• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    WAVE-BODY INTERACTIONS FOR A SURFACE-PIERCING BODY IN WATER OF FINITE DEPTH*

    2010-04-13 14:49:52LIYongLINMian
    水動力學研究與進展 B輯 2010年6期

    LI Yong, LIN Mian

    Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China, E-mail: liyong@imech.ac.cn

    WAVE-BODY INTERACTIONS FOR A SURFACE-PIERCING BODY IN WATER OF FINITE DEPTH*

    LI Yong, LIN Mian

    Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China, E-mail: liyong@imech.ac.cn

    (Received June 17, 2010, Revised August 30, 2010)

    Nonlinear wave-body interactions for a stationary surface-piercing body in water of finite depth with flat and sloping bottoms are simulated in a two-dimensional numerical wave tank, which is constructed mainly based on the spatially averaged Navier-Stokes equations with the kε? model for simulating the turbulence. The equations are discretized based on the finite volume method and the scheme of the pressure implicit splitting of operators is employed to solve the Navier-Stokes equations. By using the force time histories, the mean and higher-harmonic force components are calculated. The computational results are shown to be in good agreement with experimental and numerical results of other researchers. Then, the horizontal force, the vertical force and the moment on the surface-piercing body under nonlinear regular waves with flat and sloping bottoms are obtained. The results indicate that the bottom topographies have a significant influence on the wave loads on the surface-piercing body.

    wave-body interaction, surface-piercing body, numerical wave tank, finite water depth

    1. Introduction

    Many types of surface-piercing structures, such as jacket platforms and man-made islands, have been used in coastal engineering in the offshore oil and gas development. Usually the structures are subjected to strong nonlinear water wave impacts and are precarious under the extreme ocean situations. Therefore, it is important to investigate the wave forces on surface-piercing structures in water of finite depth.

    There are many studies of the interactions between the water waves and structures of various immerged types, for example, the fully submerged structures[1-3], vertical bodies reposed on seabed[4-6]and the surface-piercing bodies[7-10]. Among them, the problems of surface-piercing bodies have attracted much attention recently. Tanizawa and Minami[7]developed a two dimensional numerical wave tank to simulate the radiation and diffraction of a single surface-piercing body. Bai et al.[8]investigated the nonlinear hydrodynamic forces on a surface-piercing body of arbitrary shape in three dimensions by a time domain second-order method. Koo and Kim[9]considered the single and double bodies based on potential theory and Boundary Element Method (BEM). Wang et al.[10]developed a three dimensional time-domain coupled numerical model to obtain the nonlinear wave forces acting on a box-shaped body. In these studies, the effects of the water depth are neglected.

    In the present article, the wave forces and the rotational moments are investigated for a fixed structure under the finite water depth condition. First, a 2-D numerical wave tank is built and verified. The simulated results are compared with the experimental results of Nojiri and Murayama[11], the analytical solution of Maruo[12]and the numerical results of Koo and Kim[9]. Second, the nonlinear wave-body interactions with a flat bottom are simulated in this tank. The mean wave force, the harmonic force components and the rotational moments on the body are calculated and the results are compared with those under the condition of deep water. Finally, the wave loads on a fixed body with sloping topography isstudied.

    2. Mathematical formulation

    2.1 Governing equations

    The governing equations are the Reynolds averaged Navier-Stokes equations

    wherekδ andεδ are the turbulent Schmidt numbers. The constants in Eqs.(3)-(5) take the following values: Cμ=0.09, C1=1.44, C2=1.92, δk=1.0and δε=1.33.

    In order to capture the water-air free surface, an Eulerian method named the Volume Of Fluid (VOF) method is adopted. The equation for the volume fraction is

    where α is the volume fraction of water and 1α?represents the volume fraction of air. The volume fraction of each liquid is used as the weighting factor to get the mixture properties, such as density and viscosity, i.e.,

    where ρwand ρarepresent the density of water and air, respectively.

    2.2 Numerical scheme

    The equations are discretized based on the Finite Volume Method (FVM). In order to guarantee the computational precision, the central difference scheme with second-order accuracy and the Quadratic Upwind Interpolation of Convective Kinematics (QUICK) scheme with third-order accuracy are employed to represent the diffusion term and convection term, respectively. The Preconditioning Conjugate Gradient (PCG) method is employed for solving the algebraic equations. For solving the Navier-Stokes equation of incompressible fluid flow, one will encounter a problem of the pressure-velocity coupling. Here, the Pressure Implicit Splitting of Operators (PISO) scheme is employed to treat the coupling. k and ε equations are coupled in the scheme and solved by a segregated approach. For the sake of computational stability, the Courant number is used to obtain the time step at every beginning of the calculation cycle (Cn=0.1for wave cases), defined as

    where Δt is the time step and Δxirepresents the mesh size.

    When the solution in the fluid domain is obtained, the time history of the wave force on the bodies can be obtained by integrating the pressure and the viscous force. The flow chart for the simulation process is plotted in Fig.1, where “tnow” is the current time in calculation and “tend” is the total calculation time.

