• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    甲醇和氨對腺嘌呤水解脫氨機(jī)理的影響

    2010-03-06 04:44:20劉海英孟凡翠丁世良
    物理化學(xué)學(xué)報(bào) 2010年11期
    關(guān)鍵詞:脫氨理學(xué)院腺嘌呤

    劉海英 孟凡翠 李 萍 丁世良

    (1濟(jì)南大學(xué)理學(xué)院,濟(jì)南 250022; 2天津藥物研究院,天津 300193; 3山東大學(xué)物理學(xué)院,濟(jì)南 250100)

    Adenine is an integral part of DNA and RNA,which is involved in base pairing with thymine in DNA and with uracil in RNA.In addition,adenine is also an important part of adenosine triphosphate(ATP)and adenosine diphosphate(ADP)in energy transfer process and cyclic adenosine monophosphate(cAMP) in signal transduction process.Several bases including adenine, guanine,and cytosine undergo slow but measurable loss of their amino groups,i.e.,deamination under physiological conditions in vitro.The deamination of adenine to produce hypoxanthine can cause codon changes in mRNA,which further induces the synthesis of variant protein structures.The base deamination has been investigated extensively[1-9].Almatarneh and coworkers[2]have studied the deamination reaction of cytosine with H2O and OH-by theoretical method.Two pathways for deamination with H2O were found but either pathway was unlikely due to the high barriers.They also have made further investigations on the deaminationofcytosinewithH2O/OH-and2H2O/OH-[3]andfound that all pathways underwent a tetrahedral intermediate and the obtained energy barrier agreed well with the experimental value. Labet et al.[4]have performed a theoretical study on cytosine deamination and they hold that the tautomerization of cytosine or assistant water was necessary for the deamination.They also investigated the deamination mechanism of 5-methylcytosine with H2O in protic medium[5]and that of the radical cation of 2′-deoxycytidine[6].Zhang et al.[7]have studied the hydrolytic deamination of adenine with one to four water molecules at the B3LYP/6-31G(d,p)level.

    In our previous papers,both non-assisted[8]and water-assisted[9]hydrolyses of adenine have been studied and the results indicated that the water assistance could give rise to large decrease of the activation barrier of adenine deamination.As is well known,the surrounding environment plays an important role in many reactions of nucleic acid bases,such as tautomerism[10-11]and deamination[12].The interaction between nucleic acid bases with water[13], alcohol[14],metal cations[15],and other species[16]have been studied extensively.Then we wonder what effects could be caused by the surrounding environment on the reaction of adenine deamination?To our knowledge,no computational studies of the deamination of adenine under ammonia and methanol conditions have been reported.For this reason,we present a theoretical study of the methanol and ammonia assisted hydrolyses of adenine to simulate the hydroxyl group and amino group occurring in amino acid residues.Methanol and ammonia could act as both proton donor and proton acceptor in the reaction processes. The bond rotation steps are omitted since they are not important in this type of reaction[9].

    1 Calculation methods

    All the stationary points including reactants,intermediates, transition states,and products were obtained using B3LYP/6-311G(d,p)method[17-19]and verified by a vibrational frequency analysis at the same level.Zero point vibrational energies(ZPVE) were also determined through frequency analysis.Intrinsic reaction coordinate(IRC)calculations were performed on the transition states to ensure that the transition states were connected with the corresponding two minima.Single-point energy calculations were performed on the previously optimized geometries obtained by the IRC procedure of nTS01(the transition state of amine-imine tautomerization of adenine)to get the total atomic charge variation along the reaction coordinates.

    To test the accuracy of B3LYP/6-311G(d,p)method,we also calculated all the stationary points using G3MP2//B3LYP/6-311G(d,p)methods.G3MP2//B3LYP[20-21]method is a composite scheme based on the three single point energies,i.e.,QCISD(T)/ 6-31G(d),MP2/6-31G(d),and MP2/G3MP2large.The ZPVE corrections obtained by B3LYP/6-311G(d,p)method were used without scaling due to the fact that the ZPVE corrected results agreed well with the experimental values[22].Single point calculations by using polarized continuum model in the integral equation formalism(IEFPCM)method[23-25]were performed on the obtained stationary points to consider the solvent effects,with the relative dielectric constant 78.39 to simulate the aqueous environment. The cavity was built using the all atom model applied on the atomic radii of the UFF force field[26-27].All calculations were performed using Gaussian 03 program[28].

