• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    一種新型紡錘狀α-Fe2O3納米晶的合成、表征及其表面性能

    2010-03-06 04:44:18詹擁共陳啟元尹周瀾李莉莉蔡炳新
    物理化學(xué)學(xué)報 2010年11期
    關(guān)鍵詞:湖南大學(xué)化工學(xué)院中南大學(xué)

    詹擁共 陳啟元 尹周瀾 李莉莉 蔡炳新,*

    (1中南大學(xué)化學(xué)化工學(xué)院,長沙 410083; 2湖南大學(xué)化學(xué)化工學(xué)院,長沙 410082)

    Transition metal oxides have attracted significant attention in a variety of fields because of their unique structures and properties[1-4].In particular,the performance can be significantly enhanced by downsizing to nanometer scale according to recent research[5-7].Ferric oxides,the focus of this research,have a broad range of applications[8-17],especially in the cancer tumor detection[16],and selective separation and detection of bimolecular due to the apparent simplicity of postsynthesis surface functionalization[17].Stability of the chemical interaction between functional molecules and support is crucial for most medical applications because the support is the key to tracking or targeting treatments that the functional molecule is to perform[18].As a result,it is im-portant to shape-controlled synthesize ferric oxide nanostructures for the enhancement the interaction between functional molecules and ferric oxide nanostructures.

    In recent years,a number of methods have been developed to produce ferric oxide nanocrystals possessing enigmatic morphogenesis[19-26].However,in both cases,the shape effects on their applications in surface functionalization have rarely been explored.Herein we report a new approach to the synthesis of novel spindle-like α-Fe2O3nanocrystals.In our synthetic strategy,the morphology and structure can be jointly controlled by tuning the fraction of inorganic salt and organic template(IS-OT)in the extremely low precursor concentration reaction system,and the evaporation-induced self-assembly(EISA)method has been employed to accelerate the reaction and recover the synthesized α-Fe2O3with high yields while preserving favorable shape and structure.The spindle-like morphology of the α-Fe2O3nanocrystals synthesized by IS-OT double control self-assembly exhibits much enhanced the chemical interaction between α-Fe2O3nanocrystals and the surface functionalization agent:dopamine (DA).Moreover,this strategy can be extended to synthesizing other transition metal oxide materials and complex oxides with special nanostructures.

    In the soft template methods,surfactants have been used to organize silica into different forms[27-31].However,the transition metal oxide nanomaterials are more difficult to synthesize than silica nanomaterials because the transition metal oxide precursors are more reactive to hydrolysis and condensation compared to the precursors of silica,leading to the formation of undesirable non-uniform structures.Thus,the hydrolytic rate of the precursors is a very important factor to form the transition metal oxide nanomaterials.In this study,the rate of hydrolysis of the ferric oxide precursor can be strictly controlled by adjusting two more important affecting factors.Firstly,from the viewpoint of chemical reaction kinetics,the rate of chemical reaction is directly proportional to the reactant concentration,so the hydrolytic rate of the ferric oxide precursor is confrollable by varying the precursor concentration(in this study,the molar ratio of ferric nitrate to H2O is 1.2∶11103.4).Secondly,appropriate precipitant is also essentially needed for the control of the hydrolytic rate of the ferric oxide precursor.In this case,urea is superior to other conventional precipitants such as sodium hydroxide and aqueous ammonia.The additions of sodium hydroxide and aqueous ammonia in the reaction system only cause the formation of disordered structures.The slowly strengthened alkalescence generated by the hydrolysis of urea rendered the perfect adjustment of hy-drolytic rate of ferric nitrate.

    The nucleation has been regulated by inorganic salt and organic template double control self-assembly.Recently,Jia et al.[24,26]found that the shape of nanomaterials can be influenced by the presence of phosphate and sulphate in the hydrothermal method.In our approach,magnesium nitrate has been used to regulate the structure of the synthesized hematite.Besides direct influence,we think that the structures of hematite can be indirectly influenced by magnesium nitrate through regulating the structureofcetyltrimethyl-ammoniumbromide(CTAB)micelles. Obviously,the template micellar structure is one of the main factors influencing the shape of synthesized materials in the soft template methods.On the other hand,the micellar aggregation parameters of cationic quaternary ammonium surfactants,such as translational diffusion coefficient of micelle,hydrodynamic radius,ionization fraction,and aggregation number,are greatly influenced by ionic strength[32].So the presence of magnesium nitrate can influence the structure of CTAB micelles and ultimately influence the structure of the synthesized hematite.

    It is worth pointing out that the reaction is very difficult to be carried out in such low ferric nitrate concentration,and conventional techniques(such as centrifugation or filtration)are ineffective at recovering the sample synthesized by such low concentration reaction system.EISA is an efficient pathway to the preparation of nanometer-scale materials[33-40].We had used a modified EISA method in a previous study for synthesizing novel macroporous silica cages with tailoring pore architecture,and found that EISA method can accelerate the reaction and allow successful recovery of materials with high yields while preservingfavorableshapeandstructure[41].SotheEISAmethodwasused to promote the reaction and recover the synthesized products in this study.It is remarkable that two types of ferric oxide singlenanocrystals with different morphologies are synthesized in this study(Scheme 1).The synthesized samples are designated as NFO-1(with magnesium nitrate in the reaction system)and NFO-2(without magnesium nitrate in the reaction system).

    1 Experimental

    1.1 Chemicals

    The following chemicals were purchased and used as received without further purification.Cetyltrimethylammonium bromide (AR),ferric nitrate(Fe(NO3)3·9H2O,AR),urea(AR),magnesium nitrate(AR),and ethanol(AR)were purchased from Sinopharm Chemical Reagent Co.,Ltd.Deionized water was used in all experiments.