    For a free surface simulation, generally, the divergence is an issue, because of the sharp interface between water and air. In this work, a Compressive Interface Capturing Scheme for Arbitary Meshes (CICSAM) is used to capture the fluid interfaces with meshes of arbitrary topology. Details about the CICSAM can be found in Ubbink and Issa[13].

    The entire computational domain with the bottom topography is shown in Fig.2 and there are basically five types of boundary associated with the governing equation: inlet, outlet, structure wall, bed, and atmosphere.

    Boundary conditions associated with regular waves are prescribed along the inlet of the computational domain. The pressure and the turbulence quantities including andkεare set to be of zero normal gradient and the velocity vector is specified by Stokes and Cnoidal regular waves. The theoretical velocity of second-order Stokes regular waves can be expressed by

    whereAω,aanddare the wave amplitude, frequency, wave number, and water depth, respectively.xis the distance from the origin to the wave making point.

    At the outlet, the pressure and the turbulence quantities are also specified as of zero normal gradients and the velocity is specified by Sommerfeld radiation condition, expressed by

    wherecis the wave propagation velocity at the end point of the damping zone.

    At the surfaces of the structure, no slip wall boundary condition is used. The velocity vector at the bed is set to be zero and the zero normal gradient condition is chosen for other quantities.

    wherelmrepresents the mixing length,β0is a constant,β0=0.005,κis the Karman constant,κ=0.4,u?is the friction velocity,Lis the characteristic length, which is the distance of thecentre of the near-wall grid to the bottom wall.

    2.3 Numerical implementation

    The programming is based on the open source computational fluid dynamics code named Open Field Operation And Manipulation (OpenFOAM), of the version 1.5, which can be downloaded freely through the internet (OpenCFD 2008). OpenFOAM provides a fundamental platform to write new solvers for different problems and the tensorial approach and the object oriented techniques are used. Xu[15]studied the numerical wave tank with OpenFOAM, but with the damping zone being ignored.

    In the present work, the solution for the computational domain is carried out by the adoption of the turbulence solver for incompressible two-phase flow. Based on Eqs.(12)-(14), the default wall function in OpenFOAM is modified. The inflow boundary and two damping zones are added to the original OpenFOAM solver. As for the inlet location, according to Eq.(9) and Eq.(10), a new wave making boundary named “wavetimevaring” is programmed with C++ language. Correspondingly, in order to absorb the wave energy reflection from the end-wall and the re-reflection from the input boundary, artificial damping zones are allocated at the two ends of the domain. In this paper, for the right end damping zone, the damping termiiDu is added to the momentum equation of OpenFOAM solver, as shown in Eq.(2).iD is expressed as

    where l is the length of the damping zone,x0is the distance from the origin to the starting point of the damping zone. n andθiare the damping coefficients, n=2, θi=0.6. Similar methods were used by Dong and Zhan[16]. For the left damping zone, it is also a wave making region and the velocity in this area is modified by ui=uim+Di′(ui?uim) at the end of each time step.Di′is written as

    In addition, the interface capturing scheme in OpenFOAM for two-phase flow is improved. In the course of using this scheme, it is found that the scheme is indeed easy to use and can capture the surface well except that it is very slow. The time step becomes very small and the computation always takes a long time. The reason for this is the large Courant number of the air phase in the surface domain. In order to solve this problem, a modified scheme is proposed. In the computational domain, if the region is occupied by the air phase, the velocity and the pressure of this zone are set to zero. This will not alter the numerical results becausewρ is much larger thanaρ.

    3. Numerical results

    3.1 Model validation

    Firstly, we investigate the characteristics of the flow field in the numerical wave tank. In the present case, d=5.0m , T=4.5s , A/d =0.1, where T is the wave period. When the calculation becomes stable, the time series of the wave profile at x =78.9mindicate that the damping schemes presented in the present paper work well, as shown in Fig.3. In addition, the calculated horizontal and vertical velocities at the point x =78.9m and y=0mare compared with the theoretical results, which shows a good agreement. It is shown that the two-dimensional wave numerical tank performs well for regular waves.

    Secondly, for the verification of the simulatedwave forces, the calculation results are compared with Nojiri and Murayama[11], Maruo[12], and Koo[9], respectively. The computational domain is shown in Fig.4, where λ is the wave length. A surfacepiercing body is fixed in the middle of the domain and the radius of the round corner is 0.064 m. The input wave properties are listed in Table 1. The incident wave height is 0.07 m. Figure 5 shows the computational meshes used for the simulations. In order to accurately capture the wave surface and calculate the wave forces, the meshes in surface zones and zones along body are refined.