    2 Results and discussion

    In this paper,the prefix“Al”refers to those of methanolassisted system and“n”refers to those of ammonia-assisted system.The atom labels of the studied system are shown in Fig. 1.The optimized geometries of all the stationary points of methanol-assisted and ammonia-assisted mechanisms are shown in Fig.2 and Fig.3,respectively.The relative energy evolution of both methanol and ammonia assisted deaminations of adenine are shown in Fig.4(a)and 4(b),respectively.From Fig.4(a)and 4(b) we can see that the energy differences between B3LYP/6-311G (d,p)and IEFPCM//B3LYP/6-311G(d,p)are less than 13 kJ· mol-1for most of the stationary points.In addition,the difference between the relative energy barriers of these two methods is also small(less than 14 kJ·mol-1).These results reveal that solventeffects play a minor role for the studied systems and thus in the followingsectionwe use G3MP2//B3LYP/6-311G(d,p)to calculate energy values.

    Fig.1 Molecular structures and atom labels of the studied methanol-assisted(a)and ammonia-assisted(b)systems

    2.1 Methanol assisted hydrolytic deamination

    2.1.1 Formation of the tetrahedral intermediate

    In this step a tetrahedral intermediate has been created through the nucleophilic attacking of water molecule.Adenine forms a cyclic complex(AlInt1)with water and methanol molecules,in which three hydrogen bonds exist.AlInt1 is 71.04 kJ·mol-1more stable than the reactants.AlTS12 is the transition state connecting AlInt1 with the tetrahedral intermediate AlInt2.A six-member ring structure forms through the elongation of O16—H17 and O19—H20 bonds and the shortening of N1…H17,C6…O19 and O16…H20 bonds.The relative energy of AlTS12 is 101.58 kJ·mol-1higher than that of reactants.AlInt2 is a tetrahedral structure with one water molecule.There are two hydrogen bonds in AlInt2,one is N1—H17…O16 and the other is O16—H20…O19.The relative energy of AlInt2 is 32.38 kJ·mol-1.

    2.1.2 Detachment of ammonia

    In pathway a(Fig.2),AlInt3a is obtained through the conformational change of AlInt2,which is 9.50 kJ·mol-1more stable than AlInt2.The hydroxyl group of methanol forms two hydrogen bonds,one is O16—H20…N10 and the other is O19—H21…O16.This facilitates the creation of cyclic transition state. AlTS34a is the transition state obtained from AlInt3a.It is a sixmember ring structure through the decreasing of O16…H21 and N10…H20 bond distances and increasing of O19—H21 and O16—H20 bond distances.The relative energy of AlTS34a is 111.88 kJ·mol-1.AlInt4a is the product obtained from AlTS34a, which is the complex of hypoxanthine with ammonia and methanol.The bond length of C6—O19 changes from 0.140 nm in AlInt3a to 0.122 nm in AlInt4a,implying the formation of C=O bond in AlInt4a.AlInt4a has three hydrogen bonds with a lower energy of-59.45 kJ·mol-1compared with reactants.

    In pathway b(Fig.2),AlInt3b is another intermediate obtained through conformation change of AlInt2,in which the methanol also forms two hydrogen bonds but one of them is formed with cyclic N1.AlInt3b is 7.57 kJ·mol-1more stable than AlInt2.In AlTS34b,the hydrogen atom of hydroxyl group O19—H21 transfers to amino group to release ammonia.The methanol moleculedoesnotparticipateinthe formation of the four-member ring transition structure and only forms hydrogen bond with N1—H17,which results in the higher relative energy of AlTS34b(166.14 kJ·mol-1).AlInt4b is the intermediate obtained from AlTS34b with a relative energy of-38.11 kJ·mol-1.AlInt4b is not as stable as AlInt4a,due to the different locations of ammonia and methanol molecules.

    Fig.2 Optimized geometries in methanol-assisted adenine deaminationThe dashed line indicates hydrogen bond.

    Compared the methanol-assisted hydrolyticdeamination mechanism with the water-assisted one[9],we can find that the methanol assistance does not change the reaction mechanism and the preliminary bond distances and bond angles have little difference.Moreover,the activation energies of the two mechanisms are similar(as shown in Table 1).