    1.2 Synthesis

    The α-Fe2O3nanocrystals(NFO-1)were synthesized as follows:0.4815 g Fe(NO3)3·9H2O and 0.1486 g Mg(NO3)2were dissolved in deionized water(200 mL)before adding CTAB(1.0983 g)and urea(CO(NH2)2,1.1926 g)under stirring for 10 min to form a clear solution.The reaction mixture was kept static reaction for 24 h at room temperature(23℃).The overall mixture composition(molar ratio)was 1.2 Fe(NO3)3∶1.0 Mg(NO3)2∶3.0 CTAB∶20.0 CO(NH2)2∶11103.4 H2O.The mixture was then allowed to age in the airproofed Teflon flask at 85℃under static condition for 24 h.After aged,the mixture was transferred into a beaker and concentrated at 60℃(EISA).When little liquid was remained,the resulted red solid was washed with ethanol(100 mL×2)to remove the surfactants and collected through centrifugation and dried at room temperature.The remainder surfactants were removed by calcinations at 650℃ for 1 h.NFO-2 was synthesized using the NFO-1 synthesis system,except no addition of magnesium nitrate.

    Scheme 1 Schematic illustration of the IS-OT double control self-assembly process of ferric oxide single-nanocrystalsTo employ ferric nitrate as the source of the ferric oxide,the hydrolysis of ferric nitrate with the extremely low concentration was initiated through the hydrolysis of urea. The condensations of nuclei were controlled by the presence of the inorganic salt(magnesium nitrate)and organic template(CTAB).After aging withstaticcondition,the productswererecoveredviaevaporation-induced self-assembly(EISA)method.The resulting synthesis red solid was washed with ethanol to remove the surfactants and collected through centrifugation and dried at room temperature.The materials were then heat treated at high temperatures to promote crystallization.

    1.3 Characterization

    XRD patterns were obtained with a Bruker D8-advance diffractometer by using Cu Kαradiation(40 kV,40 mA)with a step width of 0.01°(2θ)and an acquisition time of 4 s per step.X-ray photoelectron spectroscopy(XPS)measurement was performed on a PHI5500ESCA analyzer.The main parameters were as follows:Mg Kα,200 W,vacuum~10-7Pa.For Raman measurements,a confocal microprobe Raman instrument(RamLab-010, Jobin Yvon Horiba,France)was used.A 632.8 nm He-Ne laser excitation(0.1 mW)and a 50×long working-distance objective (8 mm)were used in this work.The width of the slit and the size of the pinhole were set as 100 and 1000 μm,respectively.Scanning electron microscopy(SEM)images were obtained on JEOL JSM-6700F electron microscope at 5 kV.The samples were first dispersed in ethanol and then were collected using copper grids covered with carbon films for analysis with gold coating. High-resolution transmission electron microscopy(HRTEM) experiments were performed on a JEOL JEM-3010F electron microscope with an acceleration voltage of 300 kV.

    1.4 Electrochemical experiments

    Electrochemical experiments were performed on a CHI 660C electrochemical analyzer(CH Instruments,Shanghai Chenhua Instrument Corporation,China)with a conventional three-electrode cell.The working electrode used was glassy carbon electrode(Aida Technology Limited Corp in Tianjin,3 mm in diameter).A platinum wire and a saturated calomel electrode(SCE) were used as the counter electrode and the reference electrode, respectively.Prior to each voltammetric experiment,the dissolved oxygen in solution was removed with purified nitrogen.

    2 Results and discussion

    It is necessary to confirm the chemical composition of NFO-1 considering that magnesium nitrate is added in the reaction system.The energy-dispersive X-ray(EDX)analysis(Fig.1b)confirms the presence of oxygen and ferric elements and the absence of magnesium element.X-ray photoelectron spectroscopy (XPS)also shows the presence of Fe and O components in the NFO-1(Fig.1a).The results of Fe 2p1/2,Fe 2p3/2,and O 1s electron binding energies are 729.7,716.2,and 535.1 eV,which are very similar to the values recorded in the literature[42-43].During the hydrolysis of urea,a pH favorable for the formation of α-Fe2O3single-crystal structure can be achieved,while magnesium nitrate can not be hydrolyzed in such pH condition.So the magnesium nitrate can be removed during the further treatment.Raman spectroscopy is the important technique that could be effectively used to characterize different types of iron oxides.As shown in Fig.1c,which exhibits five strong resonant peaks at about 222,287,408,494,and 608 cm-1in the range of 200-700 cm-1,the positions of the peaks are in good agreement with the typical frequencies observed from α-Fe2O3[44].The wide-angle powder X-ray diffraction(XRD)is another effective method for confirming the structure of NFO-1.As shown in Fig.1d,several well-resolved diffraction peaks are clearly observed in the range of 20°-70°,which can be indexed as(012),(104),(110),(113), (024),(116),(214),and(300)reflections of α-phase of Fe2O3[45-47]. The analysis results reveal that NFO-1 possesses the crystalline α-phase of Fe2O3.

    We have further investigated the morphological structure of NFO-1 by SEM,TEM,and the selected area electron diffraction (SAED).As shown in Fig.2(a,b),NFO-1 possesses not only a very unique spindle-like morphology but also very uniform distribution in size.The average dimensions of these nanoparticles are 439 nm in long axis and 299 nm in short axis,and long/short axis ratios is 1.5(see Supporting Information(available free of charge via the internet at http://www.whxb.pku.edu.cn),Table S1).The information about the crystal can be derived from the highresolutionTEM(HRTEM)images.Fig.2(c-e)shows HRTEM images taken from the areas labeled c-e in a high-magnification TEM image of a separate NFO-1 particle(Fig.2b,the upper left inset,see Supporting Information,Fig.S1);they respectively show the lattice structures at the junction between different protuberances,the tip of the protuberance and the particle.They all clearly show lattice fringes that indicate crystallinity of the entire particle.

    Fig.1 XPS(a),EDX(b),Raman(c)spectra,and XRD pattern(d)of NFO-1 after calcination at 650℃

    The ideal spindle-like shape of NFO-1 was extremely sensitive to the synthetic conditions,especially the age time and the presence of Mg(NO3)2.In order to understand the formation process of NFO-1,the samples of NFO-11 and NFO-12 were synthesized by varying the crystallization time in the NFO-1 synthesis system(Fig.3).With the prolongation of the crystallization time,the nanprotuberances in the centre of particles grow up to be horn-like outlines,while the highly ordered crystalline walls can be kept(see Supporting Information,Figs.S2 and S3).