    Figure 6 shows the comparison of the drift force with Nojiri’s experimental results, Maruo’s analytical results and Koo’s numerical results. Figures 7-9 show the comparison of the force components and the moment. The first-harmonic force components and the rotational moment are calculated by Fourier analysis. The computational results are shown to be in good agreement with experimental results except in the region of 1.5ξ>. It is believed that the deviation may be attributed to viscous and other nonlinear effects. It is also noted that the present results are more consistent with experimental results than Koo’s, which is based on potential theory. It is shown that the turbulence of fluid has an influence on the wave-body interactions even in deep water.

    3.2 Domain with flat bottom topography

    The computational domain is shown in Fig.2 with tan=0φ. The length of damping zone is 2mλ, wheremλ represents the maximum wavelength of allcases. The water depth for the incident region is 5.0 m. Tables 2 and 3 give, respectively, the values of dimension parameters and the input wave properties, whereis the dimensionless parameter to represent the nonlinearity of the incident wave.

    Figure 10 shows the total normalized forces (Fs and Fh), which are plotted against the nondimensional time (t/T). In this figure, the steady-state time series results for three different cases are shown, from which a series of harmonic components for horizontal force, vertical force and rotational moment can be obtained. We can also see that the horizontal force shows more nonlinear features with the increase of

    Figure 11 shows the comparison of horizontal force components for finite depth and deep water conditions. Horizontal force components for finite water depth condition are approximately similar to the cases for deep water condition, while the first and second order forces are much greater than those in deep water when the wave frequency is low (ξ<0.82). The magnitude of the first order can be 47% greater than that of deep water at ξ=0.33.

    The same kind of comparisons for vertical force is shown in Fig.12. The first order vertical force under finite water depth condition is more sensitive to the variations of ξ and is significantly larger than that under deep water condition in four cases with ξ=0.24, 0.33, 0.4 and 0.63. In case of ξ=0.63, the first-harmonic component can be as large as 25% of that in deep water. Due to the wave reflection from flat bottom and re-reflection from body surface, the first order components can be enhanced.

    Figure 13 shows the comparison of rotational moment components for two water depth conditions. The first order component under finite water depth condition is much greater than that under deep water condition for cases with low frequencies (0.82ξ<). Specially, the magnitude of the first order component gradually increases up to 144% of the value at thecase of =0.33ξ. This phenomenon indicates that the state of the structure becomes more unstable and precarious in shallow water than in deep water, especially when the frequency is low.

    3.3 Domain with sloping bottom topography

    The computational domain is shown in Fig.2 with tan=0.03φ. Computational conditions and input settings for sloping bottom topography are the same as those for flat bottom topography.

    Figures 14-16 show the comparison of horizontal force, vertical force and rotational moment components for sloping bottom and flat bottom topography. Because of the wave reflection from sloping bottom, not only the vertical force component but also the horizontal force and rotational moment components are affected. The first order components become much larger in some cases.

    As for the horizontal force component, the values for two types of bottoms are almost the same for ξ in the range between 0.28 and 0.5, while the first-harmonic component is 23% greater than that for flat bottom in case of =0.63ξ. A similar trend for the variations of the moment component can be observed in Fig.16.

    From Fig.15, we can see that the first order vertical force for sloping bottom is larger than that for flat bottom when 0.71ξ>. The second and third order components of all parameters for sloping bottom condition are close to the results for flat bottom condition except in the low frequency region (ξ<0.33).

    4. Conclusions

    In the present article, the nonlinear wave-body interactions for a stationary surface-piercing body under regular waves in water of finite depth are simulated in a 2-D numerical wave tank. The tank model is based on Reynolds averaged Navier–Stokes equations and kε? two-equation model. The central difference scheme and QUICK scheme are employed to represent the diffusion term and convection term, respectively. The PCG method is employed for solving the algebraic equations. Boundary conditions associated with regular waves are prescribed along the left side of the computational domain. Accordingly, artificial damping zones are allocated at the two ends of the domain to absorb the wave energy reflection and re-reflection. In order to capture the water-air free surface, VOF method and CICSAM scheme are adopted. All these features are implemented by utilizing the open source code named OpenFOAM.

    In the solution of the fluid domain, the time history of the wave nonlinear force on the bodies can be obtained by integrating the pressure and viscous force. By using the force time histories, the mean andhigher-harmonic force components are calculated. Under the finite water depth condition, the first order forces and rotational moment components are much greater than those under deep water condition when the frequency is low. For the domain with sloping bottom topography, the second and third order components of all parameters under sloping bottom conditions are close to the results under flat bottom condition except in the low frequency region. Due to the wave reflection and re-reflection, the forces and rotational moment components vary in a complicated way with the increase of frequency ξ, especially under the sloping bottom condition.

    [1] KOO W. C., KIM M. H. and TAVASSOLI A. Fully nonlinear wave-body interactions with fully submerged dual cylinders[J]. International Journal of Offshore and Polar Engineering, 2004, 14(3): 210-217.

    [2] VENGATESAN V., VARYANI K. S. and BARLTROP N. D. P. Wave force coefficients for horizontally submerged rectangular cylinders[J]. Ocean Engineering, 2006, 33(11-12): 1669-1704.

