• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    NUMERICAL INVESTIGATION OF THE VENTILATED CAVITATING FLOW AROUND AN UNDER-WATER VEHICLE BASED ON A THREE-COMPONENT CAVITATION MODEL*

    2010-04-13 14:49:52JIBinLUOXianwu

    JI Bin, LUO Xian-wu

    State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China, E-mail: jib08@mails.tsinghua.edu.cn

    PENG Xiao-xing

    China Ship Scientific Research Center, Wuxi 214082, China

    ZHANG Yao, WU Yu-lin, XU Hong-yuan

    State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China

    NUMERICAL INVESTIGATION OF THE VENTILATED CAVITATING FLOW AROUND AN UNDER-WATER VEHICLE BASED ON A THREE-COMPONENT CAVITATION MODEL*

    JI Bin, LUO Xian-wu

    State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China, E-mail: jib08@mails.tsinghua.edu.cn

    PENG Xiao-xing

    China Ship Scientific Research Center, Wuxi 214082, China

    ZHANG Yao, WU Yu-lin, XU Hong-yuan

    State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China

    (Received June 4, 2010, Revised July 26, 2010)

    Based on the Reynolds-Averaged Navier-Stokes equations and mass transfer model, an approach, where a three-component cavitation model is proposed, is presented to simulate ventilated cavitating flow as well as natural cavitation. In the proposed cavitation model, the initial content of nucleus in the local flow field is updated instantaneously, and is coupled with the Rayleigh-Plesset equation to capture the cavity development. The proposed model is applied to simulate the cavitating flow around an under-water vehicle in different cavitation conditions. The results indicate that for the natural and ventilated cavitation simulation, the predicted cavitation characteristics including the cavity length, cavity diameter and cavity shape agree satisfactorily with the analytic and experimental results, for the ventilated cavitation, the proposed methods reproduce the special behavior that the axial line of the cavity bends and rises at the tail part. The study concludes that the ventilated flow rate of the non-condensate gas influences the development of natural cavitation as well as ventilated cavitation, and the vapor cavity is suppressed remarkably by the gas cavity with the increase of the gas ventilation.

    under-water vehicle, natural cavitation, ventilated cavitation, three-component model

    1. Introduction

    Engineering interests in natural and ventilated cavitation around under-water vehicles have attracted people for modeling the large scale cavity for decades. In this application, the proximity of local pressure to the vapor pressure of the liquid can bring about natural cavitation. At a cavitation number lower than 0.1, natural super-cavitation occurs, and the drag force acting on the vehicles is much smaller than that in the usual condition.

    There are different ways to achieve the super-cavitation[1]: (1) by accelerating the incoming flow velocity v∞, for example to make it higher than 45 m/s at sea level, (2) by reducing the ambient pressure p∞, which is only feasible in closed-circuit water tunnels, or (3) by increasing the cavity pressure pcthrough the ventilation of a cavity with some non-condensable gas. The super-cavitation induced by the first and the second ways is referred as vaporous or natural super-cavitation, and that by the third way is ventilated super-cavitation. Thus, it is possible to obtain artificial cavities globally similar to the vapor cavities generated by natural cavitation by injecting gas into the low pressure regions of liquid flows.

    Besides the ventilated hydrofoils[3,4]or propellers, and super-cavitating vehicle[5-7], the ventilation is also used to alleviate violent pressure fluctuations in a draft tube of hydraulic turbines. To perform such applications successfully, it is essential that those cavitating flows are reasonably predicted by the numerical simulation. In traditional cavitation models, the assumption of homogenous equilibrium medium, where the possible slip between liquid and vapor interface is neglected and the liquid-vapor mixture is treated as a single fluid that satisfies Navier-Stokes equation, is applied. The key challenge for this kind of models is how to define the mixed density of the single fluid. One approach is based on the state equation[8,9], and another method is solving the additional transport equation by introducing the source term to express the mass transfer between vapor and liquid[10-13]. In order to explain the origin of cavitation, non-condensable gas (or cavitation nuclei) is assumed to be premixed with liquid, and the fraction of the gas remains uniform and constant in the whole calculation domain (such as Singhal et al.[12]). However, the assumption of a constant gas fraction is not suitable to model the ventilated cavitation due to the gas ventilation during the calculation.

    In this article, a three-component model is proposed with the consideration of gas ventilation for simulating natural and ventilated cavitation around an under-water vehicle. Based on those results presented in the literatures, the cavitating flows in different operation conditions are analyzed.

    2. Governing equations and cavitation model

    For the proposed model, the fluid is assumed to be a mixture of liquid, vapor and non-condensable gas. The flow is assumed to be homogeneous, so that the multiphase fluid components are assumed to share the same velocity and pressure. The continuity and the momentum equations for the mixture flow are as follows

    where uiand fiare the velocity and body force in the i direction, respectively, p is the mixture pressure,μ and μtare laminar viscosity and turbulent viscosity. The mixture density is defined by

    where α is the volume fraction of one component. The subscripts v, g and l refer to the components of the vapor, non-condensable gas and liquid respectively.

