• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    一種新型紡錘狀α-Fe2O3納米晶的合成、表征及其表面性能

    2010-03-06 04:44:18詹擁共陳啟元尹周瀾李莉莉蔡炳新
    物理化學(xué)學(xué)報 2010年11期
    關(guān)鍵詞:湖南大學(xué)化工學(xué)院中南大學(xué)

    詹擁共 陳啟元 尹周瀾 李莉莉 蔡炳新,*

    (1中南大學(xué)化學(xué)化工學(xué)院,長沙 410083; 2湖南大學(xué)化學(xué)化工學(xué)院,長沙 410082)

    Transition metal oxides have attracted significant attention in a variety of fields because of their unique structures and properties[1-4].In particular,the performance can be significantly enhanced by downsizing to nanometer scale according to recent research[5-7].Ferric oxides,the focus of this research,have a broad range of applications[8-17],especially in the cancer tumor detection[16],and selective separation and detection of bimolecular due to the apparent simplicity of postsynthesis surface functionalization[17].Stability of the chemical interaction between functional molecules and support is crucial for most medical applications because the support is the key to tracking or targeting treatments that the functional molecule is to perform[18].As a result,it is im-portant to shape-controlled synthesize ferric oxide nanostructures for the enhancement the interaction between functional molecules and ferric oxide nanostructures.

    In recent years,a number of methods have been developed to produce ferric oxide nanocrystals possessing enigmatic morphogenesis[19-26].However,in both cases,the shape effects on their applications in surface functionalization have rarely been explored.Herein we report a new approach to the synthesis of novel spindle-like α-Fe2O3nanocrystals.In our synthetic strategy,the morphology and structure can be jointly controlled by tuning the fraction of inorganic salt and organic template(IS-OT)in the extremely low precursor concentration reaction system,and the evaporation-induced self-assembly(EISA)method has been employed to accelerate the reaction and recover the synthesized α-Fe2O3with high yields while preserving favorable shape and structure.The spindle-like morphology of the α-Fe2O3nanocrystals synthesized by IS-OT double control self-assembly exhibits much enhanced the chemical interaction between α-Fe2O3nanocrystals and the surface functionalization agent:dopamine (DA).Moreover,this strategy can be extended to synthesizing other transition metal oxide materials and complex oxides with special nanostructures.

    In the soft template methods,surfactants have been used to organize silica into different forms[27-31].However,the transition metal oxide nanomaterials are more difficult to synthesize than silica nanomaterials because the transition metal oxide precursors are more reactive to hydrolysis and condensation compared to the precursors of silica,leading to the formation of undesirable non-uniform structures.Thus,the hydrolytic rate of the precursors is a very important factor to form the transition metal oxide nanomaterials.In this study,the rate of hydrolysis of the ferric oxide precursor can be strictly controlled by adjusting two more important affecting factors.Firstly,from the viewpoint of chemical reaction kinetics,the rate of chemical reaction is directly proportional to the reactant concentration,so the hydrolytic rate of the ferric oxide precursor is confrollable by varying the precursor concentration(in this study,the molar ratio of ferric nitrate to H2O is 1.2∶11103.4).Secondly,appropriate precipitant is also essentially needed for the control of the hydrolytic rate of the ferric oxide precursor.In this case,urea is superior to other conventional precipitants such as sodium hydroxide and aqueous ammonia.The additions of sodium hydroxide and aqueous ammonia in the reaction system only cause the formation of disordered structures.The slowly strengthened alkalescence generated by the hydrolysis of urea rendered the perfect adjustment of hy-drolytic rate of ferric nitrate.

    The nucleation has been regulated by inorganic salt and organic template double control self-assembly.Recently,Jia et al.[24,26]found that the shape of nanomaterials can be influenced by the presence of phosphate and sulphate in the hydrothermal method.In our approach,magnesium nitrate has been used to regulate the structure of the synthesized hematite.Besides direct influence,we think that the structures of hematite can be indirectly influenced by magnesium nitrate through regulating the structureofcetyltrimethyl-ammoniumbromide(CTAB)micelles. Obviously,the template micellar structure is one of the main factors influencing the shape of synthesized materials in the soft template methods.On the other hand,the micellar aggregation parameters of cationic quaternary ammonium surfactants,such as translational diffusion coefficient of micelle,hydrodynamic radius,ionization fraction,and aggregation number,are greatly influenced by ionic strength[32].So the presence of magnesium nitrate can influence the structure of CTAB micelles and ultimately influence the structure of the synthesized hematite.

    It is worth pointing out that the reaction is very difficult to be carried out in such low ferric nitrate concentration,and conventional techniques(such as centrifugation or filtration)are ineffective at recovering the sample synthesized by such low concentration reaction system.EISA is an efficient pathway to the preparation of nanometer-scale materials[33-40].We had used a modified EISA method in a previous study for synthesizing novel macroporous silica cages with tailoring pore architecture,and found that EISA method can accelerate the reaction and allow successful recovery of materials with high yields while preservingfavorableshapeandstructure[41].SotheEISAmethodwasused to promote the reaction and recover the synthesized products in this study.It is remarkable that two types of ferric oxide singlenanocrystals with different morphologies are synthesized in this study(Scheme 1).The synthesized samples are designated as NFO-1(with magnesium nitrate in the reaction system)and NFO-2(without magnesium nitrate in the reaction system).

    1 Experimental

    1.1 Chemicals

    The following chemicals were purchased and used as received without further purification.Cetyltrimethylammonium bromide (AR),ferric nitrate(Fe(NO3)3·9H2O,AR),urea(AR),magnesium nitrate(AR),and ethanol(AR)were purchased from Sinopharm Chemical Reagent Co.,Ltd.Deionized water was used in all experiments.

    1.2 Synthesis

    The α-Fe2O3nanocrystals(NFO-1)were synthesized as follows:0.4815 g Fe(NO3)3·9H2O and 0.1486 g Mg(NO3)2were dissolved in deionized water(200 mL)before adding CTAB(1.0983 g)and urea(CO(NH2)2,1.1926 g)under stirring for 10 min to form a clear solution.The reaction mixture was kept static reaction for 24 h at room temperature(23℃).The overall mixture composition(molar ratio)was 1.2 Fe(NO3)3∶1.0 Mg(NO3)2∶3.0 CTAB∶20.0 CO(NH2)2∶11103.4 H2O.The mixture was then allowed to age in the airproofed Teflon flask at 85℃under static condition for 24 h.After aged,the mixture was transferred into a beaker and concentrated at 60℃(EISA).When little liquid was remained,the resulted red solid was washed with ethanol(100 mL×2)to remove the surfactants and collected through centrifugation and dried at room temperature.The remainder surfactants were removed by calcinations at 650℃ for 1 h.NFO-2 was synthesized using the NFO-1 synthesis system,except no addition of magnesium nitrate.