    [3] LIU Yong, LI Yu-cheng and TENG Bin. Wave motion over two submerged layers of horizontal thick plates[J]. Journal of Hydrodynamics, 2009, 21(4): 453-462.

    [4] SUNG H. G., HONG S. Y. and CHOI H. S. Evaluation of nonlinear wave forces on a fixed body by numerical wave tank techniques[C]. Proceedings of the 3rd International Conference on Hydrodynamics. Seoul, Korea, 1998, 191-196.

    [5] LI Chi-wai, LIN Peng-zhi. A numerical study of three-dimensional wave interaction with a square cylinder[J]. Ocean Engineering, 2001, 28(12): 1545-1555.

    [6] YOU Yun-xiang, SHI Qiang and MIAO Guo-ping. The radiation and diffraction of water waves by a bottom-mounted circular cylinder in a two-layer fluid[J]. Journal of Hydrodynamics, Ser. B, 2007, 19(1): 1-8.

    [7] TANIZAWA K., MINAMI M. Estimation of wave drift force by numerical wave tank[C]. Proceedings of the 9th ISOPE Conference. Brest, France, 1999, 69-75.

    [8] BAI Wei, TENG Bin and QIU Da-hong. Real time simulation of second-order radiation of 3D bodies[J]. Journal of Hydrodynamics, Ser. A, 2003, 18(4): 489-498(in Chinese).

    [9] KOO W. C., KIM M. H. Fully nonlinear wave-body interactions with surface-piercing bodies[J]. Ocean Engineering, 2007, 34(7): 1000-1012.

    [10] WANG Da-guo, ZOU Zhi-li and TANG Chun-an. Time stepping solutions of nonlinear wave forces on a three-dimensional box-shaped ship in a harbor[J]. Journal of Ship Mechanics, 2007, 11(4): 533-544(in Chinese).

    [11] NOJIRI N., MURAYAMA K. A study on the drift force on two dimensional floating body in regular waves[J]. Transactions of the West-Japan Society Naval Architect, 1975, 51: 131-152.

    [12] MARUO H. On the increase of the resistance of a ship in rough seas[J]. Journal of Zosen Kiokai, 1960, (108): 5-13(in Japanese).

    [13] UBBINK O., ISSA R. I. A method for capturing sharp fluid interfaces on arbitrary meshes[J]. Journal of Computational Physics, 1999, 153(1): 26-50.

    [14] QI Peng, WANG Yong-xue and HOU Yi-jun. Numerical simulation of solitary waves overtopping a breakwater[J]. Journal of Hydrodynamics, Ser. A, 2004, 19(12): 884-889(in Chinese).

    [15] XU Shao-kun. A numerical wave tank based on OpenFOAM and its application[D]. Ph. D. Thesis, Tianjin: Tianjin University, 2008(in Chinese).

    [16] DONG Zhi, ZHAN Jie-min. Comparison of existing methods for wave generating and absorbing in VOF-based numerical tank[J]. Journal of Hydrodynamics, Ser. A, 2009, 24(1): 15-21(in Chinese).

    10.1016/S1001-6058(09)60112-8

    * Project supported by the National Natural Science Foundation of China (Grant No. 40776057), the Knowledge Innovation Program of Chinese Academy of Sciences (Grant Nos. KJCX2-YW-L07, KZCX2-YW-212-2).

    Biography: LI Yong (1978-), Male, Ph. D.

