. Numerical modeling of water waves with the SPH method[J]. Coastal Engineering, 2006, 53(2-3): 141-147.

    [8] KHAYYER A., GOTOH H. and SHAO S. D. Corrected incompressible SPH method for accurate water-surface tracking in breaking waves[J]. Coastal Engineering, 2008, 55(3): 236-250.

    [9] GOMEZ-GESTEIRA M., DALRYMPLE R. A. Using a 3D SPH method for wave impact on a tall structure[J]. J. Wtrwy. Port, Coastal Ocean Eng., 2004, 130(2): 63-69.

    [10] SHAO S. D. SPH simulation of solitary wave interaction with a curtain-type breakwater[J]. Journal of Hydraulic Research, 2005, 43(4): 366-375.

    [11] GONG Kai, LIU Hua and WANG Ben-long. Water entry of a wedge based on SPH model with an improved boundary treatment[J]. Journal of Hydrodynamics, 2009, 21(6): 750-757.

    [12] LV Biao, JIN Sheng and AI Cong-fang. A conservative unstructured staggered grid scheme for incompressible Navier-Stokes equations[J]. Journal of Hydrodynamics, 2010, 22(2): 173-184.

    [13] CHRISTENSEN E. D., DEIGAARD R. Large eddy simulation of breaking waves[J]. Coastal Engineering, 2001, 42(1): 53-86.

    [14] ZOU Lin, LIN Yu-feng and LAM Kit. Large-eddy simulation of flow around cylinder arrays at a subcritical Reynolds number[J]. Journal of Hydrodynamics, 2008, 20(4): 403-413.

    [15] SUN D. P., LI Y. C. Wave damping absorber in numerical wave tank and calculation of wave transformation[J]. China Ocean Engineering, 2000, 18(2): 46-50.

    [16] MONAGHAN J. J. Particle methods for hydrodynamics[J]. Computer Physics Report, 1985, 3(2): 71-124.

    [17] HERNQUIST L., KATZ N. Tree SPH-A unification of SPH with the hierarchical tree method[J]. The Astrophysical Journal Supplement Series, 1989, 70: 419-446.

    [18] MIHAI B., MARTY L. and NATHAN Q. Grid-assisted particle search in smoothed particle hydrodynamics[R]. Galway faculty of Engineering Research Day, 2004.

    [19] LIU G. R., LIU M. B. Smoothed particle hydrodynamics: A meshfree particle method[M]. Singapore: World Scientific, 2003, 6-27.

    [20] KOSHIZUKAR S., NOBE A. and OKA Y. Numerical analysis of breaking waves using the moving particle semi-implicit method[J]. International Journal for Numerical Methods in Fluid, 1998, 26(7): 751-769.

    [21] VIOLEAU D., ISSA R. Numerical modelling of complex turbulent free-surface flows with the SPH method: An overview[J]. International Journal for Numerical Methods in Fluids, 2007, 53(2): 277-304.

    [22] SHAO S. D., LO E. Y. M. Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface[J]. Advances in Water Resources, 2003, 26(7): 787-800.

    [23] MARTIN J. C., MOYCE W. J. An experimental study of the collapse of liquid columns on a rigid horizontalplane[J]. Philosophical Transaction of the Royal Society of London, Ser. A, 1995, 244(882): 312-324.

    [24] HIRT C. W., NICHOLS B. D. Volume of fluid method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225.

    [25] HARLOW F. H., WELCH F. J. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface[J]. Physics of Fluids, 1965, 8(12): 2182-2189.

    [26] XIAO Bo. The theory of solitary wave generating in laboratory and its validity[J]. Chinese Port Engineering, 1991, 2: 19-24(in Chinese).

    [27] COX D. T., ORTEGA J. A. Laboratory observations of green water overtopping a fixed deck[J]. Ocean Engineering, 2002, 29(14): 1827-1840.

    10.1016/S1001-6058(09)60115-3

    * Project supported by the Program for New Century Excellent Talents in University of China (Grant No. NCET-07-0255), the Special Fund of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University (Grant No. 2009585812).