    Scheme 1 Schematic illustration of the IS-OT double control self-assembly process of ferric oxide single-nanocrystalsTo employ ferric nitrate as the source of the ferric oxide,the hydrolysis of ferric nitrate with the extremely low concentration was initiated through the hydrolysis of urea. The condensations of nuclei were controlled by the presence of the inorganic salt(magnesium nitrate)and organic template(CTAB).After aging withstaticcondition,the productswererecoveredviaevaporation-induced self-assembly(EISA)method.The resulting synthesis red solid was washed with ethanol to remove the surfactants and collected through centrifugation and dried at room temperature.The materials were then heat treated at high temperatures to promote crystallization.

    1.3 Characterization

    XRD patterns were obtained with a Bruker D8-advance diffractometer by using Cu Kαradiation(40 kV,40 mA)with a step width of 0.01°(2θ)and an acquisition time of 4 s per step.X-ray photoelectron spectroscopy(XPS)measurement was performed on a PHI5500ESCA analyzer.The main parameters were as follows:Mg Kα,200 W,vacuum~10-7Pa.For Raman measurements,a confocal microprobe Raman instrument(RamLab-010, Jobin Yvon Horiba,France)was used.A 632.8 nm He-Ne laser excitation(0.1 mW)and a 50×long working-distance objective (8 mm)were used in this work.The width of the slit and the size of the pinhole were set as 100 and 1000 μm,respectively.Scanning electron microscopy(SEM)images were obtained on JEOL JSM-6700F electron microscope at 5 kV.The samples were first dispersed in ethanol and then were collected using copper grids covered with carbon films for analysis with gold coating. High-resolution transmission electron microscopy(HRTEM) experiments were performed on a JEOL JEM-3010F electron microscope with an acceleration voltage of 300 kV.

    1.4 Electrochemical experiments

    Electrochemical experiments were performed on a CHI 660C electrochemical analyzer(CH Instruments,Shanghai Chenhua Instrument Corporation,China)with a conventional three-electrode cell.The working electrode used was glassy carbon electrode(Aida Technology Limited Corp in Tianjin,3 mm in diameter).A platinum wire and a saturated calomel electrode(SCE) were used as the counter electrode and the reference electrode, respectively.Prior to each voltammetric experiment,the dissolved oxygen in solution was removed with purified nitrogen.

    2 Results and discussion

    It is necessary to confirm the chemical composition of NFO-1 considering that magnesium nitrate is added in the reaction system.The energy-dispersive X-ray(EDX)analysis(Fig.1b)confirms the presence of oxygen and ferric elements and the absence of magnesium element.X-ray photoelectron spectroscopy (XPS)also shows the presence of Fe and O components in the NFO-1(Fig.1a).The results of Fe 2p1/2,Fe 2p3/2,and O 1s electron binding energies are 729.7,716.2,and 535.1 eV,which are very similar to the values recorded in the literature[42-43].During the hydrolysis of urea,a pH favorable for the formation of α-Fe2O3single-crystal structure can be achieved,while magnesium nitrate can not be hydrolyzed in such pH condition.So the magnesium nitrate can be removed during the further treatment.Raman spectroscopy is the important technique that could be effectively used to characterize different types of iron oxides.As shown in Fig.1c,which exhibits five strong resonant peaks at about 222,287,408,494,and 608 cm-1in the range of 200-700 cm-1,the positions of the peaks are in good agreement with the typical frequencies observed from α-Fe2O3[44].The wide-angle powder X-ray diffraction(XRD)is another effective method for confirming the structure of NFO-1.As shown in Fig.1d,several well-resolved diffraction peaks are clearly observed in the range of 20°-70°,which can be indexed as(012),(104),(110),(113), (024),(116),(214),and(300)reflections of α-phase of Fe2O3[45-47]. The analysis results reveal that NFO-1 possesses the crystalline α-phase of Fe2O3.

    We have further investigated the morphological structure of NFO-1 by SEM,TEM,and the selected area electron diffraction (SAED).As shown in Fig.2(a,b),NFO-1 possesses not only a very unique spindle-like morphology but also very uniform distribution in size.The average dimensions of these nanoparticles are 439 nm in long axis and 299 nm in short axis,and long/short axis ratios is 1.5(see Supporting Information(available free of charge via the internet at http://www.whxb.pku.edu.cn),Table S1).The information about the crystal can be derived from the highresolutionTEM(HRTEM)images.Fig.2(c-e)shows HRTEM images taken from the areas labeled c-e in a high-magnification TEM image of a separate NFO-1 particle(Fig.2b,the upper left inset,see Supporting Information,Fig.S1);they respectively show the lattice structures at the junction between different protuberances,the tip of the protuberance and the particle.They all clearly show lattice fringes that indicate crystallinity of the entire particle.

    Fig.1 XPS(a),EDX(b),Raman(c)spectra,and XRD pattern(d)of NFO-1 after calcination at 650℃

    The ideal spindle-like shape of NFO-1 was extremely sensitive to the synthetic conditions,especially the age time and the presence of Mg(NO3)2.In order to understand the formation process of NFO-1,the samples of NFO-11 and NFO-12 were synthesized by varying the crystallization time in the NFO-1 synthesis system(Fig.3).With the prolongation of the crystallization time,the nanprotuberances in the centre of particles grow up to be horn-like outlines,while the highly ordered crystalline walls can be kept(see Supporting Information,Figs.S2 and S3).