    LIN Mian,

    E-mail: linmian@imech.ac.cn

    在线免费观看不下载黄p国产 | 国产黄片美女视频| 欧美又色又爽又黄视频| 亚洲激情在线av| 观看美女的网站| bbb黄色大片| xxx96com| 动漫黄色视频在线观看| 亚洲国产看品久久| 精品免费久久久久久久清纯| 人妻久久中文字幕网| 中文资源天堂在线| 亚洲精品在线观看二区| 国产精品自产拍在线观看55亚洲| 热99re8久久精品国产| 亚洲在线观看片| 一级黄色大片毛片| 黄片小视频在线播放| 亚洲欧美一区二区三区黑人| 99久久综合精品五月天人人| 搞女人的毛片| 国产精品香港三级国产av潘金莲| 两个人视频免费观看高清| e午夜精品久久久久久久| 成人欧美大片| 午夜免费成人在线视频| 免费看美女性在线毛片视频| 国产视频内射| 国产成+人综合+亚洲专区| 亚洲精品在线观看二区| 18禁美女被吸乳视频| 国产日本99.免费观看| 可以在线观看毛片的网站| 亚洲中文字幕一区二区三区有码在线看 | 少妇裸体淫交视频免费看高清| 狂野欧美白嫩少妇大欣赏| 精品国内亚洲2022精品成人| 大型黄色视频在线免费观看| 最近视频中文字幕2019在线8| 欧美日韩一级在线毛片| 黑人操中国人逼视频| 大型黄色视频在线免费观看| 香蕉丝袜av| 两人在一起打扑克的视频| 中文字幕av在线有码专区| 久久久久久九九精品二区国产| 亚洲18禁久久av| 嫁个100分男人电影在线观看| 中文字幕最新亚洲高清| 麻豆久久精品国产亚洲av| 88av欧美| 可以在线观看的亚洲视频| 看免费av毛片| 亚洲精品一区av在线观看| 天天添夜夜摸| 亚洲av电影不卡..在线观看| 精品不卡国产一区二区三区| 天堂动漫精品| 国内精品久久久久久久电影| 两性午夜刺激爽爽歪歪视频在线观看| 国产主播在线观看一区二区| 国产亚洲精品久久久com| xxx96com| www.自偷自拍.com| 听说在线观看完整版免费高清| 免费在线观看成人毛片| 免费看光身美女| 亚洲成人精品中文字幕电影| 夜夜爽天天搞| svipshipincom国产片| www日本在线高清视频| 婷婷精品国产亚洲av在线| 亚洲av电影在线进入| 久久这里只有精品19| 亚洲国产欧美网| 欧美又色又爽又黄视频| 69av精品久久久久久| 熟女少妇亚洲综合色aaa.| 欧美不卡视频在线免费观看| 国产精品,欧美在线| 桃红色精品国产亚洲av| 欧美最黄视频在线播放免费| 免费看a级黄色片| 免费大片18禁| 欧美中文综合在线视频| 国产午夜福利久久久久久| 国产精品一区二区三区四区久久| 国内精品久久久久久久电影| 特级一级黄色大片| 欧美午夜高清在线| 亚洲成人久久爱视频| 一级毛片高清免费大全| 五月伊人婷婷丁香| 一本久久中文字幕| 小蜜桃在线观看免费完整版高清| 一级a爱片免费观看的视频| 亚洲七黄色美女视频| 色综合欧美亚洲国产小说| 老熟妇乱子伦视频在线观看| 黄色女人牲交| www.www免费av| 观看免费一级毛片| 此物有八面人人有两片| 日韩av在线大香蕉| 天堂网av新在线| 999久久久国产精品视频| 视频区欧美日本亚洲| 亚洲人成伊人成综合网2020| 国语自产精品视频在线第100页| 国产免费av片在线观看野外av| www.www免费av| 亚洲欧美日韩高清在线视频| 免费看a级黄色片| а√天堂www在线а√下载| 一卡2卡三卡四卡精品乱码亚洲| 一二三四在线观看免费中文在| 美女黄网站色视频| 可以在线观看的亚洲视频| 中文资源天堂在线| 免费电影在线观看免费观看| 最近在线观看免费完整版| 中文字幕久久专区| 欧美又色又爽又黄视频| 18美女黄网站色大片免费观看| 最近最新中文字幕大全电影3| 身体一侧抽搐| 90打野战视频偷拍视频| 成熟少妇高潮喷水视频| 在线观看66精品国产| 亚洲av免费在线观看| 麻豆成人午夜福利视频| 在线十欧美十亚洲十日本专区| 婷婷六月久久综合丁香| 亚洲人与动物交配视频| 日韩国内少妇激情av| 久久精品aⅴ一区二区三区四区| 久久久久九九精品影院| 免费观看精品视频网站| 欧美+亚洲+日韩+国产| 国内毛片毛片毛片毛片毛片| 国产伦精品一区二区三区视频9 | 国产主播在线观看一区二区| 偷拍熟女少妇极品色| 真人一进一出gif抽搐免费| svipshipincom国产片| 在线十欧美十亚洲十日本专区| 亚洲 国产 在线| 丰满人妻一区二区三区视频av | 久久精品影院6| 一个人观看的视频www高清免费观看 | 