    A cavitation process is governed by the mass transfer equations. Equation (4) gives the conservation equation of vapor volume fraction, and Eq.(5) shows the conservation equation of gas volume fraction. Note that the source term m˙+and m˙?in Eq.(4) represent the effect for the evaporation and condensation during phase transition.

    where Γ is the diffusion coefficient.

    According to the Rayleigh-Plesset equation, the size change for a single vapor/gas bubble is assumed to be driven by the pressure difference between the local static pressure p and the vapor pressurepv. By ignoring the second-order derivative of bubble radius, which is dominant only for rapid bubble acceleration, the Rayleigh-Plesset equation can be written in the following form

    where R denotes the radius of the spherical bubble wall. The number of bubbles per unit volume, i.e., Nb, is dependent on the direction of phase transition[14]. During the bubble growth, i.e., vaporization, Nbis given by

    During the condensation, Nbcan be calculated by

    The total mass transfer rate in a unit volume is

    Combining Eqs.(6)-(9), the source terms in Eq.(4) for the vaporization and condensation can be expressed as

    where Ceand Ccare empirical coefficients for different phase transition process, and their values may be 50 and 0.01, as recommended by Zwart et al.[15]. αnucis the fractions of non-condensable gas in liquid, and its value is around 5×10?4for most practical cases. In usual cases, the typical bubble size Rbis 1×10?6m in water.

    When the ventilated cavitating flow is treated, the volume fractions of the vapor and gas are calculated by solving the mass transfer equations such as Eqs.(4) and (5) combined with Eqs.(10) and (11). The gas ventilation in the computation domain is used for the boundary condition during the equation solution. In a word, the content of the nucleus in the local flow field given by Eq.(10) is updated instantaneously.

    3. Computational domain and boundary conditions

    For model application, the cavitation over a super-cavitating vehicle has been simulated. Figure 1 shows the computational domain including an under-water vehicle marked as “test body”. The vehicle has the following geometrical parameters: head diameternD of 10 mm, the body diameter of 16 mm (1.6nD), and the body length of 107 mm (10.7nD) as specified by Travis[16]. In order to save the computational resource, a half cylindrical zone including the vehicle has been selected as the calculation domain. The domain is 100nD in length, and 10nD for the radius of the semi cylinder. The inlet of the domain is 30nD upstream from the test body, while the outlet of the domain is 70nD downstream from the test body.

    For ensuring computation accuracy, the mesh generation has been conducted carefully. In total domain, the structural grids having the node number of 455 034 are formed. Figure 2 shows the mesh near the cavitator and gas deflector. Since the interaction between the near-wall flow and cavity should be taken into consideration, the mesh near the wall of test body is well refined so as to ensure the non-dimensional normal distance from the wall i.e., y+. From Fig.3, it is noted that the value of y+at the wall surface of test body is smaller than 100.

    The boundary conditions are as follows:

    (1) At the domain inlet, the uniform velocity v∞is set.

    (2) At the domain outlet, an averaged static pressure p∞is set.

    (3) The middle plane of the cylinder is set as the symmetry boundary.

    (4) The non-slip condition is applied to the surface of test body, while the free-slip wall condition is adopted to the out wall of the domain.

    Three-dimensional turbulent cavitating flow in the domain has been calculated under natural cavitation and ventilated cavitation conditions. The k?ω SST turbulence model is used. For convenience, the solver of a commercial CFD code CFX coupled with the proposed cavitation model inserted by a user defined file has been applied for the calculation.

    4. Results and discussions

    4.1 Natural cavity

    In order to specify the cavitation condition of the flow, a natural cavitation number,vσ, is defined as

    In Fig.4, the natural cavities around the vehicle at six kinds of the cavitation number from 0.1 to 0.5 are displayed. Since the location of cavity closure is difficult to measure due to the unsteadiness of cavitating flow, the cavity length Lcis usually defined as twice of the distance from the leading edge of cavity to the location with the maximum cavity diameter ofDc, which is illustrated in Fig.5. In this study, Dcand Lcwere determined by examining the contour of the vapor volume fractionαvof 0.1.

    Based on the asymptotic solution for main dimensions of the super cavity past a disk cavitator, the empirical formulae for the dimensionless cavity length Lc/Dnand maximum cavity diameter Dc/Dnat a small cavitation number are derived and given by the following equations[17]

    4.2 Ventilated cavity simulation

    In the case of gas ventilated cavitation, the cavity changes with the amount of gas ventilation quantified by the dimensionless air entrainment coefficient, where Qg is the volumetric flow-rate of ventilated gas.