    Besides the influence of the crystallization time,the morphology and structure of NFO-1 can also be greatly affected by the presence of magnesium nitrate.In order to investigate the effect of magnesium nitrate on the morphology and structure of NFO-1,NFO-2wassynthesizedbasedonthesameprescriptionasNFO-1 except the addition of magnesium nitrate(Fig.4).As shown in Fig.4(a,b),NFO-2 contains spherical or ellipsoidal shape with uniform size(about 35 nm,see Supporting Information,Table S2).Comparing Fig.4 to Fig.1,it is clearly showed that the morphology of the synthesized NFO-2 is different from NFO-1.To obtain the crystal information of NFO-2,5 nanoparticles are randomly chosen from Fig.4b and characterized using HRTEM, and HRTEM images confirm the single-crystallinity of NFO-2 (Fig.4(c-g),and see Supporting Information,Fig.S4),and the XRD pattern reveals that NFO-2 also possesses the crystalline αphase of Fe2O3(Fig.4h).The observation suggests that the morphology and structure of the synthesized samples have been clearly influenced by magnesium nitrate and the mechanism for the formation of NFO-1 may involve the participation of magnesium nitrate.

    Under the magnesium nitrate and CTAB double control,there are two possible routes to form NFO-1 nanocrystals(Fig.5). Route I:during the nucleation of Fe2O3species,two types of Fe2O3nuclei had been formed.The small nuclei were adsorbed on the surface of the large nuclei,and the protuberances were formed by the small nucleus.Route II:the protuberances directly grown in the centre of particles.Because of the absence of protuberances on the surface of the tip,Route II may be more possible than Route I.

    The method described herein is not limited to the synthesis of single α-Fe2O3nanocrystals,other novel transition metal oxide nanocrystals and complex oxides,such as Mn3O4[48],Co3O4,CuO, and SiO2/Fe2O3,are also applicable in the NFO-2 synthesis system(see Supporting Information,Fig.S5,Fig.S6,and Fig.S7). The results reveal that the self-assembling actions of precursors are controllable in the extremely low precursor concentration re-action system and this method could be extended to synthesize other novel nanomaterials.

    Fig.2 SEM and TEM images of NFO-1(a)SEM image;(b)low-magnification TEM image,The inset shows the highmagnification TEM image of a separate NFO-1 particle,scale bar is 100 nm; (c-e)HRTEM images recorded in different regions in the upper inset of b showing the well-defined single nanocrystalline nature

    Fig.3 SEM images of(a)NFO-1,(b)NFO-11,(c)NFO-12crystallization time:(a)24 h,(b)48 h,(c)72 h

    Fig.4 (a)Low-magnification SEM image,showing the largescale synthesis of NFO-2,(b)low-magnification TEM image of NFO-2,(c-g)HRTEM images recorded in different regions in(b),showing the single crystalline structure,(h)wideangle powder XRD pattern of NFO-2Scale bars in Fig.4(c-g)are 2 nm.

    Interestingly,the obtained α-Fe2O3nanocrystals with different morphologies and structures exhibited obviously different surface activities.We choose dopamine(DA)as the surface functional molecule to investigate the chemical interaction between α-Fe2O3nanocrystals and the surface functionalization agent because DA is the important anchor molecule to immobilize the functional molecules on the iron oxide[49].Fig.6a shows the electrochemical responses of DA at the bare and the single α-Fe2O3nanocrystals modified glassy carbon(GC)electrode in phosphate buffer solution at pH 7.0.As shown in Fig.6a,curve GC shows a cyclic voltammogram of the bare glassy carbon electrode at a scan rate of 20 mV·s-1.A weak oxidation peak at 404.3 mV and a weak reduction peak at 18.6 mV can be observed(ΔEp-Bare=385.7 mV),which reveals that there is an electrochemical response of dopamine at the bare GC electrode.But in curve NFO-2,at the NFO-2 modified glassy carbon electrode with the anodic peak potential shifting negatively to 478.6 mV,the corresponding cathodic peak potential is-12.9 mV and ΔEp-NFO-2=491.4 mV.It indicates that the electrochemical redox reaction of dopamine at the NFO-2 modified glassy carbon electrode is more difficult to carry out than that at the bare glassy carbon electrode.However, the cyclic voltammogram of NFO-1 modified glassy carbon electrode(Fig.6a,curve NFO-1)shows a different electrochemical response towards DA from that of the NFO-2 modified glassy carbon electrode.Comparing with the bare and NFO-2 modified glassy carbon electrodes,the remarkable enhancement in the peak currents shows promotional effects of NFO-1.An oxidation peak at 282.9 mV and a reduction peak at 87.1 mV (ΔEp-NFO-1=195.7 mV)are clearly observed.These results reveal that the electron transfer velocity on the surface of NFO-1 is faster than that on the surface of NFO-2 and the better reversibility of the electrode reaction on the surface of NFO-1 than the latter,and a firmer attachment of DA was achieved in the surface of NFO-1.Commonly,the surface effects of nanomaterials will be strengthened with the decrease of particle size.But in this study,NFO-2 with smaller particle size exhibited weaker surface effects than NFO-1.We presume that the special spindlelike morphology of NFO-1 may lead to this result.Because of the presence of nanoprotuberances in the mid section of particles,the appropriate active sites may be available for DA sorption,benefiting to the enhanced chemical interaction between substrate and DA.This hypothesis can be confirmed by the CV experiments of NFO-11 and NFO-12.The CV experiments were carried out under similar experimental conditions,and the results were both almost similar to NFO-2.With the prolongation of the age time,the nanprotuberances of NFO-11 and NFO-12 grew up to be horn-like outlines,and NFO-11 and NFO-12 could not keep the special spindle-like morphology.So the samples could not provide appropriate active sites for DA sorption.

    Fig.5 Possible formation and growth process of NFO-1Insets are TEM images from Fig.3.

    Fig.6 (a)Cyclic voltammograms obtained for DA on GC electrode,NFO-1 and NFO-2 modified GC electrodes; (b)continuous cyclic voltammograms obtained for DA at NFO-1 modified GC electrodeOne mg NFO(NFO-1 or NFO-2)was ultrasound dispersed in ethanol(2 mL) for 10 min.Then 10 μL of this suspension was coated on GC and dried.The electrochemical responses of DA at the bare and the NFO-1 mesoporous single nanocrystals modified GC were tested in pH 7.0 phosphate buffer solution (1.0×10-4mol DA was added).