    Biography: ZHENG Jin-hai (1972-), Male, Ph. D., Professor

    91午夜精品亚洲一区二区三区| 久久 成人 亚洲| 日本爱情动作片www.在线观看| 久久久成人免费电影| 亚洲真实伦在线观看| 日产精品乱码卡一卡2卡三| freevideosex欧美| 日韩精品有码人妻一区| 国产精品精品国产色婷婷| 能在线免费看毛片的网站| 大香蕉97超碰在线| 99热6这里只有精品| 日本黄色片子视频| 97在线人人人人妻| av福利片在线观看| av免费在线看不卡| 免费观看的影片在线观看| 伊人久久国产一区二区| 国产男女超爽视频在线观看| 男女下面进入的视频免费午夜| 人人妻人人添人人爽欧美一区卜 | 久久精品熟女亚洲av麻豆精品| 成人亚洲欧美一区二区av| 国产一区二区在线观看日韩| 久久韩国三级中文字幕| 精品亚洲乱码少妇综合久久| 一个人看的www免费观看视频| 婷婷色综合大香蕉| 国产高清有码在线观看视频| 国产一级毛片在线| 女性生殖器流出的白浆| 久久精品国产自在天天线| 嫩草影院新地址| 欧美3d第一页| 黄色一级大片看看| 草草在线视频免费看| 亚洲欧美日韩卡通动漫| 亚洲精品乱码久久久v下载方式| 日本黄色日本黄色录像| 亚洲欧美成人综合另类久久久| 亚洲精品久久午夜乱码| 亚洲国产成人一精品久久久| 成人免费观看视频高清| 少妇人妻 视频| 青青草视频在线视频观看| 久久午夜福利片| 91久久精品国产一区二区三区| 国产一区亚洲一区在线观看| 狂野欧美激情性xxxx在线观看| 伦理电影免费视频| 欧美一区二区亚洲| 18禁裸乳无遮挡免费网站照片| 人妻系列 视频| 中文字幕人妻熟人妻熟丝袜美| 亚洲人成网站在线观看播放| 女人久久www免费人成看片| 精品国产一区二区三区久久久樱花 | 欧美极品一区二区三区四区| 成年人午夜在线观看视频| 精品人妻熟女av久视频| 99热全是精品| 简卡轻食公司| 蜜桃亚洲精品一区二区三区| 久久精品久久久久久久性| 妹子高潮喷水视频| 欧美97在线视频| 亚洲欧美成人精品一区二区| 女性生殖器流出的白浆| 久久久亚洲精品成人影院| 天天躁夜夜躁狠狠久久av| 在线观看免费日韩欧美大片 | 在线免费十八禁| 国产精品伦人一区二区| 最近最新中文字幕大全电影3| kizo精华| 成年美女黄网站色视频大全免费 | 色综合色国产| 欧美日韩视频精品一区| 日日摸夜夜添夜夜爱| 亚洲人成网站在线播| 成人免费观看视频高清| 亚洲av福利一区| 亚洲四区av| 成人综合一区亚洲| 免费人妻精品一区二区三区视频| 女人十人毛片免费观看3o分钟| 纯流量卡能插随身wifi吗| 一个人免费看片子| 在线播放无遮挡| a级一级毛片免费在线观看| 久久久久久久久久成人| 99视频精品全部免费 在线| 中文欧美无线码| 国产精品秋霞免费鲁丝片| 久久久精品94久久精品| 欧美成人a在线观看| 天天躁日日操中文字幕| 在现免费观看毛片| 精品亚洲乱码少妇综合久久| 男女免费视频国产| 多毛熟女@视频| 秋霞在线观看毛片| 性高湖久久久久久久久免费观看| 日韩三级伦理在线观看| 青春草国产在线视频| 十八禁网站网址无遮挡 | 国产精品精品国产色婷婷| 亚洲av综合色区一区| 内射极品少妇av片p| 黄片wwwwww| 亚洲aⅴ乱码一区二区在线播放| 99久久人妻综合| 99视频精品全部免费 在线| 中文精品一卡2卡3卡4更新| 久久久色成人| 国产伦理片在线播放av一区| 久久精品久久久久久噜噜老黄| 丰满少妇做爰视频| 