    Figures 7 and 8 show the cavity with the comparison between the calculation and experiment for different gas ventilations at σv=1.0. In Fig.7, the left pictures are experimental photos of Travis[16], and the right ones are calculated distributions of gas volume fraction over the test body. Note that the legend of volume fraction for the calculation is the same as that in Fig.4, even in case that the cavity contents are different. In order to evaluate the comparison quantitatively, Fig.8 gives the comparison of cavity radius (R) in several profiles. Here the cavity shape by calculation is illustrated by the contour of gas volume fractionαgof 0.1, while for the experimental case, the shape is obtained from the interface between gas and liquid by image analysis. Itis noted that the rear part of cavity was rather blurry and it is very difficult to distinguish this interface. Because the present natural cavitation number is much larger than the critical value of nature cavitation inception, the minimum static pressure in the flow field is larger than vapor pressure. Thus, there is no vapor in the cavity.

    Based on Figs.7 and 8, the following conclusions can be reached.

    (1) From the general characteristics of the cavitating flow such as cavity radius in several profiles, etc., the calculation results agree satisfactorily with the experimental results, though the supporting strut to fix the test body has not been included in the calculation to simplify the problem.

    (2) The thickness and length of the cavity over the vehicle increase with the increase of qg. The test body has been wrapped totally by the surrounding cavity at qg=0.32.

    (3) The numerical simulation excellently reproduces the special behavior that the axial line of the cavity bends and rises in the tail part.

    The velocity vectors near the vehicle are shown at Fig.9, where the cavity shape is illustrated by the gas volume fraction αgof 0.1. Even though there are circulating flow and back flow downstream the disk cavitator and deflector, the main flow becomes more uniform due to the gas ventilation. The velocity field illustrates that the flow is not symmetric along the vehicle. In the rear part of the vehicle, the flow under the test body tends to shift upward, and wedge into the cavity along the vehicle wall. This phenomenon is believed to be resulted from the gravity effect, and related to the gas leakage of the ventilated cavitation[2].

    4.3 Mixed cavity simulation

    Figure 10 illustrates the cavitation around the vehicle associated with a gas ventilated rate at partial natural cavitation of σv=0.3. Note that the pictures marked by vapor show the vapor distributions, and those marked by gas show the distributions of the gas cavity. Without the ventilated gas, i.e., qg=0, there is a natural cavitation originated from the cavitator disk, and no gas cavity is found as shown in Fig.10(a). Atqgof 0.04, the vapor bubble is suppressed to some extent, and there occurs obvious gas cavity justdownstream of the disc as shown in Fig.10(b). With the increase of the gas ventilated rate fromqg=0.08 to qg=0.16, the vapor cavity area becomes much smaller, and disappears at last, while the gas volume fraction grows quickly in size, and covers the whole length of the vehicle body as shown in Fig.10(d). The numerical results indicate that the proposed cavitation model can predict the mixed cavitation reasonably, and the ventilated gas may have the potential to suppress the natural cavitation.

    5. Conclusions

    A three-component model based on mass transfer equation has been proposed to simulate both the natural and ventilated cavitation. In the proposed cavitation model, the initial content of nucleus in the local flow field is updated instantaneously, and is coupled with the Rayleigh-Plesset equation so as to capture the cavity development.

    The proposed model has been applied to simulate the cavitating flow around an under-water vehicle in different cavitation condition. Based on the results, the following conclusions can be drawn:

    (1) For the natural and ventilated cavitation simulation, the predicted cavitation characteristics including the cavity length, cavity diameter and cavity shape agrees satisfactorily with the analytic and experimental results.

    (2) For the ventilated cavitation, the proposed methods reproduce reasonably the special behavior that the axial line of the cavity bends and rises at the tail part.

    (3) The ventilated flow rate of the non-condensate gas influences the development of natural cavitation as well as ventilated cavitation. With the increase of the gas ventilation, the vapor cavity is suppressed by the gas cavity remarkably.

    [1] WOSNIK M., ARNDT R. E. A. Measurements in high void-fraction bubbly wakes created by ventilated supercavitation[C]. Proceedings of 6th International Symposium on Cavitation. Wageningen, The Netherlands, 2006.

    [2] FRANC J., MICHEL J. Fundamentals of cavitation[M]. Dordrecht, The Netherlands: Springer, 2005, 193-221.

    [3] KOPRIVA J., ARNDT R. E. A. and AMROMIN E. Improvement of hydrofoil performance by partial ventilated cavitation in steady flow and periodic gusts[J]. Journal of Fluids Engineering, 2008, 130(3): 31301.

    [4] AMROMIN E., KOPRIVA J. and ARNDT R. E. A. et al. Hydrofoil drag reduction by partial cavitation[J]. Journal of Fluids Engineering, 2006, 128(5): 931-936.

    [5] CHEN Xin, LU Chuan-jing and LI Jie et al. The wall effect on ventilated cavitating flows in closed cavitation tunnels[J]. Journal of Hydrodynamics, 2008, 20(5): 561-566.