    The types of interaction between NFO-1 and dopamine have been confirmed by a continuous CV experiment of NFO-1 modified glassy carbon electrode(Fig.6b).Seen from continuous cyclic voltammograms,it is found that the oxidation peak current of the first cycle is higher than that of the second cycle and after the third cycle the peak currents tend to be stable,which reveals that the adsorption process of oxidation state of dopamine controls the process of electrode reaction.While the reduction peak current is almost unchanged after several cycles,this indicates that the diffusion process of reduction state of dopamine controls the process of electrode reaction.

    3 Conclusions

    In conclusion,the novel α-Fe2O3nanocrystals(NFO-1)with crystalline structures have been synthesized by IS-OT double control self-assembly method in the extremely low concentration system.The obtained α-Fe2O3nanocrystals with different shapes exhibited obviously different surface activities.The capability of surface functionalization of NFO-1 is obviously enhanced because of its special spindle-like morphology.In addition,the synthesis method described herein is also suitable for the synthesis of other transition metal oxide single nanocrystals (such as Mn3O4,Co3O4,and CuO)and complex oxides(Fe2O3/ SiO2).The action mechanism,in which magnesium nitrate or other inorganic salts influence the morphology and structure of transition metal oxide single nanocrystals in the soft template synthesis process,will be an interesting research worth pursuing.

    Supporting Information Available:free of charge via the internet at http://www.whxb.pku.edu.cn.

    1 Lin,Y.;Wu,S.;Hung,Y.;Chou,Y.;Chang,C.;Lin,M.;Tsai,C.; Mou,C.Chem.Mater.,2006,18:5170

    2 Yada,M.;Ohya,M.;Machida,M.;Kijima,T.Langmuir,2000,16: 4752

    3 Nelson,P.;Elliott,J.M.;Attard,G.S.;Owen,J.R.Chem.Mater., 2002,14:524

    4 Teng,X.;Han,W.;Ku,W.;Hücker,M.Angew.Chem.Int.Edit., 2008,47:2055

    5 Srivastava,D.N.;Perkas,N.;Gedanken,A.;Felner,I.J.Phys. Chem.B,2002,106:1878

    6 Jiao,F.;Bruce,P.G.Angew.Chem.Int.Edit.,2004,43:5958

    7 Jiao,F.;Jumas,J.C.;Womes,M.;Chadwick,A.V.;Harrison,A.; Bruce,P.G.J.Am.Chem.Soc.,2006,128:12905

    8 Epling,W.S.;Hoflund,G.B.;Weaver,J.F.;Tsubota,S.;Haruta, M.J.Phys.Chem.,1996,100:9929

    9 Pickard,J.M.;Jones,E.G.Energy&Fuels,1997,11:1232

    10 Lai,J.;Shafi,K.V.P.M.;Loos,K.;Ulman,A.;Lee,Y.;Vogt,T.; Estournès,C.J.Am.Chem.Soc.,2003,125:11470

    11 Wu,C.;Yin,P.;Zhu,X.;Ouyang,C.;Xie,Y.J.Phys.Chem.B, 2006,110:17806

    12 Tang,B.;Wang,G.;Zhuo,L.;Ge,J.;Cui,L.Inorg.Chem.,2006, 45:5196

    13 Yamada,K.;Mukaihata,N.;Kawahara,T.;Tada,H.Langmuir, 2007,23:8593

    14 Zhong,Z.;Ho,J.;Teo,J.;Shen,S.;Gedanken,A.Chem.Mater., 2007,19:4776

    15 Han,L.;Shan,Z.;Chen,D.;Yu,X.;Yang,P.;Tu,B.;Zhao,D. J.Colloid Interface Sci.,2008,318:315

    16 Kenning,G.G.;Rodriguez,R.;Zotev,V.S.;Moslemi,A.;Wilson, S.;Hawel,L.;Byus,C.;Kovach,J.S.Rev.Sci.Instrum.,2005,76: 014303

    17 Perez,J.M.;Simeone,F.J.;Saeki,Y.;Josephson,L.;Weissleder, R.J.Am.Chem.Soc.,2003,125:10192

    18 Shultz,M.D.;Reveles,J.U.;Khanna,S.N.;Carpenter,E.E. J.Am.Chem.Soc.,2007,129:2482

    19 Rockenberger,J.;Scher,E.C.;Alivisatos,A.P.J.Am.Chem.Soc., 1999,121:11595

    20 Woo,K.;Lee,H.J.;Ahn,J.P.;Park,Y.S.Adv.Mater.,2003,15: 1761

    21 Wang,X.;Zhuang,J.;Peng,Q.;Li,Y.Nature,2005,437:121

    22 Deng,H.;Li,X.;Peng,Q.;Wang,X.;Chen,J.;Li,Y.Angew. Chem.Int.Edit.,2005,44:2782

    23 Vayssieres,L.;Sathe,C.;Butorin,S.M.;Shuh,D.K.;Nordgren,J.; Guo,J.Adv.Mater.,2005,17:2320

    24 Jia,C.;Sun,L.;Yan,Z.;You,L.;Luo,F.;Han,X.;Pang,Y.; Zhang,Z.;Yan,C.Angew.Chem.Int.Edit.,2005,44:4328

    25 Sun,S.;Zeng,H.;Robinson,D.B.;Raoux,S.;Rice,P.M.;Wang, S.;Li,G.J.Am.Chem.Soc.,2004,126:273

    26 Jia,C.;Sun,L.;Luo,F.;Han,X.;Heyderman,L.;Yan,Z.;Yan,C.; Zheng,K.;Zhang,Z.;Takano,M.;Hayashi,N.;Eltschka,M.; Kl?ui,M.;Rüdiger,U.;Kasama,T.;Cervera-Gontard,L.;Dunin-Borkowski,R.E.;Tzvetkov,G.;Raabe,J.J.Am.Chem.Soc., 2008,130:16968

    27 Lu,Y.;Fan,H.;Stump,A.;Ward,T.L.;Rieker,T.;Brinker,C.J. Nature,1999,398:223

    28 Wu,Y.;Cheng,G.;Katsov,K.;Sides,S.W.;Wang,J.;Tang,J.; Fredrickson,G.H.;Moskovits,M.;Stucky,G.D.Nature Mater., 2004,3:816