    Besides the influence of the crystallization time,the morphology and structure of NFO-1 can also be greatly affected by the presence of magnesium nitrate.In order to investigate the effect of magnesium nitrate on the morphology and structure of NFO-1,NFO-2wassynthesizedbasedonthesameprescriptionasNFO-1 except the addition of magnesium nitrate(Fig.4).As shown in Fig.4(a,b),NFO-2 contains spherical or ellipsoidal shape with uniform size(about 35 nm,see Supporting Information,Table S2).Comparing Fig.4 to Fig.1,it is clearly showed that the morphology of the synthesized NFO-2 is different from NFO-1.To obtain the crystal information of NFO-2,5 nanoparticles are randomly chosen from Fig.4b and characterized using HRTEM, and HRTEM images confirm the single-crystallinity of NFO-2 (Fig.4(c-g),and see Supporting Information,Fig.S4),and the XRD pattern reveals that NFO-2 also possesses the crystalline αphase of Fe2O3(Fig.4h).The observation suggests that the morphology and structure of the synthesized samples have been clearly influenced by magnesium nitrate and the mechanism for the formation of NFO-1 may involve the participation of magnesium nitrate.

    Under the magnesium nitrate and CTAB double control,there are two possible routes to form NFO-1 nanocrystals(Fig.5). Route I:during the nucleation of Fe2O3species,two types of Fe2O3nuclei had been formed.The small nuclei were adsorbed on the surface of the large nuclei,and the protuberances were formed by the small nucleus.Route II:the protuberances directly grown in the centre of particles.Because of the absence of protuberances on the surface of the tip,Route II may be more possible than Route I.

    The method described herein is not limited to the synthesis of single α-Fe2O3nanocrystals,other novel transition metal oxide nanocrystals and complex oxides,such as Mn3O4[48],Co3O4,CuO, and SiO2/Fe2O3,are also applicable in the NFO-2 synthesis system(see Supporting Information,Fig.S5,Fig.S6,and Fig.S7). The results reveal that the self-assembling actions of precursors are controllable in the extremely low precursor concentration re-action system and this method could be extended to synthesize other novel nanomaterials.

    Fig.2 SEM and TEM images of NFO-1(a)SEM image;(b)low-magnification TEM image,The inset shows the highmagnification TEM image of a separate NFO-1 particle,scale bar is 100 nm; (c-e)HRTEM images recorded in different regions in the upper inset of b showing the well-defined single nanocrystalline nature

    Fig.3 SEM images of(a)NFO-1,(b)NFO-11,(c)NFO-12crystallization time:(a)24 h,(b)48 h,(c)72 h

    Fig.4 (a)Low-magnification SEM image,showing the largescale synthesis of NFO-2,(b)low-magnification TEM image of NFO-2,(c-g)HRTEM images recorded in different regions in(b),showing the single crystalline structure,(h)wideangle powder XRD pattern of NFO-2Scale bars in Fig.4(c-g)are 2 nm.

    Interestingly,the obtained α-Fe2O3nanocrystals with different morphologies and structures exhibited obviously different surface activities.We choose dopamine(DA)as the surface functional molecule to investigate the chemical interaction between α-Fe2O3nanocrystals and the surface functionalization agent because DA is the important anchor molecule to immobilize the functional molecules on the iron oxide[49].Fig.6a shows the electrochemical responses of DA at the bare and the single α-Fe2O3nanocrystals modified glassy carbon(GC)electrode in phosphate buffer solution at pH 7.0.As shown in Fig.6a,curve GC shows a cyclic voltammogram of the bare glassy carbon electrode at a scan rate of 20 mV·s-1.A weak oxidation peak at 404.3 mV and a weak reduction peak at 18.6 mV can be observed(ΔEp-Bare=385.7 mV),which reveals that there is an electrochemical response of dopamine at the bare GC electrode.But in curve NFO-2,at the NFO-2 modified glassy carbon electrode with the anodic peak potential shifting negatively to 478.6 mV,the corresponding cathodic peak potential is-12.9 mV and ΔEp-NFO-2=491.4 mV.It indicates that the electrochemical redox reaction of dopamine at the NFO-2 modified glassy carbon electrode is more difficult to carry out than that at the bare glassy carbon electrode.However, the cyclic voltammogram of NFO-1 modified glassy carbon electrode(Fig.6a,curve NFO-1)shows a different electrochemical response towards DA from that of the NFO-2 modified glassy carbon electrode.Comparing with the bare and NFO-2 modified glassy carbon electrodes,the remarkable enhancement in the peak currents shows promotional effects of NFO-1.An oxidation peak at 282.9 mV and a reduction peak at 87.1 mV (ΔEp-NFO-1=195.7 mV)are clearly observed.These results reveal that the electron transfer velocity on the surface of NFO-1 is faster than that on the surface of NFO-2 and the better reversibility of the electrode reaction on the surface of NFO-1 than the latter,and a firmer attachment of DA was achieved in the surface of NFO-1.Commonly,the surface effects of nanomaterials will be strengthened with the decrease of particle size.But in this study,NFO-2 with smaller particle size exhibited weaker surface effects than NFO-1.We presume that the special spindlelike morphology of NFO-1 may lead to this result.Because of the presence of nanoprotuberances in the mid section of particles,the appropriate active sites may be available for DA sorption,benefiting to the enhanced chemical interaction between substrate and DA.This hypothesis can be confirmed by the CV experiments of NFO-11 and NFO-12.The CV experiments were carried out under similar experimental conditions,and the results were both almost similar to NFO-2.With the prolongation of the age time,the nanprotuberances of NFO-11 and NFO-12 grew up to be horn-like outlines,and NFO-11 and NFO-12 could not keep the special spindle-like morphology.So the samples could not provide appropriate active sites for DA sorption.

    Fig.5 Possible formation and growth process of NFO-1Insets are TEM images from Fig.3.

    Fig.6 (a)Cyclic voltammograms obtained for DA on GC electrode,NFO-1 and NFO-2 modified GC electrodes; (b)continuous cyclic voltammograms obtained for DA at NFO-1 modified GC electrodeOne mg NFO(NFO-1 or NFO-2)was ultrasound dispersed in ethanol(2 mL) for 10 min.Then 10 μL of this suspension was coated on GC and dried.The electrochemical responses of DA at the bare and the NFO-1 mesoporous single nanocrystals modified GC were tested in pH 7.0 phosphate buffer solution (1.0×10-4mol DA was added).