    [6] LEE Qi-tao, XUE Lei-ping and HE You-sheng. Experimental study of ventilated supercavities with a dynamics pitching model[J]. Journal of Hydrodynamics, 2008, 20(4): 456-460.

    [7] LI Jie, LU Chuan-jing and HUANG Xuan. Calculation of added mass of a vehicle running with cavity[J]. Journal of Hydrodynamics, 2010, 22(3): 312-318.

    [8] COUTIER-DELGOSHA O., REBOUD J. L. and DELANNOY Y. Numerical simulation of the unsteady behaviour of cavitating flows[J]. International Journal for Numerical Methods in Fluids, 2003, 42(5): 527-548.

    [9] WANG G., OSTOJA S. M. Large eddy simulation of sheet/cloud cavitation on a NACA0015 hydrofoil[J]. Applied Mathematical Modeling, 2007, 31(3): 417-447.

    [10] LUO Xian-wu, ZHANG Yao and PENG Jun-qi et al. Impeller inlet geometry effect on performance improvement for centrifugal pumps[J]. Journal of Mechanical Science and Technology, 2008, 22(10): 1971-1976.

    [11] SENOCAK I., SHYY W. Interfacial dynamics-based modelling of turbulent cavitating flows, Part-1: Model development and steady-state computations[J]. International Journal for Numerical Methods in Fluids, 2004, 44(9): 975-995.

    [12] SINGHAL A. K., ATHAVALE M. and LI H. et al. Mathematical basis and validation of the full cavitation model[J]. Journal of Fluids Engineering, 2002, 124(3): 617-624.

    [13] KUNZ R. F., BOGER D. A. and STINEBRING D. R. et al. A preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction[J]. Computers and Fluids, 2000, 29(8): 849-875.

    [14] MEJRI I., BAKIR F. and REY R. et al. Comparison of computational results obtained from a homogeneous cavitation model with experimental investigations of three inducers[J]. Journal of Fluids Engineering, 2006, 128(6): 1308-1323.

    [15] ZWART P. J., GERBER A. G. and BELAMRI T. A Two-phase flow model for predicting cavitation dynamics[C]. Proceedings of International Conference on Multiphase Flow. Yokohama, Japan, 2004.

    [16] TRAVIS J. An experimental study of a ventilated supercavitating vehicle[D]. Master Thesis, Minnesota, USA: University of Minnesota, 2003.

    [17] CHEN Ying, LU Chuan-jing. A homogenousequilibrium-model based numerical code for cavitation flows and evaluation by computation cases[J]. Journal of Hydrodynamics, 2008, 20(2): 186-194.

    [18] JIA Li-ping, WANG Cong and WEI Ying-jie et al. Numerical simulation of artificial ventilated cavity[J]. Journal of Hydrodynamics, Ser. B, 2006, 18(3): 273-279.

    10.1016/S1001-6058(09)60113-X

    * Project supported by the National Natural Science Foundation of China (Grant Nos. 50976061, 50676044) the Natural Science Foundation of Beijing (Grant No. 3072008).