    29 Che,S.;Liu,Z.;Ohsuna,T.;Sakamoto,K.;Terasaki,O.;Tatsumi, T.Nature,2004,429:281

    30 Koganti,V.R.;Dunphy,D.;Gowrishankar,V.;McGehee,M.D.; Li,X.;Wang,J.;Rankin,S.E.Nano Lett.,2006,6:2567

    31 Zhang,A.;Zhang,Y.;Xing,N.;Hou,K.;Guo,X.Chem.Mater., 2009,21:4122

    32 Bieniecki,A.;Wilk,K.A.;Gapiński,K.J.Phys.Chem.B,1997, 101:871

    33 Zhang,Y.;Raman,N.;Bailey,J.K.;Brinker,C.J.;Crooks,R.M. J.Phys.Chem.,1992,96:9098

    34 Yang,P.;Zhao,D.;Margolese,D.I.;Chmelka,B.F.;Stucky,G.D. Nature,1998,396:152

    35 Brinker,C.J.;Lu,Y.;Sellinger,A.;Fan,H.Adv.Mater.,1999,11: 579

    36 Yang,P.;Zhao,D.;Margolese,D.I.;Chmelka,B.F.;Stucky,G.D. Chem.Mater.,1999,11:2813

    37 Alberius,P.C.A.;Frindell,K.L.;Hayward,R.C.;Kramer,E.J.; Stucky,G.D.;Chmelka,B.F.Chem.Mater.,2002,14:3284

    38 Bartl,M.H.;Puls,S.P.;Tang,J.;Lichtenegger,H.C.;Stucky,G. D.Angew.Chem.,Int.Edit.,2004,43:3037

    39 Jiang,X.;Brinker,C.J.J.Am.Chem.Soc.,2006,128:4512

    40 Pang,J.;Xiong,S.;Jaeckel,F.;Sun,Z.;Dunphy,D.;Brinker,C.J. J.Am.Chem.Soc.,2008,130:3284

    41 Zhan,Y.;Cai,B.;Wang,B.;Huang,X.;Zhang,P.;Li,L.;Wu,Z.; Yin,Z.;Chen,Q.J.Mater.Chem.,2008,18:5967

    42 Li,Y.;Ge,X.;Zhang,Z.;Ye,Q.Chem.Mater.,2002,14:1048

    43 Brezesinski,T.;Groenewolt,M.;Antonietti,M.;Smarsly,B. Angew.Chem.,Int.Edit.,2006,45:781

    44 Li,S.;Zhang,H.;Wu,J.;Ma,X.;Yang,D.Cryst.Growth Des., 2006,6:351

    45 Chen,M.;Liu,J.;Sun,S.J.Am.Chem.Soc.,2004,126:1950

    46 Cao,M.;Liu,T.;Gao,S.;Sun,G.;Wu,X.;Hu,C.;Wang,Z. Angew.Chem.Int.Edit.,2005,44:4197

    47 Cao,H.;Wang,G.;Zhang,L.;Liang,Y.;Zhang,S.;Zhang,X. ChemPhyChem,2006,7:1897

    48 Zhang,P.;Zhan,Y.;Cai,B.;Hao,C.;Wang,J.;Liu,C.;Meng,Z.; Yin,Z.;Chen,Q.Nano Res.,2010,3:235

    49 Xu,C.;Xu,K.;Gu,H.;Zheng,R.;Liu,H.;Zhang,X.;Guo,Z.;Xu, B.J.Am.Chem.Soc.,2004,126:9938

    猜你喜歡
    湖南大學(xué)化工學(xué)院中南大學(xué)
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    湖南中煙聯(lián)合湖南大學(xué)揭示植物維持代謝平衡的機制
    國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    中南大學(xué)建筑與藝術(shù)學(xué)院作品選登
    中南大學(xué)教授、博士生導(dǎo)師
    安全(2021年4期)2021-05-19 07:56:52
    【鏈接】國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    中南大學(xué)校慶文創(chuàng)產(chǎn)品設(shè)計
    湖南包裝(2020年6期)2021-01-20 02:02:10
    A Study on the Cohesion of English and ChineseBlessing Short Messages
    《化工學(xué)報》贊助單位
    艾米莉·狄金森的自然:生態(tài)批評的解讀