久久久精品免费免费高清| 亚洲精品视频女| 国产亚洲最大av| 久久人人爽人人片av| 国产探花极品一区二区| 99久久中文字幕三级久久日本| 亚洲国产色片| 纯流量卡能插随身wifi吗| 男女无遮挡免费网站观看| 人人妻人人爽人人添夜夜欢视频 | 日本wwww免费看| 王馨瑶露胸无遮挡在线观看| 国产一区有黄有色的免费视频| 久久久久国产网址| 国产成人精品久久久久久| 日本-黄色视频高清免费观看| 边亲边吃奶的免费视频| 国产亚洲最大av| 婷婷色av中文字幕| 欧美xxⅹ黑人| 免费播放大片免费观看视频在线观看| 精品久久久久久久久av| 色视频在线一区二区三区| 青春草国产在线视频| 内射极品少妇av片p| 亚洲伊人久久精品综合| 国产精品嫩草影院av在线观看| 男人狂女人下面高潮的视频| 欧美3d第一页| 性色av一级| 尤物成人国产欧美一区二区三区| 国产av精品麻豆| 免费久久久久久久精品成人欧美视频 | 亚洲av在线观看美女高潮| 制服丝袜香蕉在线| 青春草亚洲视频在线观看| 国产精品伦人一区二区| 午夜福利网站1000一区二区三区| 啦啦啦中文免费视频观看日本| 日日啪夜夜爽| 国产精品国产三级专区第一集| 高清不卡的av网站| h视频一区二区三区| 国产一区二区三区av在线| 亚洲高清免费不卡视频| 成人午夜精彩视频在线观看| 色婷婷av一区二区三区视频| 简卡轻食公司| 久久女婷五月综合色啪小说| 搡老乐熟女国产| 内地一区二区视频在线| 国产乱人视频| 亚洲国产最新在线播放| 91狼人影院| 色婷婷av一区二区三区视频| 妹子高潮喷水视频| 国产av码专区亚洲av| 亚洲精品国产成人久久av| 99热这里只有精品一区| 午夜福利网站1000一区二区三区| 91在线精品国自产拍蜜月| 精品亚洲成国产av| 亚洲欧美精品自产自拍| 18禁裸乳无遮挡动漫免费视频| 多毛熟女@视频| 精品一区二区三区视频在线| 日韩,欧美,国产一区二区三区| 国产精品一及| 成人二区视频| 亚洲av欧美aⅴ国产| 丰满迷人的少妇在线观看| 亚洲欧美一区二区三区国产| 国产日韩欧美在线精品| 国产一区二区三区综合在线观看 | 又大又黄又爽视频免费| av又黄又爽大尺度在线免费看| 校园人妻丝袜中文字幕| 乱码一卡2卡4卡精品| 亚洲精品日韩在线中文字幕| 最后的刺客免费高清国语| 欧美高清成人免费视频www| 久久精品久久久久久噜噜老黄| 国产片特级美女逼逼视频| 人妻制服诱惑在线中文字幕| 亚洲欧洲国产日韩| 亚洲国产色片| 网址你懂的国产日韩在线| 一级a做视频免费观看| 精品99又大又爽又粗少妇毛片| 少妇高潮的动态图| 国产一区二区三区av在线| 夜夜骑夜夜射夜夜干| 亚洲性久久影院| 色婷婷av一区二区三区视频| 如何舔出高潮| 日日啪夜夜撸| 国产精品熟女久久久久浪| 色5月婷婷丁香| 日本色播在线视频| 观看美女的网站| 国产精品久久久久久精品电影小说 | 国产探花极品一区二区| 免费久久久久久久精品成人欧美视频 | 国产成人精品福利久久| 麻豆国产97在线/欧美| 久久久久久久国产电影| 国内少妇人妻偷人精品xxx网站| 日日摸夜夜添夜夜爱| 亚洲av中文字字幕乱码综合| 亚洲怡红院男人天堂| 国产精品国产三级国产专区5o| 欧美区成人在线视频| 国产综合精华液| 成人美女网站在线观看视频| 3wmmmm亚洲av在线观看| 久久精品久久久久久久性| 亚洲欧美一区二区三区黑人 | 内地一区二区视频在线| 少妇人妻一区二区三区视频| 国产人妻一区二区三区在| h日本视频在线播放| 国产亚洲最大av| 