    Biogranphy: JI Bin (1982-), Male, Ph. D. Candidate

    精品久久久久久久久久免费视频| 在线视频色国产色| 国产欧美日韩精品亚洲av| 欧美成人性av电影在线观看| 亚洲一区高清亚洲精品| 国产亚洲精品一区二区www| 亚洲专区中文字幕在线| a级毛片a级免费在线| 国产亚洲av嫩草精品影院| 成人亚洲精品av一区二区| 真人做人爱边吃奶动态| 97碰自拍视频| 欧美性猛交黑人性爽| 一本久久中文字幕| 亚洲av不卡在线观看| 国产在线精品亚洲第一网站| 国产色爽女视频免费观看| 国产色爽女视频免费观看| 啦啦啦韩国在线观看视频| 亚洲国产日韩欧美精品在线观看 | 无限看片的www在线观看| 天天一区二区日本电影三级| 在线观看66精品国产| 国内精品美女久久久久久| 日本五十路高清| 一区福利在线观看| www.999成人在线观看| 精品久久久久久久毛片微露脸| 岛国在线免费视频观看| 国产亚洲av嫩草精品影院| av片东京热男人的天堂| 丰满乱子伦码专区| 久久香蕉国产精品| 一夜夜www| 日本撒尿小便嘘嘘汇集6| 小蜜桃在线观看免费完整版高清| 国产av在哪里看| 亚洲无线在线观看| 美女高潮的动态| 99久久99久久久精品蜜桃| 大型黄色视频在线免费观看| 深爱激情五月婷婷| 少妇的丰满在线观看| 欧美日韩国产亚洲二区| 午夜福利欧美成人| 国产精品久久久久久人妻精品电影| 国产单亲对白刺激| 两性午夜刺激爽爽歪歪视频在线观看| 国产99白浆流出| av欧美777| 国产精品自产拍在线观看55亚洲| 男女下面进入的视频免费午夜| 国产探花极品一区二区| 91久久精品电影网| 免费av毛片视频| 九九热线精品视视频播放| 丝袜美腿在线中文| 99热6这里只有精品| 日韩欧美国产在线观看| 在线播放无遮挡| 欧美绝顶高潮抽搐喷水| 99视频精品全部免费 在线| 97碰自拍视频| 黄色女人牲交| 久久久久久久午夜电影| 国产69精品久久久久777片| 制服人妻中文乱码| 在线观看舔阴道视频| 小说图片视频综合网站| 国产精品亚洲一级av第二区| 日本黄色视频三级网站网址| 在线观看免费视频日本深夜| 一区二区三区激情视频| 人人妻,人人澡人人爽秒播| 一区福利在线观看| 少妇的逼好多水| 欧美激情在线99| 色av中文字幕| 中文亚洲av片在线观看爽| 18禁国产床啪视频网站| 欧美日韩福利视频一区二区| 看片在线看免费视频| 好男人电影高清在线观看| 欧美日韩中文字幕国产精品一区二区三区| 中亚洲国语对白在线视频| 丝袜美腿在线中文| 亚洲 欧美 日韩 在线 免费| 三级男女做爰猛烈吃奶摸视频| 又紧又爽又黄一区二区| 亚洲 欧美 日韩 在线 免费| 女同久久另类99精品国产91| 久久精品国产亚洲av涩爱 | 国产精品98久久久久久宅男小说| 成人一区二区视频在线观看| 欧美+日韩+精品| 动漫黄色视频在线观看| 久久国产乱子伦精品免费另类| 日本精品一区二区三区蜜桃| 日本a在线网址| 美女 人体艺术 gogo| 九色国产91popny在线| 少妇熟女aⅴ在线视频| 国产精品国产高清国产av| 韩国av一区二区三区四区| 欧美乱色亚洲激情| 中文资源天堂在线| 久久精品国产亚洲av涩爱 | 舔av片在线| 午夜福利视频1000在线观看| 人妻久久中文字幕网| 精品一区二区三区av网在线观看| 亚洲国产精品合色在线| 日韩欧美国产一区二区入口| 丰满人妻一区二区三区视频av | АⅤ资源中文在线天堂| 床上黄色一级片| 亚洲av美国av| 叶爱在线成人免费视频播放| a级毛片a级免费在线| 国模一区二区三区四区视频| 可以在线观看毛片的网站| 国产亚洲精品久久久久久毛片| 少妇人妻一区二区三区视频| 九九久久精品国产亚洲av麻豆| 亚洲片人在线观看| 国产免费av片在线观看野外av| 亚洲成人精品中文字幕电影| 亚洲自拍偷在线| 国产精品久久久久久精品电影| 亚洲性夜色夜夜综合| 久久性视频一级片| 亚洲avbb在线观看| 国产亚洲精品一区二区www| 国内精品美女久久久久久| 亚洲乱码一区二区免费版| 成人三级黄色视频| 啦啦啦免费观看视频1| 国产伦精品一区二区三区视频9 | 九色成人免费人妻av| 欧美在线一区亚洲| 国产69精品久久久久777片| 日日摸夜夜添夜夜添小说| 成人特级黄色片久久久久久久| 精品久久久久久,| a级毛片a级免费在线| 18禁黄网站禁片午夜丰满| 国产伦精品一区二区三区四那| 亚洲一区二区三区色噜噜| 美女黄网站色视频| 