    中文资源天堂在线| 一级爰片在线观看| 日韩三级伦理在线观看| 黄色配什么色好看| 丝瓜视频免费看黄片| 啦啦啦视频在线资源免费观看| 亚洲天堂av无毛| 五月开心婷婷网| 老女人水多毛片| 亚洲欧美中文字幕日韩二区| 国国产精品蜜臀av免费| 中文天堂在线官网| 国产av一区二区精品久久 | 黄色怎么调成土黄色| 又大又黄又爽视频免费| 国产永久视频网站| 午夜福利在线观看免费完整高清在| 欧美97在线视频| a级毛色黄片| 能在线免费看毛片的网站| 免费不卡的大黄色大毛片视频在线观看| av天堂中文字幕网| 精品久久久噜噜| 色婷婷久久久亚洲欧美| 丰满乱子伦码专区| av国产免费在线观看| 国产欧美亚洲国产| 亚洲精品一区蜜桃| 男人和女人高潮做爰伦理| 成人影院久久| 自拍偷自拍亚洲精品老妇| 国产白丝娇喘喷水9色精品| 亚洲国产毛片av蜜桃av| 国产精品久久久久久精品电影小说 | 午夜免费男女啪啪视频观看| 香蕉精品网在线| 日本欧美国产在线视频| 搡老乐熟女国产| 精品国产三级普通话版| 欧美区成人在线视频| h视频一区二区三区| 国产69精品久久久久777片| 精品少妇久久久久久888优播| 草草在线视频免费看| 亚洲欧美一区二区三区黑人 | 亚洲天堂av无毛| 国产黄片美女视频| kizo精华| 亚洲精品一区蜜桃| 国产 精品1| 久久精品夜色国产| 一级毛片久久久久久久久女| 又大又黄又爽视频免费| 国产熟女欧美一区二区| 免费看不卡的av| 欧美 日韩 精品 国产| 一区二区三区免费毛片| 在线观看国产h片| 亚洲av.av天堂| 日韩人妻高清精品专区| 看十八女毛片水多多多| 久久久a久久爽久久v久久| 欧美精品亚洲一区二区| 久久人人爽av亚洲精品天堂 | 成人二区视频| 精品一区二区三区视频在线| 搡老乐熟女国产| 日本vs欧美在线观看视频 | 永久网站在线| 高清视频免费观看一区二区| 又爽又黄a免费视频| 最近2019中文字幕mv第一页| 欧美zozozo另类| 免费久久久久久久精品成人欧美视频 | 天天躁日日操中文字幕| 色哟哟·www| 国产一区二区三区av在线| 午夜福利在线观看免费完整高清在| 亚洲久久久国产精品| 中文字幕人妻熟人妻熟丝袜美| 建设人人有责人人尽责人人享有的 | 午夜激情久久久久久久| 久久精品国产自在天天线| 日韩人妻高清精品专区| 在线天堂最新版资源| 亚洲精品一二三| 99热这里只有是精品50| 亚洲国产成人一精品久久久| 国产片特级美女逼逼视频| 观看美女的网站| 大片电影免费在线观看免费| 国产成人免费观看mmmm| 国产午夜精品久久久久久一区二区三区| 亚洲av日韩在线播放| 久久人妻熟女aⅴ| 国产在线视频一区二区| 欧美一级a爱片免费观看看| 国产 一区 欧美 日韩| 欧美3d第一页| a 毛片基地| 丰满少妇做爰视频| 国产黄片视频在线免费观看| 伦理电影免费视频| 亚洲国产精品专区欧美| 亚洲精品,欧美精品| 永久网站在线| 久久国产精品大桥未久av | 成人一区二区视频在线观看| 免费看av在线观看网站| 亚洲欧美中文字幕日韩二区| 日韩亚洲欧美综合| 好男人视频免费观看在线| 伊人久久精品亚洲午夜| 草草在线视频免费看| 午夜福利高清视频| 一个人看视频在线观看www免费| 干丝袜人妻中文字幕| 国产成人aa在线观看| 啦啦啦视频在线资源免费观看| 丰满迷人的少妇在线观看| 日韩大片免费观看网站| 精华霜和精华液先用哪个| 日韩人妻高清精品专区| 国产高清不卡午夜福利| 亚洲在久久综合| 成年女人在线观看亚洲视频| 新久久久久国产一级毛片| 蜜桃亚洲精品一区二区三区| 最近2019中文字幕mv第一页| 日本一二三区视频观看| 欧美xxxx黑人xx丫x性爽| 91精品国产国语对白视频| 丰满乱子伦码专区| a级毛片免费高清观看在线播放| 丰满人妻一区二区三区视频av| 亚洲欧美成人综合另类久久久| 国产亚洲5aaaaa淫片| 交换朋友夫妻互换小说| 人人妻人人澡人人爽人人夜夜| 在线精品无人区一区二区三 | 汤姆久久久久久久影院中文字幕| 亚洲精品亚洲一区二区| 久久热精品热| 男的添女的下面高潮视频| 欧美最新免费一区二区三区| 久久久久久久久久成人| 久久婷婷青草| 国产色婷婷99| 一个人免费看片子| 久久久久久久国产电影| 在线 av 中文字幕| 亚洲精品国产av成人精品| 久久午夜福利片| 国产成人免费无遮挡视频| 91精品国产国语对白视频| av女优亚洲男人天堂| 国产精品一二三区在线看| 午夜激情福利司机影院| 国产精品一区www在线观看| 日本欧美国产在线视频| 女性被躁到高潮视频| 99久久精品国产国产毛片| 最近手机中文字幕大全| 久久韩国三级中文字幕| 午夜免费鲁丝| 观看美女的网站| 久久综合国产亚洲精品| 久久久久人妻精品一区果冻| 久久久久久久精品精品| 狂野欧美激情性xxxx在线观看| 亚洲av福利一区| 啦啦啦在线观看免费高清www| 日本vs欧美在线观看视频 | av播播在线观看一区| 一区二区三区精品91| 黄片wwwwww| 精品国产乱码久久久久久小说| av国产免费在线观看| 精品国产乱码久久久久久小说| 色吧在线观看| 亚州av有码| 九九久久精品国产亚洲av麻豆| 少妇丰满av| 少妇人妻久久综合中文| 亚洲内射少妇av| 丰满乱子伦码专区| 国产高清国产精品国产三级 | 久久精品国产鲁丝片午夜精品| 久久精品国产a三级三级三级| 青春草视频在线免费观看| 国产在线男女| 在线播放无遮挡| 日韩欧美一区视频在线观看 | 高清在线视频一区二区三区| 高清在线视频一区二区三区| 国产一区有黄有色的免费视频| 99久久精品一区二区三区| 亚洲第一av免费看| 性色av一级| 久久久久久久大尺度免费视频| 97在线人人人人妻| 亚洲人成网站高清观看| 在线观看一区二区三区激情| 丝瓜视频免费看黄片| 精品亚洲成国产av| 精品久久久噜噜| 成年女人在线观看亚洲视频| 91狼人影院| 中国美白少妇内射xxxbb| 久久鲁丝午夜福利片| 大香蕉久久网| 九草在线视频观看| 久久女婷五月综合色啪小说| 国产av精品麻豆| 亚洲电影在线观看av| 国产高潮美女av| 成人毛片60女人毛片免费| 成年美女黄网站色视频大全免费 | 精品久久久精品久久久| 国产片特级美女逼逼视频| 国产中年淑女户外野战色| 欧美3d第一页| 国产久久久一区二区三区| 久久久久久久亚洲中文字幕| 日韩电影二区| 99国产精品免费福利视频| 黄色日韩在线| 午夜福利在线观看免费完整高清在| 交换朋友夫妻互换小说| 亚洲欧美一区二区三区黑人 | 五月天丁香电影| 乱系列少妇在线播放| 免费在线观看成人毛片| a级毛色黄片| 久久久久久久久久久丰满| 亚洲av成人精品一区久久| 蜜桃在线观看..