    2.2 Ammonia assisted hydrolytic deamination

    2.2.1 Tautomerization of adenine

    As for the ammonia-assisted deamination of adenine,the adenine tautomerized from amine type to imine type structure.In this step,firstly,the canonical adenine forms a complex with ammonia and water molecules,in which three hydrogen bonds exist.nInt0 is 54.14 kJ·mol-1more stable than the reactants. Secondly,with the elongation of bond distances of O16—H17, N19—H20,N10—H11 and the shortening of N1…H17,O16…H20,N19…H11,an eight-member ring transition state nTS01 is formed.In nTS01,the ammonia and water molecules act as both proton donor and proton acceptor,which facilitate the proton transfer from exocyclic amine nitrogen to cyclic N1.The activation energy of the transition state nTS01 is as low as 30.37 kJ· mol-1,which indicates that the amine-imine tautomerization of adenine occurs easily.At the end of this step,nInt1 comes into being.It is a complex of imine form adenine with one water and one ammonia molecules.The relative energy of nInt1 is-18.74 kJ·mol-1.

    2.2.2 Formation of the tetrahedral intermediate

    In this step,nTS12 is the transition state connecting nInt1 and nInt2.nTS12 is also a six-member ring structure like AlTS12. But nTS12 is formed through exocyclic nitrogen atom instead of cyclic ring nitrogen,which is different from AlTS12.The relative energy of nTS12 is 169.15 kJ·mol-1,which is higher than that of AlTS12.nInt2 is a tetrahedral structure with an ammonia molecule.

    2.2.3 Detachment of ammonia

    Fig.3 Optimized geometries in ammonia-assisted adenine deaminationThe dashed line indicates hydrogen bond.

    Table 1 Energy barriers of the water-assisted,methanolassisted,and ammonia-assisted reaction mechanisms

    nInt2 transforms to nInt3a and nInt3b through different conformational changes and relocations of water and ammonia molecules.Similar to the methanol-assisted mechanism,in pathway a(Fig.3)ammonia attends in the formation of transition state nTS34a.nTS34a is obtained through the elongation of C6—N10, N19—H22,and O16—H18.The energy difference between nTS34a and the reactants is 149.74 kJ·mol-1,which is about 37 kJ·mol-1larger than that of AlTS34a.nInt4a is the product of pathway a.It is a complex of hypoxanthine with two ammonia molecules.

    nInt3b is another intermediate obtained from nInt2,in which the ammonia forms two hydrogen bonds:N1—H17…N19 and N19—H22…N10.Inthepathwayb(Fig.3)theammoniamolecule is not involved in the creation of transition state.In nTS34b,the hydrogen atom transfers directly from hydroxyl group to ammine nitrogen and the ammonia molecule only acts as a medium.Due to the lack of the ammonia,the hydrogen transfer is difficult to happen.nTS34b has a higher activation energy(143.60 kJ·mol-1) just as expected.nInt4b is also a complex of hypoxanthine with two ammonia molecules.Owning to the different location of the two ammonia molecules,the relative energy of nInt4b is 32.55 kJ·mol-1higher than that of nInt4a.

    2.3 Comparisons of methanol and ammonia effects

    Fig.4 Energy profiles of methanol-assisted(a)and ammonia-assisted(b)deamination of adnineaB3LYP/6-311G(d,p),bG3MP2//B3LYP/6-311G(d,p), cIEFPCM//B3LYP/6-311G(d,p);the relative energy in kJ·mol-1

    The reaction mechanism of methanol-assisted hydrolytic deamination of adenine is the same as that of water-assisted hydrolyticdeamination[9].However,this is not the case for ammoniaassisted hydrolytic deamination,in which tautomerization of adenine is necessary.The structure of the transition state in the following(nTS12)is also different from that of water-assisted mechanism.The six-member ring transition state has been formed through exocyclic amino group and carbon atom under ammonia condition,while it has been formed by cyclic nitrogen and carbon atoms under methanol condition.The more favorable pathway is still pathway a under both conditions.Methanol-assisted hydrolytic deamination of adenine has similar reaction barriers with those of water-assisted reaction,while the energy barriers of the ammonia-assisted reaction are higher than those of waterassisted reaction(as shown in Table 1),which may give useful information on the deamination mechanism of adenine involving amino acid residues.