    The types of interaction between NFO-1 and dopamine have been confirmed by a continuous CV experiment of NFO-1 modified glassy carbon electrode(Fig.6b).Seen from continuous cyclic voltammograms,it is found that the oxidation peak current of the first cycle is higher than that of the second cycle and after the third cycle the peak currents tend to be stable,which reveals that the adsorption process of oxidation state of dopamine controls the process of electrode reaction.While the reduction peak current is almost unchanged after several cycles,this indicates that the diffusion process of reduction state of dopamine controls the process of electrode reaction.

    3 Conclusions

    In conclusion,the novel α-Fe2O3nanocrystals(NFO-1)with crystalline structures have been synthesized by IS-OT double control self-assembly method in the extremely low concentration system.The obtained α-Fe2O3nanocrystals with different shapes exhibited obviously different surface activities.The capability of surface functionalization of NFO-1 is obviously enhanced because of its special spindle-like morphology.In addition,the synthesis method described herein is also suitable for the synthesis of other transition metal oxide single nanocrystals (such as Mn3O4,Co3O4,and CuO)and complex oxides(Fe2O3/ SiO2).The action mechanism,in which magnesium nitrate or other inorganic salts influence the morphology and structure of transition metal oxide single nanocrystals in the soft template synthesis process,will be an interesting research worth pursuing.

    Supporting Information Available:free of charge via the internet at http://www.whxb.pku.edu.cn.

    1 Lin,Y.;Wu,S.;Hung,Y.;Chou,Y.;Chang,C.;Lin,M.;Tsai,C.; Mou,C.Chem.Mater.,2006,18:5170

    2 Yada,M.;Ohya,M.;Machida,M.;Kijima,T.Langmuir,2000,16: 4752

    3 Nelson,P.;Elliott,J.M.;Attard,G.S.;Owen,J.R.Chem.Mater., 2002,14:524

    4 Teng,X.;Han,W.;Ku,W.;Hücker,M.Angew.Chem.Int.Edit., 2008,47:2055

    5 Srivastava,D.N.;Perkas,N.;Gedanken,A.;Felner,I.J.Phys. Chem.B,2002,106:1878

    6 Jiao,F.;Bruce,P.G.Angew.Chem.Int.Edit.,2004,43:5958

    7 Jiao,F.;Jumas,J.C.;Womes,M.;Chadwick,A.V.;Harrison,A.; Bruce,P.G.J.Am.Chem.Soc.,2006,128:12905

    8 Epling,W.S.;Hoflund,G.B.;Weaver,J.F.;Tsubota,S.;Haruta, M.J.Phys.Chem.,1996,100:9929

    9 Pickard,J.M.;Jones,E.G.Energy&Fuels,1997,11:1232

    10 Lai,J.;Shafi,K.V.P.M.;Loos,K.;Ulman,A.;Lee,Y.;Vogt,T.; Estournès,C.J.Am.Chem.Soc.,2003,125:11470

    11 Wu,C.;Yin,P.;Zhu,X.;Ouyang,C.;Xie,Y.J.Phys.Chem.B, 2006,110:17806

    12 Tang,B.;Wang,G.;Zhuo,L.;Ge,J.;Cui,L.Inorg.Chem.,2006, 45:5196

    13 Yamada,K.;Mukaihata,N.;Kawahara,T.;Tada,H.Langmuir, 2007,23:8593

    14 Zhong,Z.;Ho,J.;Teo,J.;Shen,S.;Gedanken,A.Chem.Mater., 2007,19:4776

    15 Han,L.;Shan,Z.;Chen,D.;Yu,X.;Yang,P.;Tu,B.;Zhao,D. J.Colloid Interface Sci.,2008,318:315

    16 Kenning,G.G.;Rodriguez,R.;Zotev,V.S.;Moslemi,A.;Wilson, S.;Hawel,L.;Byus,C.;Kovach,J.S.Rev.Sci.Instrum.,2005,76: 014303

    17 Perez,J.M.;Simeone,F.J.;Saeki,Y.;Josephson,L.;Weissleder, R.J.Am.Chem.Soc.,2003,125:10192

    18 Shultz,M.D.;Reveles,J.U.;Khanna,S.N.;Carpenter,E.E. J.Am.Chem.Soc.,2007,129:2482

    19 Rockenberger,J.;Scher,E.C.;Alivisatos,A.P.J.Am.Chem.Soc., 1999,121:11595

    20 Woo,K.;Lee,H.J.;Ahn,J.P.;Park,Y.S.Adv.Mater.,2003,15: 1761

    21 Wang,X.;Zhuang,J.;Peng,Q.;Li,Y.Nature,2005,437:121

    22 Deng,H.;Li,X.;Peng,Q.;Wang,X.;Chen,J.;Li,Y.Angew. Chem.Int.Edit.,2005,44:2782

    23 Vayssieres,L.;Sathe,C.;Butorin,S.M.;Shuh,D.K.;Nordgren,J.; Guo,J.Adv.Mater.,2005,17:2320

    24 Jia,C.;Sun,L.;Yan,Z.;You,L.;Luo,F.;Han,X.;Pang,Y.; Zhang,Z.;Yan,C.Angew.Chem.Int.Edit.,2005,44:4328

    25 Sun,S.;Zeng,H.;Robinson,D.B.;Raoux,S.;Rice,P.M.;Wang, S.;Li,G.J.Am.Chem.Soc.,2004,126:273

    26 Jia,C.;Sun,L.;Luo,F.;Han,X.;Heyderman,L.;Yan,Z.;Yan,C.; Zheng,K.;Zhang,Z.;Takano,M.;Hayashi,N.;Eltschka,M.; Kl?ui,M.;Rüdiger,U.;Kasama,T.;Cervera-Gontard,L.;Dunin-Borkowski,R.E.;Tzvetkov,G.;Raabe,J.J.Am.Chem.Soc., 2008,130:16968

    27 Lu,Y.;Fan,H.;Stump,A.;Ward,T.L.;Rieker,T.;Brinker,C.J. Nature,1999,398:223

    28 Wu,Y.;Cheng,G.;Katsov,K.;Sides,S.W.;Wang,J.;Tang,J.; Fredrickson,G.H.;Moskovits,M.;Stucky,G.D.Nature Mater., 2004,3:816