最后的刺客免费高清国语| 蜜桃亚洲精品一区二区三区| 国产精品野战在线观看| 亚洲精品在线美女| 久久这里只有精品中国| 淫秽高清视频在线观看| 两个人视频免费观看高清| 国产精品久久视频播放| 国模一区二区三区四区视频| 亚洲成av人片免费观看| 国产成人啪精品午夜网站| 国产在线精品亚洲第一网站| 国产乱人伦免费视频| 少妇人妻一区二区三区视频| 久久久久国内视频| 欧美乱色亚洲激情| 高清日韩中文字幕在线| 女人被狂操c到高潮| 波野结衣二区三区在线 | 69人妻影院| 美女大奶头视频| 国产高清视频在线播放一区| ponron亚洲| 国产一区在线观看成人免费| 十八禁网站免费在线| 一夜夜www| 女人被狂操c到高潮| 变态另类成人亚洲欧美熟女| 国产精品自产拍在线观看55亚洲| 黄色丝袜av网址大全| 中文字幕av成人在线电影| 国产三级黄色录像| 麻豆成人午夜福利视频| 国内久久婷婷六月综合欲色啪| 欧美大码av| 波多野结衣巨乳人妻| 国产精品亚洲美女久久久| 1000部很黄的大片| 88av欧美| 少妇的逼好多水| 18禁裸乳无遮挡免费网站照片| 国产欧美日韩精品一区二区| 午夜影院日韩av| 国内毛片毛片毛片毛片毛片| 国产精华一区二区三区| 女警被强在线播放| 老司机福利观看| www.熟女人妻精品国产| 久久久久免费精品人妻一区二区| 12—13女人毛片做爰片一| 国产精品香港三级国产av潘金莲| 露出奶头的视频| 国产精品美女特级片免费视频播放器| 人妻丰满熟妇av一区二区三区| 日本黄色视频三级网站网址| 在线免费观看的www视频| 桃红色精品国产亚洲av| 国产综合懂色| 又紧又爽又黄一区二区| 亚洲成人中文字幕在线播放| 少妇的逼好多水| 久久亚洲真实| 国产麻豆成人av免费视频| 国产又黄又爽又无遮挡在线| 欧美区成人在线视频| 免费看a级黄色片| 丰满乱子伦码专区| 欧美另类亚洲清纯唯美| 国产精品久久久久久亚洲av鲁大| 18禁裸乳无遮挡免费网站照片| 91在线观看av| 亚洲国产精品sss在线观看| 精品免费久久久久久久清纯| 女人被狂操c到高潮| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲国产精品sss在线观看| 琪琪午夜伦伦电影理论片6080| 午夜亚洲福利在线播放| 在线观看免费午夜福利视频| 日本三级黄在线观看| 久久久久免费精品人妻一区二区| 在线观看av片永久免费下载| 亚洲精品色激情综合| 精品欧美国产一区二区三| 欧美+日韩+精品| 亚洲18禁久久av| 91麻豆av在线| 欧美日韩综合久久久久久 | 精品久久久久久久毛片微露脸| 老鸭窝网址在线观看| 久久久国产成人精品二区| 色av中文字幕| 亚洲人成网站高清观看| 午夜日韩欧美国产| 黄色成人免费大全| 精品国产超薄肉色丝袜足j| 中文字幕人妻丝袜一区二区| 国产淫片久久久久久久久 | 国产69精品久久久久777片| 老司机深夜福利视频在线观看| 美女大奶头视频| 欧美性猛交╳xxx乱大交人| a在线观看视频网站| 亚洲精品456在线播放app | 国产精品av视频在线免费观看| 国产精品免费一区二区三区在线| 日日干狠狠操夜夜爽| 国产成人啪精品午夜网站| av天堂中文字幕网| 亚洲av美国av| 黄色片一级片一级黄色片| 国产成+人综合+亚洲专区| 搡老岳熟女国产| 最近最新中文字幕大全免费视频| 少妇的丰满在线观看| 亚洲av中文字字幕乱码综合| 日本黄大片高清| 99久久精品热视频| 亚洲精品影视一区二区三区av| 观看免费一级毛片| 在线观看66精品国产| 久久这里只有精品中国| 十八禁人妻一区二区| 99国产精品一区二区三区| 国产三级黄色录像| 天堂网av新在线| 亚洲美女视频黄频| 午夜老司机福利剧场| 精品国内亚洲2022精品成人| 一进一出抽搐gif免费好疼| 一进一出好大好爽视频| 日韩欧美免费精品| 日韩有码中文字幕| 亚洲不卡免费看| 午夜两性在线视频| 国产精品一区二区三区四区久久| 母亲3免费完整高清在线观看| 女人被狂操c到高潮| 婷婷亚洲欧美| 丰满人妻一区二区三区视频av | 久久久久国产精品人妻aⅴ院| 美女高潮喷水抽搐中文字幕| 亚洲男人的天堂狠狠| 免费av不卡在线播放| 色综合亚洲欧美另类图片| 亚洲精华国产精华精| 内地一区二区视频在线| 国产探花极品一区二区| 久久久久久九九精品二区国产| 午夜福利免费观看在线| 成年女人毛片免费观看观看9| 国产亚洲精品综合一区在线观看| 村上凉子中文字幕在线| 丝袜美腿在线中文| 老司机深夜福利视频在线观看| 亚洲无线在线观看| 波多野结衣巨乳人妻| 美女高潮喷水抽搐中文字幕| 日本撒尿小便嘘嘘汇集6| 黄色日韩在线| 亚洲精品粉嫩美女一区| 可以在线观看的亚洲视频| 中文字幕人妻熟人妻熟丝袜美 | www.