| 亚洲久久久国产精品| 免费av不卡在线播放| 国产女主播在线喷水免费视频网站| 亚洲精品久久久久久婷婷小说| 久久精品国产自在天天线| 高清av免费在线| 欧美一区二区亚洲| 亚洲va在线va天堂va国产| 国产精品99久久99久久久不卡 | 亚洲国产色片| 韩国高清视频一区二区三区| 中文字幕免费在线视频6| 免费av不卡在线播放| 国产一区二区三区av在线| 日韩制服骚丝袜av| 精品午夜福利在线看| av一本久久久久| 国产成人a∨麻豆精品| 在线 av 中文字幕| 一级av片app| 国产亚洲av片在线观看秒播厂| 秋霞伦理黄片| 久久av网站| 亚洲成人av在线免费| 国产爱豆传媒在线观看| 观看av在线不卡| 九色成人免费人妻av| 日韩强制内射视频| 好男人视频免费观看在线| 国产精品一区www在线观看| 中文字幕免费在线视频6| 国产色婷婷99| 免费看光身美女| freevideosex欧美| 26uuu在线亚洲综合色| 自拍欧美九色日韩亚洲蝌蚪91 | 18禁裸乳无遮挡动漫免费视频| 激情五月婷婷亚洲| 成人无遮挡网站| 少妇人妻精品综合一区二区| 国产欧美日韩一区二区三区在线 | 深夜a级毛片| 丰满人妻一区二区三区视频av| 美女xxoo啪啪120秒动态图| 卡戴珊不雅视频在线播放| 国产老妇伦熟女老妇高清| 久久久久久久国产电影| 少妇高潮的动态图| 亚洲成人中文字幕在线播放| 最近中文字幕高清免费大全6| 精品人妻熟女av久视频| 老女人水多毛片| 日本黄色日本黄色录像| 1000部很黄的大片| 免费播放大片免费观看视频在线观看| 日韩av免费高清视频| 国产在视频线精品| 蜜桃亚洲精品一区二区三区| 一级毛片aaaaaa免费看小| 午夜福利网站1000一区二区三区| 久久精品人妻少妇| 亚洲伊人久久精品综合| 久久 成人 亚洲| 久久精品久久久久久久性| 国产欧美日韩精品一区二区| 精品酒店卫生间| 久久99蜜桃精品久久| 色哟哟·www| 乱系列少妇在线播放| 国产中年淑女户外野战色| 尤物成人国产欧美一区二区三区| 免费观看在线日韩| 精品久久久久久电影网| 国产视频首页在线观看| 中文字幕精品免费在线观看视频 | 国产视频内射| 国产精品不卡视频一区二区| 日韩人妻高清精品专区| 一级片'在线观看视频| 国内精品宾馆在线| 一个人免费看片子| 久久久久久久久久久免费av| 黄片wwwwww| 啦啦啦视频在线资源免费观看| 免费黄网站久久成人精品| av福利片在线观看| 又大又黄又爽视频免费| 黄色怎么调成土黄色| 色视频www国产| 亚洲第一av免费看| 制服丝袜香蕉在线| 各种免费的搞黄视频| 国产精品久久久久久av不卡| 丝瓜视频免费看黄片| 国产欧美亚洲国产| av国产免费在线观看| 18禁在线播放成人免费| 亚洲精品成人av观看孕妇| 国产亚洲av片在线观看秒播厂| 女人久久www免费人成看片| 欧美日韩视频精品一区| 日韩强制内射视频| 最近的中文字幕免费完整| 亚洲第一av免费看| 老司机影院毛片| 搡女人真爽免费视频火全软件| 久久国产亚洲av麻豆专区| 三级国产精品片| 国产伦理片在线播放av一区| 免费高清在线观看视频在线观看| 黑人猛操日本美女一级片| 我要看黄色一级片免费的| 黄色欧美视频在线观看| 亚洲欧美精品自产自拍| 爱豆传媒免费全集在线观看| 精品久久久久久久末码| 女的被弄到高潮叫床怎么办| 人人妻人人爽人人添夜夜欢视频 | 91精品国产九色| 亚洲精品一二三| 插逼视频在线观看| 久久久久久久久大av| 久久韩国三级中文字幕| 亚洲美女搞黄在线观看| 岛国毛片在线播放| 亚洲精品乱久久久久久| 在线免费十八禁| 中国美白少妇内射xxxbb| 亚洲美女视频黄频| 精品久久久久久久末码| 美女高潮的动态| kizo精华| av在线观看视频网站免费| 夫妻午夜视频| 亚洲国产色片| 又黄又爽又刺激的免费视频.| 人人妻人人澡人人爽人人夜夜| 亚洲成人中文字幕在线播放| 日韩成人av中文字幕在线观看| 久久99热6这里只有精品| 不卡视频在线观看欧美| av国产免费在线观看| 91在线精品国自产拍蜜月| 九九爱精品视频在线观看| 黑丝袜美女国产一区| 亚洲av电影在线观看一区二区三区| 美女高潮的动态| 永久网站在线| 人人妻人人添人人爽欧美一区卜 | 精品酒店卫生间| 欧美精品国产亚洲| 亚洲精品国产av蜜桃| 中文字幕av成人在线电影| 欧美日韩国产mv在线观看视频 | 99九九线精品视频在线观看视频| 99热这里只有是精品50| 少妇被粗大猛烈的视频| 国产精品久久久久成人av| 国产欧美日韩精品一区二区| 国产真实伦视频高清在线观看| 国产成人a∨麻豆精品| 在线观看免费视频网站a站| 亚洲精品久久久久久婷婷小说| 女人十人毛片免费观看3o分钟| 亚洲人成网站高清观看| 91aial.com中文字幕在线观看| 老司机影院成人| 欧美激情极品国产一区二区三区 | 久久久国产一区二区| 男人和女人高潮做爰伦理| 日韩一区二区视频免费看| 纵有疾风起免费观看全集完整版| 精品一区二区免费观看| 搡女人真爽免费视频火全软件| 男男h啪啪无遮挡| 亚洲aⅴ乱码一区二区在线播放| 亚洲精品中文字幕在线视频 | 大片免费播放器 马上看| 成年免费大片在线观看| 