国产亚洲精品久久久com| 校园春色视频在线观看| 欧美不卡视频在线免费观看| av欧美777| 19禁男女啪啪无遮挡网站| 十八禁人妻一区二区| 欧美一级毛片孕妇| 天天一区二区日本电影三级| 一区二区三区激情视频| 国产高清videossex| 中文字幕av在线有码专区| 不卡一级毛片| 久久天堂一区二区三区四区| 欧美xxxx黑人xx丫x性爽| 亚洲精品久久国产高清桃花| а√天堂www在线а√下载| 久久这里只有精品19| 在线观看舔阴道视频| 无遮挡黄片免费观看| 岛国在线免费视频观看| 91麻豆av在线| 亚洲欧美精品综合一区二区三区| 国产精品,欧美在线| 久久久国产成人免费| 可以在线观看毛片的网站| 午夜福利在线观看免费完整高清在 | 亚洲精品国产精品久久久不卡| 99在线视频只有这里精品首页| 中文字幕高清在线视频| 日韩成人在线观看一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 成人18禁在线播放| 国产一级毛片七仙女欲春2| 日韩三级视频一区二区三区| 中文字幕精品亚洲无线码一区| 国产熟女xx| 2021天堂中文幕一二区在线观| 日韩欧美免费精品| 99久国产av精品| 黄色日韩在线| 国产精品久久久久久精品电影| 欧美黑人巨大hd| 中文字幕精品亚洲无线码一区| 成人欧美大片| 变态另类成人亚洲欧美熟女| 色在线成人网| 成人午夜高清在线视频| 国产久久久一区二区三区| 成年版毛片免费区| 国产不卡一卡二| 欧美成人性av电影在线观看| 久久精品国产99精品国产亚洲性色| 少妇的逼水好多| 久久久久久九九精品二区国产| 国产精品九九99| 国产欧美日韩一区二区精品| 精品久久久久久久久久免费视频| 全区人妻精品视频| 亚洲18禁久久av| 99精品久久久久人妻精品| 人妻丰满熟妇av一区二区三区| 国内少妇人妻偷人精品xxx网站 | 久久午夜综合久久蜜桃| 国产高清视频在线播放一区| 在线观看午夜福利视频| 不卡av一区二区三区| 99热只有精品国产| 熟女少妇亚洲综合色aaa.| 色哟哟哟哟哟哟| av视频在线观看入口| 欧美最黄视频在线播放免费| 18禁国产床啪视频网站| 免费在线观看成人毛片| 色哟哟哟哟哟哟| 亚洲欧美日韩卡通动漫| 免费一级毛片在线播放高清视频| 在线观看一区二区三区| xxxwww97欧美| 99久久久亚洲精品蜜臀av| 亚洲欧美日韩卡通动漫| 小蜜桃在线观看免费完整版高清| 婷婷六月久久综合丁香| 非洲黑人性xxxx精品又粗又长| 三级男女做爰猛烈吃奶摸视频| 亚洲av电影在线进入| 国产aⅴ精品一区二区三区波| 色在线成人网| 精品无人区乱码1区二区| 亚洲人成网站在线播放欧美日韩| 亚洲黑人精品在线| 国产激情偷乱视频一区二区| 色综合亚洲欧美另类图片| 桃色一区二区三区在线观看| 精品国产超薄肉色丝袜足j| 国产精品精品国产色婷婷| 国产精品一区二区免费欧美| 在线观看一区二区三区| 国内精品久久久久久久电影| 熟女电影av网| 一个人免费在线观看电影 | 久久这里只有精品中国| 免费看日本二区| 人妻夜夜爽99麻豆av| 久久亚洲真实| 757午夜福利合集在线观看| 国产欧美日韩精品亚洲av| 校园春色视频在线观看| 日本与韩国留学比较| 色精品久久人妻99蜜桃| 手机成人av网站| 亚洲无线在线观看| 美女被艹到高潮喷水动态| 日韩欧美一区二区三区在线观看| 欧美另类亚洲清纯唯美| 久久国产乱子伦精品免费另类| 黄片大片在线免费观看| 亚洲欧美日韩东京热| 床上黄色一级片| 99热这里只有精品一区 | 真人一进一出gif抽搐免费| 激情在线观看视频在线高清| 在线观看美女被高潮喷水网站 | 精品国产超薄肉色丝袜足j| 亚洲七黄色美女视频| 日日摸夜夜添夜夜添小说| 国产免费av片在线观看野外av| 成人鲁丝片一二三区免费| 老熟妇仑乱视频hdxx| 18美女黄网站色大片免费观看| 国产免费男女视频| 噜噜噜噜噜久久久久久91| 欧美一级a爱片免费观看看| av国产免费在线观看| 黄片大片在线免费观看| 亚洲av成人一区二区三| ponron亚洲| 国内精品一区二区在线观看| 国产野战对白在线观看| 嫩草影院精品99| 99热这里只有精品一区 | 欧美av亚洲av综合av国产av| 天天躁日日操中文字幕| 亚洲在线自拍视频| 此物有八面人人有两片| 欧美在线一区亚洲| 啦啦啦韩国在线观看视频| 热99在线观看视频| 久久久久性生活片| 欧美不卡视频在线免费观看| 国产精品免费一区二区三区在线| 欧美色视频一区免费| 在线观看舔阴道视频| 久久亚洲精品不卡| 国产亚洲精品久久久com| 在线国产一区二区在线| 国产又色又爽无遮挡免费看| 禁无遮挡网站| 91九色精品人成在线观看| 久久精品夜夜夜夜夜久久蜜豆| 久99久视频精品免费| 国产午夜精品论理片| 99在线人妻在线中文字幕| 久久国产精品人妻蜜桃| 91麻豆精品激情在线观看国产| 人妻久久中文字幕网| 亚洲美女黄片视频| 欧美中文日本在线观看视频| 成人三级黄色视频| 亚洲欧美精品综合久久99| 午夜影院日韩av| 亚洲欧美日韩高清专用| 国产午夜福利久久久久久| 这个男人来自地球电影免费观看| 99视频精品全部免费 在线 | www.