色视频.com| 男女视频在线观看网站免费| 国产综合懂色| 不卡一级毛片| 床上黄色一级片| 日本黄色片子视频| 波野结衣二区三区在线 | a级一级毛片免费在线观看| 热99在线观看视频| 好男人在线观看高清免费视频| 欧美日本视频| 午夜免费成人在线视频| 深爱激情五月婷婷| 首页视频小说图片口味搜索| 亚洲无线观看免费| 午夜福利高清视频| 欧美性猛交黑人性爽| 亚洲第一欧美日韩一区二区三区| 又黄又粗又硬又大视频| 热99在线观看视频| 国产亚洲av嫩草精品影院| 国产午夜精品论理片| 久久久国产精品麻豆| 99精品在免费线老司机午夜| 国产成人福利小说| 国产v大片淫在线免费观看| 欧美三级亚洲精品| 久久久久久大精品| 少妇人妻精品综合一区二区 | 欧美一区二区精品小视频在线| 在线免费观看的www视频| 国产欧美日韩一区二区精品| 精品久久久久久久人妻蜜臀av| 久久这里只有精品中国| 精品久久久久久成人av| 97碰自拍视频| 欧美成人性av电影在线观看| 99久久成人亚洲精品观看| 成年女人看的毛片在线观看| 亚洲精品粉嫩美女一区| 国产视频内射| 婷婷亚洲欧美| 搡女人真爽免费视频火全软件 | 少妇人妻一区二区三区视频| 欧美一区二区亚洲| 蜜桃久久精品国产亚洲av| 国产午夜福利久久久久久| 国内毛片毛片毛片毛片毛片| 级片在线观看| 99国产极品粉嫩在线观看| 国产伦人伦偷精品视频| 国内精品久久久久久久电影| 看黄色毛片网站| 国产精品久久久久久久电影 | 黄色丝袜av网址大全| 国产亚洲精品久久久久久毛片| 哪里可以看免费的av片| 免费看日本二区| 三级国产精品欧美在线观看| 成人性生交大片免费视频hd| 97碰自拍视频| 色视频www国产| 午夜影院日韩av| 日本黄色片子视频| 三级国产精品欧美在线观看| 久久亚洲真实| 亚洲av中文字字幕乱码综合| 日韩免费av在线播放| 有码 亚洲区| 日韩有码中文字幕| 国产成人a区在线观看| 国产一级毛片七仙女欲春2| 国产精品女同一区二区软件 | av天堂中文字幕网| 一个人免费在线观看的高清视频| 欧美日本视频| 日日干狠狠操夜夜爽| 欧美激情久久久久久爽电影| 91在线精品国自产拍蜜月 | 成年女人永久免费观看视频| 国产单亲对白刺激| 亚洲av五月六月丁香网| 免费av毛片视频| 欧美成人一区二区免费高清观看| 国产成人影院久久av| 免费人成在线观看视频色| 搡老岳熟女国产| 亚洲精华国产精华精| 免费一级毛片在线播放高清视频| 日韩成人在线观看一区二区三区| tocl精华| 亚洲精品亚洲一区二区| 色视频www国产| 91av网一区二区| 成人亚洲精品av一区二区| 少妇人妻一区二区三区视频| 一进一出抽搐动态| 午夜福利在线观看免费完整高清在 | 最新中文字幕久久久久| 一个人观看的视频www高清免费观看| 免费一级毛片在线播放高清视频| 日本五十路高清| 亚洲成av人片免费观看| 国产亚洲精品av在线| 免费电影在线观看免费观看| 免费在线观看日本一区| 欧美日韩中文字幕国产精品一区二区三区| 久久精品亚洲精品国产色婷小说| 母亲3免费完整高清在线观看| 免费看光身美女| 有码 亚洲区| 两个人看的免费小视频| 大型黄色视频在线免费观看| 中文字幕人妻丝袜一区二区| 真人一进一出gif抽搐免费| 欧美大码av| 国产乱人视频| av视频在线观看入口| 国产久久久一区二区三区| 国产乱人视频| 亚洲aⅴ乱码一区二区在线播放| 中文字幕高清在线视频| 免费av毛片视频| 亚洲人成伊人成综合网2020| 欧美+亚洲+日韩+国产| 色视频www国产| 午夜福利欧美成人| 一本精品99久久精品77| 丁香欧美五月| 在线免费观看不下载黄p国产 | 久久久国产精品麻豆| 99热6这里只有精品| 色视频www国产| 久久久久精品国产欧美久久久| 国产极品精品免费视频能看的| 91久久精品国产一区二区成人 | 国产乱人伦免费视频| 色综合站精品国产| 欧美日韩国产亚洲二区| 最近最新免费中文字幕在线| 国产免费一级a男人的天堂| 国产中年淑女户外野战色| 丁香欧美五月| 久久人妻av系列| 老汉色av国产亚洲站长工具| 国产aⅴ精品一区二区三区波| 久久婷婷人人爽人人干人人爱| 女警被强在线播放| 又紧又爽又黄一区二区| 免费观看人在逋| 国产成人av激情在线播放| 色在线成人网| 日韩亚洲欧美综合| 久久久久国产精品人妻aⅴ院| 天堂√8在线中文| 欧洲精品卡2卡3卡4卡5卡区| 我的老师免费观看完整版| 99久久无色码亚洲精品果冻| 白带黄色成豆腐渣| tocl精华| 无遮挡黄片免费观看| 亚洲av电影不卡..