亚洲国产精品999| 蜜臀久久99精品久久宅男| 纵有疾风起免费观看全集完整版| 精品久久久久久久久亚洲| 2021少妇久久久久久久久久久| 亚洲人成网站高清观看| 久久久午夜欧美精品| 日韩欧美精品免费久久| 亚洲国产精品999| 亚洲av福利一区| 久久精品国产亚洲网站| 国产在线男女| 久久精品久久久久久噜噜老黄| 高清欧美精品videossex| 人人妻人人爽人人添夜夜欢视频 | 国产在线免费精品| 国产视频首页在线观看| 老师上课跳d突然被开到最大视频| 自拍偷自拍亚洲精品老妇| 一区二区三区乱码不卡18| 国产欧美亚洲国产| 久久ye,这里只有精品| 亚洲第一av免费看| 又大又黄又爽视频免费| 熟女人妻精品中文字幕| 久久久久久久久久久免费av| 亚洲欧洲日产国产| 午夜精品国产一区二区电影| 国产精品一区二区性色av| 色视频在线一区二区三区| 国产免费又黄又爽又色| 国产精品福利在线免费观看| 下体分泌物呈黄色| 免费观看在线日韩| 天天躁日日操中文字幕| 国产毛片在线视频| 伦理电影免费视频| 国产又色又爽无遮挡免| 噜噜噜噜噜久久久久久91| 日韩在线高清观看一区二区三区| 丰满乱子伦码专区| 日本欧美视频一区| 一本色道久久久久久精品综合| 中文在线观看免费www的网站| 99久久人妻综合| h视频一区二区三区| 永久免费av网站大全| 久久人人爽av亚洲精品天堂 | 国产av码专区亚洲av| 校园人妻丝袜中文字幕| 中文字幕制服av| 久久久久久久久久人人人人人人| 十分钟在线观看高清视频www | av国产免费在线观看| 中文字幕精品免费在线观看视频 | 少妇高潮的动态图| 亚洲国产欧美人成| 又黄又爽又刺激的免费视频.| 哪个播放器可以免费观看大片| 久久久色成人| 黄色日韩在线| 久久韩国三级中文字幕| 欧美日本视频| 各种免费的搞黄视频| 如何舔出高潮| 亚洲激情五月婷婷啪啪| 国产免费一区二区三区四区乱码| 在线播放无遮挡| 一级片'在线观看视频| 亚洲人成网站在线播| freevideosex欧美| 婷婷色综合www| 亚洲性久久影院| 伦理电影免费视频| 最近最新中文字幕大全电影3| 精品国产乱码久久久久久小说| 欧美丝袜亚洲另类| 国产男女超爽视频在线观看| 校园人妻丝袜中文字幕| 欧美日本视频| 舔av片在线| 亚洲丝袜综合中文字幕| 一级毛片 在线播放| 精品亚洲乱码少妇综合久久| 成人国产麻豆网| 久久久久久人妻| 3wmmmm亚洲av在线观看| 久热久热在线精品观看| 国产一区二区三区av在线| 性色av一级| 国产精品偷伦视频观看了| 日韩一区二区三区影片| 午夜福利在线在线| 亚洲欧美日韩另类电影网站 | 在线观看三级黄色| 99热这里只有是精品50| 一本色道久久久久久精品综合| 老女人水多毛片| 各种免费的搞黄视频| 久久久久久久亚洲中文字幕| 国产一区亚洲一区在线观看| 久久久久久久亚洲中文字幕| av又黄又爽大尺度在线免费看| 亚洲第一av免费看| 精品午夜福利在线看| 大又大粗又爽又黄少妇毛片口| 一级二级三级毛片免费看| 成人亚洲精品一区在线观看 | 99视频精品全部免费 在线| 少妇人妻精品综合一区二区| 国产精品秋霞免费鲁丝片| 大又大粗又爽又黄少妇毛片口| 精品少妇久久久久久888优播| 欧美三级亚洲精品| 韩国高清视频一区二区三区| 亚洲国产精品专区欧美| 欧美高清成人免费视频www| 少妇猛男粗大的猛烈进出视频| 成人毛片60女人毛片免费| 妹子高潮喷水视频| 国产精品人妻久久久影院| 在线精品无人区一区二区三 | 一区二区三区精品91| 极品少妇高潮喷水抽搐| 青春草亚洲视频在线观看| 精品国产一区二区三区久久久樱花 | 成年人午夜在线观看视频| 亚洲精品日韩av片在线观看| 国产色婷婷99| 有码 亚洲区| av视频免费观看在线观看| 亚洲成人手机| 亚洲欧美日韩无卡精品| 纯流量卡能插随身wifi吗| 看非洲黑人一级黄片| 国产爽快片一区二区三区| 搡女人真爽免费视频火全软件| 久久精品国产鲁丝片午夜精品| 99久久中文字幕三级久久日本| 国产成人a区在线观看| 2018国产大陆天天弄谢| 久久毛片免费看一区二区三区| 中国国产av一级| 不卡视频在线观看欧美| 在线观看免费高清a一片| 波野结衣二区三区在线| 一级毛片我不卡| 亚洲第一区二区三区不卡| 久久久久精品性色| 日韩av不卡免费在线播放| 99热全是精品| 亚洲欧美精品专区久久| 亚洲精品456在线播放app| 亚洲欧美成人综合另类久久久| 老师上课跳d突然被开到最大视频| 国产男人的电影天堂91| 成年女人在线观看亚洲视频| 日韩强制内射视频| 日本黄色日本黄色录像| 午夜老司机福利剧场| 交换朋友夫妻互换小说| 免费在线观看成人毛片| 日韩精品有码人妻一区| 国产伦精品一区二区三区四那| 精品久久久久久久末码| 国产精品偷伦视频观看了| 在线观看一区二区三区激情| 精品少妇久久久久久888优播| 国产女主播在线喷水免费视频网站| 久久久久久人妻| 激情 狠狠 欧美| 国产有黄有色有爽视频| 久热久热在线精品观看| 亚洲国产欧美人成| 最近中文字幕2019免费版| 亚洲av综合色区一区| xxx大片免费视频| 女性生殖器流出的白浆| 日韩一区二区三区影片| 亚洲精品色激情综合| 国产精品一区二区三区四区免费观看| 狂野欧美白嫩少妇大欣赏| 亚洲综合色惰| 国产伦在线观看视频一区| 亚洲国产色片| 日本vs欧美在线观看视频 | 亚洲精品,欧美精品| 国产色爽女视频免费观看| 久久精品久久精品一区二区三区| 国产乱人视频| 免费黄频网站在线观看国产| 我要看日韩黄色一级片| av在线蜜桃| 九九爱精品视频在线观看| 亚洲av电影在线观看一区二区三区| 身体一侧抽搐| 国产爽快片一区二区三区| 亚洲av电影在线观看一区二区三区| 大话2 男鬼变身卡|