精品亚洲成国产av| 久久精品国产自在天天线| 51国产日韩欧美| 99视频精品全部免费 在线| 一级毛片久久久久久久久女| 久久久欧美国产精品| 国产成人免费观看mmmm| 中文字幕免费在线视频6| 国产黄色免费在线视频| 精品人妻熟女av久视频| 寂寞人妻少妇视频99o| 一二三四中文在线观看免费高清| 人妻一区二区av| 久久久国产一区二区| 丝瓜视频免费看黄片| 国产亚洲5aaaaa淫片| 男人和女人高潮做爰伦理| 国产一区二区三区综合在线观看 | 女性生殖器流出的白浆| 美女xxoo啪啪120秒动态图| 亚洲三级黄色毛片| 中国三级夫妇交换| 尤物成人国产欧美一区二区三区| 久久精品国产自在天天线| 久久精品国产亚洲网站| 我的老师免费观看完整版| 亚洲婷婷狠狠爱综合网| 国产在线免费精品| 91在线精品国自产拍蜜月| 人人妻人人看人人澡| 五月玫瑰六月丁香| 直男gayav资源| 国产午夜精品久久久久久一区二区三区| 日本欧美国产在线视频| 熟女电影av网| 性色avwww在线观看| 亚洲最大成人中文| 国产精品女同一区二区软件| h视频一区二区三区| av免费在线看不卡| 久久精品国产亚洲av天美| 久久99蜜桃精品久久| 在线免费十八禁| 插逼视频在线观看| 一级毛片我不卡| 少妇高潮的动态图| 日日摸夜夜添夜夜爱| 亚洲无线观看免费| 18禁在线播放成人免费| 国产精品人妻久久久久久| av又黄又爽大尺度在线免费看| 九九爱精品视频在线观看| 国产真实伦视频高清在线观看| 免费黄色在线免费观看| 男的添女的下面高潮视频| 一本久久精品| 波野结衣二区三区在线| 男男h啪啪无遮挡| 十八禁网站网址无遮挡 | 欧美3d第一页| 欧美精品一区二区免费开放| 欧美丝袜亚洲另类| 亚洲真实伦在线观看| 国产人妻一区二区三区在| av.在线天堂| 午夜福利视频精品| h日本视频在线播放| 久久久久久久精品精品| 中文资源天堂在线| 国产高清国产精品国产三级 | 精品少妇久久久久久888优播| 免费看不卡的av| 亚洲自偷自拍三级| 天堂俺去俺来也www色官网| 黄色一级大片看看| 一区二区av电影网| 王馨瑶露胸无遮挡在线观看| 精品视频人人做人人爽| av在线观看视频网站免费| 国精品久久久久久国模美| 美女视频免费永久观看网站| 亚洲av国产av综合av卡| 免费黄色在线免费观看| 国产极品天堂在线| 人妻系列 视频| 日韩一本色道免费dvd| 国产老妇伦熟女老妇高清| 国产熟女欧美一区二区| 一区二区三区乱码不卡18| 人人妻人人澡人人爽人人夜夜| 久久青草综合色| 亚洲性久久影院| 噜噜噜噜噜久久久久久91| 80岁老熟妇乱子伦牲交| 国产精品免费大片| 成人午夜精彩视频在线观看| 日本猛色少妇xxxxx猛交久久| 国产高清三级在线| 国产成人精品婷婷| 伊人久久国产一区二区| 国产精品一及| 在线观看一区二区三区激情| 国产一区亚洲一区在线观看| 国产一区有黄有色的免费视频| 高清日韩中文字幕在线| 国产大屁股一区二区在线视频| 国产精品av视频在线免费观看| 亚洲av不卡在线观看| 深夜a级毛片| 建设人人有责人人尽责人人享有的 | 国产熟女欧美一区二区| 欧美xxⅹ黑人| 精品亚洲成国产av| 国产色婷婷99| 男女边摸边吃奶| 一二三四中文在线观看免费高清| 国产精品麻豆人妻色哟哟久久| 中文资源天堂在线| 国产精品无大码| 成人无遮挡网站| 99热全是精品| 黄色日韩在线| 精品少妇久久久久久888优播| 国产免费又黄又爽又色| 观看av在线不卡| 亚洲婷婷狠狠爱综合网| av专区在线播放| 