    2.4 Total atomic charge evolution along adenine tautomerization

    Fig.5(a)is the evolution of total atomic charges of C6 along nTS01.Fig.5(a)indicates that the tautomerization of adenine makes the atomic charge of C6 less positive,thus results in the nucleophilic reaction more difficult to happen.Fig.5(b)presents the evolution of the Mulliken overlap populations between C6 and N1 and between C6 and N10,which can be correlated with the electronic populations between C6 and N1 and between C6 and N10,respectively.Fig.5(b)shows that the overlap populations between C6 and N1 and between C6 and N10 decrease and increase along the reaction coordinate,respectively.The variation of the overlap population is consistent with the change of bond type.In this step,the C6=N1 double bond is transformed into a single one,while the C6—N10 single bond is transformed into a double one.The crossing point of the two bond population can be considered as the starting point of the whole reaction.After the tautomerization,the overlap population between C6 and N10 is larger than that between C6 and N1,thus results in the water attack for C6=N10 instead of C6—N1 in the following step.

    Fig.5 Evolution of the total atomic charge on C6(a)and the overlap populations between C6 and N1 and between C6 and N10(b)along the reaction path of nInt0-nTS01-nInt1 step

    3 Conclusions

    In this paper both the methanol and ammonia assisted hydrolytic deamination mechanisms of adenine were investigated. The geometries of all the stationary points were optimized at the B3LYP/6-311G(d,p)level and single point energies were obtained by both IEFPCM and G3MP2//B3LYP methods.The results show that both the mechanism and the activation energies of methanol-assisted deamination are similar to those of waterassisted deamination.A tetrahedral intermediate forms through nucleophilic attack,then two intermediates are obtained by different conformational changes.The methanol molecule involves in the formation of transition state in pathway a and only acts as a medium in pathway b.In the ammonia-assisted hydrolytic deamination,amine-imine tautomerization of adenine occurs firstly.Then the nucleophilic attack of water takes place and a tetrahedral intermediate forms.There are also two pathways in the following step.In pathway a the ammonia participates in the six-member ring transition state while in pathway b it only acts as a medium.The ammonia-assisted reaction is more difficult to occur compared with methanol-assisted reaction due to higher energy barriers.Pathway a has lower energy barrier than pathway b under both conditions.