自偷自拍.com| 非洲黑人性xxxx精品又粗又长| 一进一出抽搐gif免费好疼| 高清毛片免费观看视频网站| 夜夜看夜夜爽夜夜摸| 天天躁日日操中文字幕| 国产精品国产高清国产av| 搡老妇女老女人老熟妇| 日韩国内少妇激情av| 久久中文字幕人妻熟女| 无限看片的www在线观看| 国产一区二区三区在线臀色熟女| 亚洲成av人片在线播放无| 视频区欧美日本亚洲| 国产av麻豆久久久久久久| 国产av不卡久久| 日本一本二区三区精品| 五月玫瑰六月丁香| 一级毛片女人18水好多| 国产午夜精品久久久久久| 久久久精品大字幕| 十八禁网站免费在线| 国产高清三级在线| 免费高清视频大片| 日日夜夜操网爽| 男女床上黄色一级片免费看| 啦啦啦观看免费观看视频高清| 日本精品一区二区三区蜜桃| 看免费av毛片| 日韩 欧美 亚洲 中文字幕| 亚洲人成电影免费在线| 一级毛片女人18水好多| 日韩欧美在线二视频| 夜夜看夜夜爽夜夜摸| or卡值多少钱| 伦理电影免费视频| 波多野结衣高清无吗| 日本 欧美在线| 国产 一区 欧美 日韩| 麻豆久久精品国产亚洲av| 天天添夜夜摸| 高清在线国产一区| 午夜两性在线视频| 久久中文字幕一级| 国产精品一区二区免费欧美| 亚洲乱码一区二区免费版| 桃红色精品国产亚洲av| 免费在线观看视频国产中文字幕亚洲| 天堂动漫精品| 校园春色视频在线观看| 日韩人妻高清精品专区| 亚洲国产欧美一区二区综合| 人人妻人人看人人澡| 日韩欧美一区二区三区在线观看| 亚洲人成伊人成综合网2020| 国产精品亚洲一级av第二区| 久久中文字幕一级| 人妻丰满熟妇av一区二区三区| 国产又色又爽无遮挡免费看| 女警被强在线播放| 一二三四在线观看免费中文在| av在线天堂中文字幕| 黑人欧美特级aaaaaa片| 国产又色又爽无遮挡免费看| x7x7x7水蜜桃| 国产精品久久久久久亚洲av鲁大| 精品一区二区三区四区五区乱码| 午夜福利在线在线| 欧美一级毛片孕妇| 丰满的人妻完整版| 日韩大尺度精品在线看网址| 欧美性猛交黑人性爽| netflix在线观看网站| 最近视频中文字幕2019在线8| 国产熟女xx| 精品免费久久久久久久清纯| 亚洲精品一卡2卡三卡4卡5卡| www.www免费av| 亚洲电影在线观看av| 午夜福利视频1000在线观看| 午夜视频精品福利| 日本撒尿小便嘘嘘汇集6| 日本与韩国留学比较| 久久久久国产一级毛片高清牌| 中文字幕人成人乱码亚洲影| 99久久成人亚洲精品观看| 国产精品免费一区二区三区在线| 国产精品电影一区二区三区| 精品久久久久久久毛片微露脸| 成人永久免费在线观看视频| 啪啪无遮挡十八禁网站| 九九在线视频观看精品| 国产真实乱freesex| 午夜福利高清视频| 最新在线观看一区二区三区| 欧美在线黄色| 欧美大码av| 长腿黑丝高跟| 久久久久免费精品人妻一区二区| 久久久国产精品麻豆| 真实男女啪啪啪动态图| 亚洲 欧美 日韩 在线 免费| 国产乱人视频| 免费搜索国产男女视频| 成人永久免费在线观看视频| 国产精品爽爽va在线观看网站| 一级毛片女人18水好多| 2021天堂中文幕一二区在线观| 欧美成狂野欧美在线观看| 精品福利观看| 99久久无色码亚洲精品果冻| 国产真实乱freesex| 人妻丰满熟妇av一区二区三区| 午夜福利欧美成人| 免费在线观看成人毛片| 好男人电影高清在线观看| 亚洲成人久久爱视频| 亚洲成人久久性| 日本一二三区视频观看| 91在线观看av| 久久久久国产精品人妻aⅴ院| 久久香蕉国产精品| 国产aⅴ精品一区二区三区波| 国产精品久久久av美女十八| 女警被强在线播放| 999精品在线视频| 免费观看的影片在线观看| 精品国产亚洲在线| 午夜福利视频1000在线观看| 国产午夜福利久久久久久| 免费观看的影片在线观看| 久久精品91蜜桃| 1024手机看黄色片| 一区二区三区高清视频在线| 在线观看免费午夜福利视频| 成人国产一区最新在线观看| 国产美女午夜福利| 午夜福利在线在线| 国产亚洲欧美98| 波多野结衣高清无吗| 亚洲国产精品999在线| 国产高清有码在线观看视频| 国产精品一区二区三区四区免费观看 | 国产精品野战在线观看| 19禁男女啪啪无遮挡网站| 国产1区2区3区精品| 国产av在哪里看| 国产精品女同一区二区软件 | 国产av不卡久久| 窝窝影院91人妻| 亚洲国产欧美人成| 可以在线观看毛片的网站| 91麻豆精品激情在线观看国产| 久久久久久久久免费视频了| 亚洲,欧美精品.