亚洲av成人精品一二三区| 精品人妻熟女av久视频| 五月开心婷婷网| 成人特级av手机在线观看| 高清在线视频一区二区三区| 汤姆久久久久久久影院中文字幕| 婷婷色综合www| 日韩国内少妇激情av| 五月玫瑰六月丁香| 人妻 亚洲 视频| 日本猛色少妇xxxxx猛交久久| 一级毛片aaaaaa免费看小| 国产亚洲午夜精品一区二区久久| 亚洲人成网站在线观看播放| 在线观看美女被高潮喷水网站| 亚洲无线观看免费| 啦啦啦视频在线资源免费观看| 国产精品一区二区三区四区免费观看| 六月丁香七月| 制服丝袜香蕉在线| 51国产日韩欧美| 欧美亚洲 丝袜 人妻 在线| 午夜激情福利司机影院| 欧美日韩在线观看h| 男人狂女人下面高潮的视频| 少妇人妻一区二区三区视频| 国产精品蜜桃在线观看| 少妇人妻一区二区三区视频| 高清毛片免费看| 草草在线视频免费看| 国产日韩欧美亚洲二区| 2018国产大陆天天弄谢| 亚洲av中文字字幕乱码综合| 久久人人爽av亚洲精品天堂 | 日本猛色少妇xxxxx猛交久久| a级一级毛片免费在线观看| 成人影院久久| 黄色配什么色好看| 午夜老司机福利剧场| 亚洲电影在线观看av| 国产亚洲精品久久久com| 亚洲欧美一区二区三区黑人 | 欧美日本视频| 欧美一区二区亚洲| 亚洲色图av天堂| videossex国产| 国产有黄有色有爽视频| 乱系列少妇在线播放| 汤姆久久久久久久影院中文字幕| 欧美 日韩 精品 国产| 精品国产三级普通话版| 国产成人精品一,二区| 大片电影免费在线观看免费| 亚洲精华国产精华液的使用体验| 亚洲精品久久午夜乱码| 欧美日韩综合久久久久久| 我要看黄色一级片免费的| 三级国产精品欧美在线观看| 少妇熟女欧美另类| 日韩伦理黄色片| 伊人久久国产一区二区| 九色成人免费人妻av| 日韩在线高清观看一区二区三区| 女人十人毛片免费观看3o分钟| 黑丝袜美女国产一区| 老司机影院成人| 日韩av不卡免费在线播放| 日韩 亚洲 欧美在线| 国产高清不卡午夜福利| 国产黄片视频在线免费观看| 大陆偷拍与自拍| 日本欧美国产在线视频| 欧美亚洲 丝袜 人妻 在线| 香蕉精品网在线| 九九久久精品国产亚洲av麻豆| 又黄又爽又刺激的免费视频.| 精品久久国产蜜桃| 免费看光身美女| 卡戴珊不雅视频在线播放| 全区人妻精品视频| 久久久久国产精品人妻一区二区| 一区在线观看完整版| 亚洲不卡免费看| 18禁裸乳无遮挡动漫免费视频| 一级毛片aaaaaa免费看小| 亚洲国产精品一区三区| 波野结衣二区三区在线| 国产精品久久久久久精品电影小说 | 久久 成人 亚洲| 欧美日韩一区二区视频在线观看视频在线| 少妇 在线观看| 亚洲美女黄色视频免费看| 亚洲人成网站在线播| 黑人高潮一二区| 午夜免费男女啪啪视频观看| 2021少妇久久久久久久久久久| 女人久久www免费人成看片| 高清不卡的av网站| 少妇高潮的动态图| 最近中文字幕高清免费大全6| 亚洲在久久综合| 狂野欧美激情性xxxx在线观看| a级一级毛片免费在线观看| 国产成人精品婷婷| 国产色婷婷99| 亚洲av福利一区| 国产成人a区在线观看| 菩萨蛮人人尽说江南好唐韦庄| 久久久久久久大尺度免费视频| 国产精品无大码| 天堂俺去俺来也www色官网| 午夜日本视频在线| 日韩 亚洲 欧美在线| 亚洲精品aⅴ在线观看| 亚洲国产色片| 欧美日韩在线观看h| 精品人妻一区二区三区麻豆| 国产精品欧美亚洲77777| 国产一区二区三区综合在线观看 | 制服丝袜香蕉在线| 日本黄色片子视频| 