    29 Che,S.;Liu,Z.;Ohsuna,T.;Sakamoto,K.;Terasaki,O.;Tatsumi, T.Nature,2004,429:281

    30 Koganti,V.R.;Dunphy,D.;Gowrishankar,V.;McGehee,M.D.; Li,X.;Wang,J.;Rankin,S.E.Nano Lett.,2006,6:2567

    31 Zhang,A.;Zhang,Y.;Xing,N.;Hou,K.;Guo,X.Chem.Mater., 2009,21:4122

    32 Bieniecki,A.;Wilk,K.A.;Gapiński,K.J.Phys.Chem.B,1997, 101:871

    33 Zhang,Y.;Raman,N.;Bailey,J.K.;Brinker,C.J.;Crooks,R.M. J.Phys.Chem.,1992,96:9098

    34 Yang,P.;Zhao,D.;Margolese,D.I.;Chmelka,B.F.;Stucky,G.D. Nature,1998,396:152

    35 Brinker,C.J.;Lu,Y.;Sellinger,A.;Fan,H.Adv.Mater.,1999,11: 579

    36 Yang,P.;Zhao,D.;Margolese,D.I.;Chmelka,B.F.;Stucky,G.D. Chem.Mater.,1999,11:2813

    37 Alberius,P.C.A.;Frindell,K.L.;Hayward,R.C.;Kramer,E.J.; Stucky,G.D.;Chmelka,B.F.Chem.Mater.,2002,14:3284

    38 Bartl,M.H.;Puls,S.P.;Tang,J.;Lichtenegger,H.C.;Stucky,G. D.Angew.Chem.,Int.Edit.,2004,43:3037

    39 Jiang,X.;Brinker,C.J.J.Am.Chem.Soc.,2006,128:4512

    40 Pang,J.;Xiong,S.;Jaeckel,F.;Sun,Z.;Dunphy,D.;Brinker,C.J. J.Am.Chem.Soc.,2008,130:3284

    41 Zhan,Y.;Cai,B.;Wang,B.;Huang,X.;Zhang,P.;Li,L.;Wu,Z.; Yin,Z.;Chen,Q.J.Mater.Chem.,2008,18:5967

    42 Li,Y.;Ge,X.;Zhang,Z.;Ye,Q.Chem.Mater.,2002,14:1048

    43 Brezesinski,T.;Groenewolt,M.;Antonietti,M.;Smarsly,B. Angew.Chem.,Int.Edit.,2006,45:781

    44 Li,S.;Zhang,H.;Wu,J.;Ma,X.;Yang,D.Cryst.Growth Des., 2006,6:351

    45 Chen,M.;Liu,J.;Sun,S.J.Am.Chem.Soc.,2004,126:1950

    46 Cao,M.;Liu,T.;Gao,S.;Sun,G.;Wu,X.;Hu,C.;Wang,Z. Angew.Chem.Int.Edit.,2005,44:4197

    47 Cao,H.;Wang,G.;Zhang,L.;Liang,Y.;Zhang,S.;Zhang,X. ChemPhyChem,2006,7:1897

    48 Zhang,P.;Zhan,Y.;Cai,B.;Hao,C.;Wang,J.;Liu,C.;Meng,Z.; Yin,Z.;Chen,Q.Nano Res.,2010,3:235

    49 Xu,C.;Xu,K.;Gu,H.;Zheng,R.;Liu,H.;Zhang,X.;Guo,Z.;Xu, B.J.Am.Chem.Soc.,2004,126:9938

    猜你喜歡
    湖南大學(xué)化工學(xué)院中南大學(xué)
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    湖南中煙聯(lián)合湖南大學(xué)揭示植物維持代謝平衡的機制
    國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    中南大學(xué)建筑與藝術(shù)學(xué)院作品選登
    中南大學(xué)教授、博士生導(dǎo)師
    安全(2021年4期)2021-05-19 07:56:52
    【鏈接】國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    中南大學(xué)校慶文創(chuàng)產(chǎn)品設(shè)計
    湖南包裝(2020年6期)2021-01-20 02:02:10
    A Study on the Cohesion of English and ChineseBlessing Short Messages
    《化工學(xué)報》贊助單位
    艾米莉·狄金森的自然:生態(tài)批評的解讀