| 亚洲国产中文字幕在线视频| 丰满的人妻完整版| 亚洲人成网站高清观看| 哪里可以看免费的av片| 看黄色毛片网站| 在线观看美女被高潮喷水网站 | 精品久久久久久久末码| 国产精品久久久久久久电影 | 国产人伦9x9x在线观看| 亚洲精品色激情综合| 欧美一级a爱片免费观看看| 亚洲国产欧美人成| 中文资源天堂在线| 91在线精品国自产拍蜜月 | 亚洲自拍偷在线| 99久国产av精品| 久久久成人免费电影| 国产又黄又爽又无遮挡在线| 美女午夜性视频免费| www.精华液| 日韩欧美精品v在线| 精品午夜福利视频在线观看一区| 最新中文字幕久久久久 | 午夜视频精品福利| 国产精品美女特级片免费视频播放器 | 亚洲av成人av| 看黄色毛片网站| 一个人免费在线观看电影 | 欧美xxxx黑人xx丫x性爽| 亚洲专区国产一区二区| 欧美zozozo另类| 老司机在亚洲福利影院| 亚洲五月天丁香| 成年女人看的毛片在线观看| 麻豆国产av国片精品| 好男人电影高清在线观看| 久久久国产成人精品二区| 国产高清激情床上av| 国产人伦9x9x在线观看| 91麻豆精品激情在线观看国产| 国产 一区 欧美 日韩| 久久天堂一区二区三区四区| 制服人妻中文乱码| 97超视频在线观看视频| 天堂影院成人在线观看| 丁香欧美五月| 高清在线国产一区| 久久久水蜜桃国产精品网| 精品99又大又爽又粗少妇毛片 | 午夜免费激情av| 国产99白浆流出| 在线免费观看不下载黄p国产 | 嫩草影视91久久| 欧美色欧美亚洲另类二区| 91字幕亚洲| 在线观看免费午夜福利视频| 国产精品一区二区精品视频观看| 精品免费久久久久久久清纯| 中文字幕av在线有码专区| 国产精品自产拍在线观看55亚洲| 成人永久免费在线观看视频| 巨乳人妻的诱惑在线观看| 久久久久久大精品| 欧美中文综合在线视频| 国产私拍福利视频在线观看| 免费观看精品视频网站| 一个人免费在线观看的高清视频| 韩国av一区二区三区四区| 日本免费a在线| 欧美激情久久久久久爽电影| 天天躁日日操中文字幕| 亚洲成人免费电影在线观看| 久久午夜亚洲精品久久| 国产高潮美女av| aaaaa片日本免费| 成人三级黄色视频| 欧美国产日韩亚洲一区| 免费电影在线观看免费观看| 免费观看精品视频网站| 90打野战视频偷拍视频| 超碰成人久久| 久久天躁狠狠躁夜夜2o2o| 欧美日韩黄片免| 美女 人体艺术 gogo| 美女免费视频网站| 欧美国产日韩亚洲一区| 国产欧美日韩精品亚洲av| 色综合婷婷激情| 观看美女的网站| 亚洲欧美日韩东京热| 岛国在线免费视频观看| 欧美激情久久久久久爽电影| av在线天堂中文字幕| 国产熟女xx| 国产成人精品久久二区二区91| 在线a可以看的网站| 毛片女人毛片| 999久久久国产精品视频| 色视频www国产| 亚洲片人在线观看| 黑人欧美特级aaaaaa片| 久久久久久国产a免费观看| 国产午夜精品论理片| 99久久无色码亚洲精品果冻| 999久久久精品免费观看国产| 无人区码免费观看不卡| 91av网一区二区| 欧美中文综合在线视频| 亚洲av美国av| 亚洲国产中文字幕在线视频| 久久99热这里只有精品18| 黑人欧美特级aaaaaa片| 90打野战视频偷拍视频| 欧美精品啪啪一区二区三区| 男人的好看免费观看在线视频| 亚洲专区中文字幕在线| 国产精品精品国产色婷婷| 欧美三级亚洲精品| 亚洲av电影不卡..在线观看| 淫秽高清视频在线观看| 全区人妻精品视频| 成人三级做爰电影| 麻豆国产97在线/欧美| 精品不卡国产一区二区三区| 好男人在线观看高清免费视频| 亚洲精品在线观看二区| 老司机午夜福利在线观看视频| 日韩欧美一区二区三区在线观看| 高潮久久久久久久久久久不卡| 亚洲无线在线观看| 国内精品一区二区在线观看| 午夜福利视频1000在线观看| 国产一区二区三区视频了| 午夜激情福利司机影院| 男人舔女人下体高潮全视频| 国内精品久久久久精免费|