我的女老师完整版在线观看| 国产午夜精品一二区理论片| 免费观看无遮挡的男女| 纵有疾风起免费观看全集完整版| 人妻系列 视频| 九九久久精品国产亚洲av麻豆| 久久婷婷青草| 亚洲aⅴ乱码一区二区在线播放| 寂寞人妻少妇视频99o| 欧美丝袜亚洲另类| 美女国产视频在线观看| 国产午夜精品一二区理论片| 欧美成人a在线观看| 我的老师免费观看完整版| 国产无遮挡羞羞视频在线观看| 99久久中文字幕三级久久日本| 久久久欧美国产精品| 欧美成人a在线观看| 国产永久视频网站| 久久久久久久大尺度免费视频| 一本—道久久a久久精品蜜桃钙片| 亚洲精华国产精华液的使用体验| 久久6这里有精品| 国产女主播在线喷水免费视频网站| 少妇熟女欧美另类| 久久久久久久久大av| 另类亚洲欧美激情| 欧美xxxx黑人xx丫x性爽| 我的老师免费观看完整版| 国产一级毛片在线| 一级片'在线观看视频| 亚洲在久久综合| 亚洲av免费高清在线观看| 国产黄频视频在线观看| 精品亚洲成国产av| 免费大片18禁| 久久人妻熟女aⅴ| 亚洲欧美日韩另类电影网站 | 少妇人妻精品综合一区二区| 亚洲怡红院男人天堂| 高清在线视频一区二区三区| 视频区图区小说| 中文字幕制服av| 亚洲真实伦在线观看| 国产精品伦人一区二区| 自拍偷自拍亚洲精品老妇| 如何舔出高潮| 男女下面进入的视频免费午夜| 国产欧美日韩一区二区三区在线 | 少妇精品久久久久久久| 成人国产av品久久久| 毛片一级片免费看久久久久| 人妻夜夜爽99麻豆av| 如何舔出高潮| 自拍欧美九色日韩亚洲蝌蚪91 | av国产免费在线观看| 成人综合一区亚洲| 黄色怎么调成土黄色| 免费观看在线日韩| 青春草国产在线视频| 亚洲综合色惰| 尾随美女入室| 91久久精品国产一区二区成人| 国产女主播在线喷水免费视频网站| 国产69精品久久久久777片| 日韩三级伦理在线观看| 免费看光身美女| 亚洲欧美中文字幕日韩二区| 亚洲精品日韩av片在线观看| 精品一区二区三卡| 久久韩国三级中文字幕| 国产黄色免费在线视频| 观看免费一级毛片| 久久青草综合色| 在线看a的网站| 精品99又大又爽又粗少妇毛片| 欧美少妇被猛烈插入视频| 国产男女超爽视频在线观看| 成年免费大片在线观看| 爱豆传媒免费全集在线观看| 精品少妇黑人巨大在线播放| 亚洲国产精品成人久久小说| 日本wwww免费看| 中文资源天堂在线| av不卡在线播放| 观看av在线不卡| 久久婷婷青草| 欧美日韩国产mv在线观看视频 | 日日啪夜夜爽| 在线观看美女被高潮喷水网站| 亚洲欧美精品自产自拍| 午夜精品国产一区二区电影| 亚洲精品国产色婷婷电影| 日本免费在线观看一区| 超碰97精品在线观看| 国产男女内射视频| 色网站视频免费| 免费看av在线观看网站| 国产男女内射视频| 大陆偷拍与自拍| 国产无遮挡羞羞视频在线观看| 国产国拍精品亚洲av在线观看| 波野结衣二区三区在线| 三级国产精品片| 午夜激情久久久久久久| 国产精品一区二区在线观看99| 韩国av在线不卡| 欧美精品国产亚洲| av福利片在线观看| 干丝袜人妻中文字幕| 一边亲一边摸免费视频| 黑丝袜美女国产一区| 亚洲av综合色区一区| 亚洲国产欧美人成| 99视频精品全部免费 在线| 国产精品久久久久久久久免| 欧美少妇被猛烈插入视频| 高清午夜精品一区二区三区| 嘟嘟电影网在线观看| a级毛片免费高清观看在线播放| 插逼视频在线观看| 女的被弄到高潮叫床怎么办| 丰满乱子伦码专区| 永久网站在线| 亚洲图色成人| 午夜免费鲁丝| 亚洲精品视频女|