    国产极品粉嫩免费观看在线 | 人妻夜夜爽99麻豆av| 日韩欧美一区视频在线观看 | 麻豆成人av视频| 80岁老熟妇乱子伦牲交| 一级黄片播放器| 国产精品伦人一区二区| 一级av片app| av线在线观看网站| 99久国产av精品国产电影| 亚洲精品日本国产第一区| 丰满少妇做爰视频| 人妻人人澡人人爽人人| 最近中文字幕高清免费大全6| 久久韩国三级中文字幕| 高清不卡的av网站| 少妇猛男粗大的猛烈进出视频| 美女福利国产在线| 久久韩国三级中文字幕| 王馨瑶露胸无遮挡在线观看| 成人影院久久| 久久久久人妻精品一区果冻| 丰满迷人的少妇在线观看| 国产av国产精品国产| av卡一久久| 综合色丁香网| 国产精品女同一区二区软件| 中文精品一卡2卡3卡4更新| 18禁裸乳无遮挡动漫免费视频| 成人国产麻豆网| 久久99精品国语久久久| 亚洲精品自拍成人| 久久免费观看电影| 天天躁夜夜躁狠狠久久av| 国产真实伦视频高清在线观看| 汤姆久久久久久久影院中文字幕| 街头女战士在线观看网站| 亚洲综合色惰| 少妇人妻久久综合中文| 亚洲伊人久久精品综合| 亚洲伊人久久精品综合| 国产男女内射视频| 18禁裸乳无遮挡动漫免费视频| 国产精品三级大全| 国产亚洲最大av| 激情五月婷婷亚洲| 久久ye,这里只有精品| 综合色丁香网| 久久久久视频综合| 国产一区二区在线观看av| 欧美另类一区| 搡老乐熟女国产| 亚洲,一卡二卡三卡| 美女福利国产在线| 老司机亚洲免费影院| 国产精品久久久久久精品电影小说| 99热全是精品| 欧美日韩亚洲高清精品| 免费看av在线观看网站| 男人狂女人下面高潮的视频| 亚洲人成网站在线播| 国产淫语在线视频| 国产乱人偷精品视频| 精品亚洲成a人片在线观看| 精品久久久噜噜| 91精品一卡2卡3卡4卡| 日本黄色日本黄色录像| 精品熟女少妇av免费看| 亚洲精品,欧美精品| 国产一区二区在线观看日韩| 免费播放大片免费观看视频在线观看| 婷婷色综合大香蕉| 日本vs欧美在线观看视频 | 国产91av在线免费观看| 新久久久久国产一级毛片| h视频一区二区三区| 午夜福利,免费看| 80岁老熟妇乱子伦牲交| 久热这里只有精品99| 日韩,欧美,国产一区二区三区| 人人妻人人澡人人爽人人夜夜| 亚洲av二区三区四区| 日本-黄色视频高清免费观看| 永久网站在线| 男女啪啪激烈高潮av片| 欧美bdsm另类| 日韩三级伦理在线观看| 亚洲情色 制服丝袜| 国产精品久久久久久av不卡| 欧美日韩av久久| 超碰97精品在线观看| 欧美 日韩 精品 国产| 高清在线视频一区二区三区| 成人综合一区亚洲| 久久久精品免费免费高清| 亚洲在久久综合| 色94色欧美一区二区| 天天操日日干夜夜撸| 婷婷色麻豆天堂久久| 国产一区二区在线观看av| 午夜久久久在线观看| 噜噜噜噜噜久久久久久91| 一区二区三区四区激情视频| 视频中文字幕在线观看| 久久综合国产亚洲精品| 美女内射精品一级片tv| 麻豆成人午夜福利视频| 热re99久久精品国产66热6| 晚上一个人看的免费电影| 亚洲av成人精品一区久久| 国产精品国产av在线观看| 成人亚洲精品一区在线观看| 91午夜精品亚洲一区二区三区| av播播在线观看一区| 国产精品一区二区三区四区免费观看| 永久网站在线| 欧美bdsm另类| 成人特级av手机在线观看| 久久韩国三级中文字幕| 久久国内精品自在自线图片| 免费看av在线观看网站| 久久精品熟女亚洲av麻豆精品| 久久鲁丝午夜福利片| 成人亚洲欧美一区二区av| 22中文网久久字幕| 久久国产乱子免费精品| 高清av免费在线| 久久韩国三级中文字幕| 精品久久久精品久久久| 一二三四中文在线观看免费高清| 丰满迷人的少妇在线观看| 91午夜精品亚洲一区二区三区| 国产在线视频一区二区| 国产精品久久久久成人av| 亚洲欧洲国产日韩| 国产免费福利视频在线观看| 亚洲国产毛片av蜜桃av| 伊人久久国产一区二区| 在线免费观看不下载黄p国产| 日韩免费高清中文字幕av| 国产精品国产三级国产专区5o| 久久久a久久爽久久v久久| 国产成人午夜福利电影在线观看| 国产白丝娇喘喷水9色精品| 国产极品天堂在线| 桃花免费在线播放| 亚洲av电影在线观看一区二区三区| 欧美 亚洲 国产 日韩一| 晚上一个人看的免费电影| 秋霞伦理黄片| 人妻夜夜爽99麻豆av| 日韩大片免费观看网站| 成人18禁高潮啪啪吃奶动态图 | 午夜av观看不卡| 一边亲一边摸免费视频| 国模一区二区三区四区视频| 国产一级毛片在线| 18+在线观看网站| 精品国产一区二区三区久久久樱花| 亚洲熟女精品中文字幕| 美女国产视频在线观看| 精品久久久久久久久av| 精品少妇久久久久久888优播| 国产片特级美女逼逼视频| 久久精品国产a三级三级三级| 亚洲精品一二三| 久久女婷五月综合色啪小说| 国产精品99久久久久久久久| 成人亚洲精品一区在线观看| 日产精品乱码卡一卡2卡三| 亚洲综合色惰| 日韩中字成人| 日韩三级伦理在线观看| 日韩大片免费观看网站| 色哟哟·www| 热re99久久国产66热| 久久99热6这里只有精品| 国产精品麻豆人妻色哟哟久久| 伊人久久精品亚洲午夜| 国产亚洲5aaaaa淫片| 一级毛片 在线播放| 天堂8中文在线网| 在现免费观看毛片| 三上悠亚av全集在线观看 | 深夜a级毛片| 男女边吃奶边做爰视频| 在线观看免费高清a一片| 国产中年淑女户外野战色| 亚洲av成人精品一区久久| 国产黄片美女视频| 日韩中字成人| 国产日韩一区二区三区精品不卡 | 日韩制服骚丝袜av| 国产免费视频播放在线视频| 亚洲av综合色区一区| 亚洲欧美成人精品一区二区| 交换朋友夫妻互换小说| 精品久久久久久久久av| 男人和女人高潮做爰伦理| 国产淫语在线视频| 交换朋友夫妻互换小说| 精品一区二区免费观看| 毛片一级片免费看久久久久| 特大巨黑吊av在线直播| 久久狼人影院| 国产成人一区二区在线| 国产永久视频网站| 亚洲av福利一区| 国产精品熟女久久久久浪| 国产深夜福利视频在线观看| 久久99蜜桃精品久久| 亚洲自偷自拍三级| 毛片一级片免费看久久久久| 