在线观看| 神马国产精品三级电影在线观看| 亚洲人成电影免费在线| 亚洲电影在线观看av| 搡老妇女老女人老熟妇| 国产伦精品一区二区三区四那| 搡老岳熟女国产| 亚洲国产色片| 老司机在亚洲福利影院| 国内毛片毛片毛片毛片毛片| 一级毛片女人18水好多| 少妇丰满av| 国产单亲对白刺激| 久久精品人妻少妇| 成人无遮挡网站| 又黄又爽又免费观看的视频| 午夜亚洲福利在线播放| 丰满人妻熟妇乱又伦精品不卡| 一级a爱片免费观看的视频| av片东京热男人的天堂| 午夜福利18| 成人18禁在线播放| 欧美日韩中文字幕国产精品一区二区三区| 久久久久国产精品人妻aⅴ院| 亚洲五月婷婷丁香| 亚洲乱码一区二区免费版| 高清在线国产一区| 琪琪午夜伦伦电影理论片6080| 成人高潮视频无遮挡免费网站| 午夜福利视频1000在线观看| 国产三级在线视频| 国产aⅴ精品一区二区三区波| 90打野战视频偷拍视频| 黄色日韩在线| 无人区码免费观看不卡| 婷婷六月久久综合丁香| 亚洲avbb在线观看| 一区福利在线观看| 亚洲av电影不卡..在线观看| 婷婷精品国产亚洲av在线| 一本一本综合久久| 亚洲最大成人中文| 天天添夜夜摸| 欧美最黄视频在线播放免费| 国产蜜桃级精品一区二区三区| 91麻豆av在线| eeuss影院久久| 一级黄片播放器| 成人国产一区最新在线观看| 51国产日韩欧美| 欧美又色又爽又黄视频| svipshipincom国产片| 久久久久久国产a免费观看| 免费看光身美女| 精品欧美国产一区二区三| 成人三级黄色视频| 免费观看精品视频网站| 哪里可以看免费的av片| 可以在线观看毛片的网站| 哪里可以看免费的av片| 国产综合懂色| 他把我摸到了高潮在线观看| 久久草成人影院| 好男人电影高清在线观看| 午夜精品久久久久久毛片777| 国产精品一区二区三区四区免费观看 | 一个人看视频在线观看www免费 | 免费av观看视频| 亚洲av一区综合| 精品国产超薄肉色丝袜足j| 国产精品亚洲av一区麻豆| 99热只有精品国产| 熟妇人妻久久中文字幕3abv| 亚洲成av人片免费观看| 18禁黄网站禁片免费观看直播| 精品久久久久久久久久免费视频| 性色av乱码一区二区三区2| 身体一侧抽搐| 欧美日韩亚洲国产一区二区在线观看| 成年女人永久免费观看视频| av天堂中文字幕网| 夜夜夜夜夜久久久久| 久久久久久久久久黄片| 伊人久久精品亚洲午夜| 成人特级av手机在线观看| 国产亚洲精品一区二区www| 欧美日韩乱码在线| 91九色精品人成在线观看| 深爱激情五月婷婷| 在线国产一区二区在线| 欧美日韩中文字幕国产精品一区二区三区| 国产成人av激情在线播放| 国产91精品成人一区二区三区| 日本三级黄在线观看| 精品国产美女av久久久久小说| 色尼玛亚洲综合影院| 黄色女人牲交| 国产 一区 欧美 日韩| 精品乱码久久久久久99久播| 欧美乱码精品一区二区三区| 欧美乱妇无乱码| 中文字幕人成人乱码亚洲影| 久久伊人香网站| 精品乱码久久久久久99久播| 看免费av毛片| 亚洲无线在线观看| 国产亚洲精品av在线| 国产精品自产拍在线观看55亚洲| 久久久久久久久中文| 国产一区二区在线av高清观看| 久久久精品大字幕| 久久久久久久久久黄片| 久久久精品大字幕| 亚洲精品粉嫩美女一区| 一级毛片高清免费大全| 亚洲狠狠婷婷综合久久图片| 天天一区二区日本电影三级| 久9热在线精品视频| 最新中文字幕久久久久| 国产亚洲精品综合一区在线观看| 国产亚洲精品久久久com| 少妇丰满av| 久久精品国产综合久久久| 国产精品嫩草影院av在线观看 | 日韩欧美精品免费久久 | 久久婷婷人人爽人人干人人爱| 午夜久久久久精精品| 波多野结衣高清作品| av专区在线播放| a级毛片a级免费在线| 国产伦在线观看视频一区| 成人午夜高清在线视频| 激情在线观看视频在线高清| 嫁个100分男人电影在线观看| 麻豆久久精品国产亚洲av| 可以在线观看的亚洲视频| 午夜福利18| 精品久久久久久久久久久久久| 有码 亚洲区| 国产视频一区二区在线看| 少妇的丰满在线观看| 亚洲av日韩精品久久久久久密|