特大巨黑吊av在线直播| 亚洲久久久国产精品| 蜜臀久久99精品久久宅男| 十分钟在线观看高清视频www | 亚洲av综合色区一区| 欧美老熟妇乱子伦牲交| 午夜日本视频在线| 欧美少妇被猛烈插入视频| 简卡轻食公司| 免费黄网站久久成人精品| 人妻一区二区av| 久久久亚洲精品成人影院| 一边亲一边摸免费视频| 五月天丁香电影| 国产高清三级在线| 最近中文字幕2019免费版| 亚洲av中文av极速乱| 多毛熟女@视频| 大香蕉97超碰在线| 欧美成人午夜免费资源| 精品人妻熟女毛片av久久网站| 亚洲欧美一区二区三区黑人 | 卡戴珊不雅视频在线播放| 伊人久久国产一区二区| 亚洲av二区三区四区| 国产成人免费观看mmmm| 久久国内精品自在自线图片| 乱码一卡2卡4卡精品| 国产欧美亚洲国产| 国内揄拍国产精品人妻在线| 国产成人免费无遮挡视频| 国产爽快片一区二区三区| 国产一区二区三区综合在线观看 | 国产美女午夜福利| 久久婷婷青草| 日韩欧美 国产精品| 亚州av有码| 性色avwww在线观看| 丝瓜视频免费看黄片| 日韩熟女老妇一区二区性免费视频| 国产极品粉嫩免费观看在线 | 日韩制服骚丝袜av| 最近最新中文字幕免费大全7| 精品国产一区二区久久| 国产一区二区在线观看av| 亚洲av男天堂| a级毛片免费高清观看在线播放| 天堂8中文在线网| 国语对白做爰xxxⅹ性视频网站| 卡戴珊不雅视频在线播放| 少妇裸体淫交视频免费看高清| 亚洲av电影在线观看一区二区三区| 久久国产亚洲av麻豆专区| av卡一久久| 一本大道久久a久久精品| 国产精品久久久久久精品电影小说| 乱系列少妇在线播放| 黄色视频在线播放观看不卡| 久热久热在线精品观看| 久久久久久久久久久丰满| 欧美人与善性xxx| 国产精品成人在线| 观看美女的网站| 午夜精品国产一区二区电影| 九九在线视频观看精品| 国产成人免费观看mmmm| 欧美日韩国产mv在线观看视频| 丝瓜视频免费看黄片| 久久国产精品大桥未久av | 亚洲人成网站在线播| 岛国毛片在线播放| 亚洲怡红院男人天堂| 午夜老司机福利剧场| 新久久久久国产一级毛片| 在线天堂最新版资源| 在线观看三级黄色| 国产精品久久久久久精品电影小说| 中文字幕久久专区| 午夜日本视频在线| 成人漫画全彩无遮挡| 超碰97精品在线观看| 国产成人精品福利久久| 视频区图区小说| 六月丁香七月| 又黄又爽又刺激的免费视频.| 一级,二级,三级黄色视频| 在线观看国产h片| 亚洲国产成人一精品久久久| 夫妻性生交免费视频一级片| 我的女老师完整版在线观看| 亚洲四区av| 一级毛片aaaaaa免费看小| 在线观看av片永久免费下载| 嫩草影院新地址| 涩涩av久久男人的天堂| 亚洲中文av在线| 3wmmmm亚洲av在线观看| 日日爽夜夜爽网站| 亚洲精品一区蜜桃| 欧美三级亚洲精品| 97在线视频观看| 国产精品99久久99久久久不卡 | 国产精品嫩草影院av在线观看| 秋霞伦理黄片| 日本与韩国留学比较| 精品国产国语对白av| h视频一区二区三区| 亚洲欧美精品专区久久| 一二三四中文在线观看免费高清| 97在线人人人人妻| 亚洲av日韩在线播放| 国产视频首页在线观看| 青春草国产在线视频| 内射极品少妇av片p| 草草在线视频免费看| 看免费成人av毛片| 91午夜精品亚洲一区二区三区| 美女xxoo啪啪120秒动态图| 久久精品久久久久久久性| 亚洲中文av在线| 亚洲第一区二区三区不卡| 九色成人免费人妻av| 日日摸夜夜添夜夜爱| 久久精品国产a三级三级三级| 国产免费福利视频在线观看| 日韩av免费高清视频| 国产亚洲一区二区精品| av有码第一页| 欧美bdsm另类| 一本久久精品| 秋霞伦理黄片| 如日韩欧美国产精品一区二区三区 | 亚洲精品国产av成人精品| 久久久国产欧美日韩av| 欧美精品人与动牲交sv欧美| 久久久精品94久久精品| 香蕉精品网在线| 欧美最新免费一区二区三区| 中文精品一卡2卡3卡4更新| 韩国av在线不卡| 久久久久久久久久人人人人人人| 丰满人妻一区二区三区视频av| 亚洲精品第二区| 性高湖久久久久久久久免费观看| 亚洲一级一片aⅴ在线观看| 欧美日韩av久久| 亚洲久久久国产精品| 亚洲一级一片aⅴ在线观看| 青春草国产在线视频| 亚洲成色77777| 久久久国产一区二区| 在线观看www视频免费| 色94色欧美一区二区| 国产亚洲欧美精品永久| 在线观看www视频免费| 夫妻性生交免费视频一级片| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲精品aⅴ在线观看| 欧美性感艳星| 伊人久久国产一区二区| 成人毛片a级毛片在线播放| 日本爱情动作片www.在线观看| 丝袜喷水一区| av在线观看视频网站免费| av在线播放精品| 精品久久久噜噜| 国产午夜精品久久久久久一区二区三区| 99九九在线精品视频 | 精品一区在线观看国产| 超碰97精品在线观看| 欧美日韩综合久久久久久| √禁漫天堂资源中文www| 国产乱来视频区| 99视频精品全部免费 在线| 午夜免费鲁丝| 老熟女久久久| 亚洲激情五月婷婷啪啪| 欧美另类一区| 乱系列少妇在线播放| 人妻制服诱惑在线中文字幕| 精品久久久久久久久亚洲| 久久韩国三级中文字幕| 成人二区视频| 看十八女毛片水多多多| 亚洲熟女精品中文字幕| 视频中文字幕在线观看| 在线观看人妻少妇| 最新的欧美精品一区二区| 亚洲高清免费不卡视频| 人人妻人人看人人澡| 丰满人妻一区二区三区视频av| 久久精品久久久久久久性| 人体艺术视频欧美日本| 国产亚洲最大av| 新久久久久国产一级毛片| 最新的欧美精品一区二区| 能在线免费看毛片的网站| 国产成人午夜福利电影在线观看| 国产欧美日韩综合在线一区二区 | 涩涩av久久男人的天堂| 街头女战士在线观看网站| 老司机影院成人| 一个人看视频在线观看www免费| 亚洲国产精品专区欧美| 狂野欧美白嫩少妇大欣赏| 亚洲av二区三区四区| av一本久久久久| 又爽又黄a免费视频| 久久99精品国语久久久| 国产精品熟女久久久久浪| av有码第一页| 91久久精品国产一区二区三区| 乱码一卡2卡4卡精品| 久久久午夜欧美精品| 午夜91福利影院| 国产伦理片在线播放av一区| 亚洲自偷自拍三级| 如何舔出高潮| 91久久精品电影网| 久久6这里有精品| 国产又色又爽无遮挡免| 18禁裸乳无遮挡动漫免费视频| 亚洲精品成人av观看孕妇| 久久人妻熟女aⅴ| 人人妻人人添人人爽欧美一区卜| 国产成人精品一,二区| 欧美bdsm另类| 亚洲欧美一区二区三区国产| 亚洲国产日韩一区二区| 中文精品一卡2卡3卡4更新| 国产深夜福利视频在线观看| 自拍偷自拍亚洲精品老妇| 六月丁香七月| 人妻一区二区av| 大码成人一级视频| 亚洲国产成人一精品久久久| 伊人亚洲综合成人网| 精品久久久精品久久久| 熟女av电影| 日韩av免费高清视频| 极品少妇高潮喷水抽搐| 亚洲熟女精品中文字幕| 国产黄色视频一区二区在线观看| 夜夜看夜夜爽夜夜摸| 高清不卡的av网站| 另类亚洲欧美激情| 国产精品国产三级国产av玫瑰| 三级国产精品片| 成人毛片60女人毛片免费| 好男人视频免费观看在线| 欧美+日韩+精品| 久久久国产一区二区| 欧美日韩亚洲高清精品| a级毛片在线看网站| 日韩免费高清中文字幕av| 国产在线免费精品| 亚洲av.av天堂| 国产成人精品久久久久久| 久久久久久久精品精品| 国产一区有黄有色的免费视频| av福利片在线| 热re99久久精品国产66热6| 免费观看在线日韩| 精品少妇内射三级| 色5月婷婷丁香| √禁漫天堂资源中文www| 国产精品麻豆人妻色哟哟久久| 人人妻人人澡人人看| 一级黄片播放器| 日本-黄色视频高清免费观看| 亚洲国产最新在线播放| 亚洲经典国产精华液单| 嫩草影院新地址| 欧美+日韩+精品| 成人漫画全彩无遮挡| 日韩欧美一区视频在线观看 | 亚洲美女搞黄在线观看| 国产 一区精品| 少妇 在线观看| 伊人亚洲综合成人网| 国产亚洲精品久久久com| 全区人妻精品视频| 亚洲国产最新在线播放| 国产黄片美女视频| 国产成人免费无遮挡视频| 久久久久国产网址| 国产黄片视频在线免费观看| 久久久久久久久久成人| 日韩成人av中文字幕在线观看| 亚洲欧美成人精品一区二区| 色哟哟·www| 国产精品麻豆人妻色哟哟久久| 国产精品人妻久久久影院| 国产亚洲av片在线观看秒播厂| 日韩大片免费观看网站| 亚洲精品一区蜜桃| 精品久久久久久电影网| 中文字幕亚洲精品专区| 日本午夜av视频| 晚上一个人看的免费电影| 国产一区二区三区av在线| 男人狂女人下面高潮的视频| 日本av免费视频播放| 男人和女人高潮做爰伦理| 天堂中文最新版在线下载| 亚洲综合精品二区| 在线天堂最新版资源| 精品国产国语对白av| 国产精品一区二区在线观看99| 中文字幕av电影在线播放| 精品酒店卫生间| 国产精品久久久久久av不卡| 在线精品无人区一区二区三| 久久人人爽av亚洲精品天堂| 久久亚洲国产成人精品v| 国产日韩一区二区三区精品不卡 | 久久午夜福利片| 黄色配什么色好看| 国产精品女同一区二区软件| 国产精品不卡视频一区二区| 久久午夜综合久久蜜桃| 国产成人午夜福利电影在线观看| 成人漫画全彩无遮挡| 亚洲无线观看免费| 在线观看国产h片| 熟女av电影| 亚洲av电影在线观看一区二区三区| 国产午夜精品一二区理论片| 国产精品三级大全| 少妇的逼水好多| 噜噜噜噜噜久久久久久91| 97超碰精品成人国产| 天堂8中文在线网| 日韩,欧美,国产一区二区三区| 亚洲,一卡二卡三卡| 女人久久www免费人成看片| 国产免费视频播放在线视频| 国产精品一区二区三区四区免费观看| 久久国产亚洲av麻豆专区| 亚洲经典国产精华液单| 王馨瑶露胸无遮挡在线观看| 人体艺术视频欧美日本| 99久国产av精品国产电影| 成人毛片60女人毛片免费| 老司机影院成人| 91久久精品电影网| 久久精品国产亚洲网站| 少妇人妻一区二区三区视频| 久久久久久人妻| 亚洲美女黄色视频免费看| 国产精品蜜桃在线观看| 亚洲国产av新网站| av在线老鸭窝| 一级片'在线观看视频| 国产伦精品一区二区三区四那| 免费av中文字幕在线| 久久久欧美国产精品| 777米奇影视久久| 国产伦精品一区二区三区四那| av一本久久久久| 亚洲性久久影院| 91精品国产国语对白视频| 九草在线视频观看| 美女xxoo啪啪120秒动态图| 伊人久久精品亚洲午夜| 99久久综合免费| 日本免费在线观看一区| 欧美xxxx性猛交bbbb| 亚洲精品,欧美精品| 精品99又大又爽又粗少妇毛片| 我的女老师完整版在线观看| 亚洲三级黄色毛片| 丰满乱子伦码专区| 伦精品一区二区三区| 毛片一级片免费看久久久久| 一级毛片黄色毛片免费观看视频| 2021少妇久久久久久久久久久| 黑丝袜美女国产一区| 欧美精品亚洲一区二区| 亚洲精品日韩av片在线观看| 丝瓜视频免费看黄片| 一本色道久久久久久精品综合| 美女中出高潮动态图| 一级二级三级毛片免费看| 欧美日本中文国产一区发布| 美女内射精品一级片tv| 色网站视频免费| 99久久精品国产国产毛片| 久久久亚洲精品成人影院| 人妻系列 视频| 又大又黄又爽视频免费| 久久久a久久爽久久v久久| 午夜久久久在线观看| 人妻一区二区av| 精品少妇内射三级| 久久人妻熟女aⅴ| 国产中年淑女户外野战色| 国产真实伦视频高清在线观看| 高清毛片免费看| 免费不卡的大黄色大毛片视频在线观看| 日韩精品免费视频一区二区三区 | 国产91av在线免费观看|