    1 Glaser,R.;Rayat,S.;Lewis,M.;Son,M.S.;Meyer,S.J.Am. Chem.Soc.,1999,121:6108

    2 Almatarneh,M.H.;Flinn,C.G.;Poirier,R.A.;Sokalski,W.A. J.Phys.Chem.A,2006,110:8227

    3 Almatarneh,M.H.;Flinn,C.G.;Poirier,R.A.J.Chem.Inf. Model.,2008,48:831

    4 Labet,V.;Morell,C.;Grand,A.;Toro-Labbé,A.J.Phys.Chem.A, 2008,112:11487

    5 Labet,V.;Morell,C.;Cadet,J.;Eriksson,L.A.;Grand,A.J.Phys. Chem.A,2009,113:2524

    6 Labet,V.;Grand,A.;Cadet,J.;Eriksson,L.A.ChemPhysChem, 2008,9:1195

    7 Zhang,A.;Yang,B.;Li,Z.J.Mol.Struct.-Theochem,2007,819: 95

    8 Zhu,C.;Meng,F.Struct.Chem.,2009,20:685

    9 Zheng,H.;Meng,F.Struct.Chem.,2009,20:943

    10 Kim,H.S.;Ahn,D.S.;Chung,S.Y.;Kim,S.K.;Lee,S.J.Phys. Chem.A,2007,111:8007

    11 Gu,J.;Leszczynski,J.J.Phys.Chem.A,1999,103:2744

    12 Matsubara,T.;Ishikura,M.;Aida,M.J.Chem.Inf.Model.,2006, 46:1276

    13 Danilov,V.I.;van Mourik,T.;Kurita,N.;Wakabayashi,H.; Tsukamoto,T.;Hovorun,D.M.J.Phys.Chem.A,2009,113: 2233

    14 Harańczyk,M.;Rak,J.;Gutowski,M.;Radisic,D.;Stokes,S.T.; Bowen,K.H.J.Phys.Chem.B,2005,109:13383

    15 Kabelác,M.;Hobza,P.J.Phys.Chem.B,2006,110:14515

    16 Shukla,M.K.;Dubey,M.;Zakar,E.;Namburu,R.;Leszczynski,J. Chem.Phys.Lett.,2010,493:130

    17 Becke,A.D.J.Chem.Phys.,1993,98:5648

    18 Lee,C.;Yang,W.;Parr,R.G.Phys.Rev.B,1988,37:785

    19 Miehlich,B.;Savin,A.;Stoll,H.;Preuss,H.Chem.Phys.Lett., 1989,157:200

    20 Baboul,A.G.;Curtiss,L.A.;Redfern,P.C.J.Chem.Phys.,1999, 110:7650

    21 Curtiss,L.A.;Raghavachari,K.J.Chem.Phys.,1998,109:7764

    22 Tang,Y.Z.;Sun,J.Y.;Sun,H.;Pan,Y.R.;Wang,R.S.Theor. Chem.Acc.,2008,119:297

    23 Cancès,M.T.;Mennucci,B.;Tomasi,J.J.Chem.Phys.,1997, 107:3032

    24 Cossi,M.;Barone,V.;Mennucci,B.;Tomasi,J.Chem.Phys.Lett., 1998,286:253

    25 Mennucci,B.;Tomasi,J.J.Chem.Phys.,1997,106:5151

    26 Rappé,A.K.;Casewit,C.J.;Colwell,K.S.;Goddard III,W.A.; Skiff,W.M.J.Am.Chem.Soc.,1992,114:10024

    27 Rappé,A.K.;Goddard III,W.A.J.Phys.Chem.,1991,95:3358

    28 Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 03. Revision D.01.Wallingford,CT:Gaussian Inc.,2004

    猜你喜歡
    脫氨理學(xué)院腺嘌呤
    昆明理工大學(xué)理學(xué)院學(xué)科簡介
    昆明理工大學(xué)理學(xué)院簡介
    三元廢水脫氨塔裝置的擴(kuò)能改造及效果
    廣州化工(2022年6期)2022-04-11 13:16:04
    腺嘌呤聚酰亞胺/氧化石墨烯復(fù)合材料的制備及熱解動力學(xué)特性
    云南化工(2021年8期)2021-12-21 06:37:20
    火電廠精處理再生廢水氣態(tài)膜法脫氨工藝中試研究
    能源工程(2021年1期)2021-04-13 02:06:06
    西安航空學(xué)院專業(yè)介紹
    ———理學(xué)院
    糞便污水的臭氧脫氨試驗(yàn)研究
    木醋液與6-芐基腺嘌呤對擬南芥生長的影響研究
    缺氧微環(huán)境下3-甲基腺嘌呤對視網(wǎng)膜神經(jīng)節(jié)細(xì)胞凋亡的影響
    肌苷發(fā)酵過程腺嘌呤含量變化規(guī)律
    日韩一区二区三区影片| 日本wwww免费看| 免费av中文字幕在线| 校园人妻丝袜中文字幕| 男人爽女人下面视频在线观看| 亚洲国产欧美日韩在线播放| 免费看不卡的av| 狠狠婷婷综合久久久久久88av| 视频区图区小说| 亚洲精品国产色婷婷电影| 国语对白做爰xxxⅹ性视频网站| 纯流量卡能插随身wifi吗| 男女无遮挡免费网站观看| 人人妻人人澡人人爽人人夜夜| 男人操女人黄网站| 亚洲色图综合在线观看| 纯流量卡能插随身wifi吗| 亚洲精品美女久久久久99蜜臀 | 你懂的网址亚洲精品在线观看| 久久精品久久久久久噜噜老黄| 91老司机精品| 国产精品蜜桃在线观看| 女性生殖器流出的白浆| 日本vs欧美在线观看视频| 亚洲精品av麻豆狂野| 一区二区三区激情视频| 在线精品无人区一区二区三| 只有这里有精品99| 天美传媒精品一区二区| 亚洲av综合色区一区| 熟女av电影| 亚洲激情五月婷婷啪啪| 成人漫画全彩无遮挡| 亚洲五月色婷婷综合| 国产精品香港三级国产av潘金莲 | 啦啦啦在线观看免费高清www| 咕卡用的链子| 免费少妇av软件| 在线天堂最新版资源| 性少妇av在线| 一本久久精品| 国产亚洲精品第一综合不卡| 成年美女黄网站色视频大全免费| 一区在线观看完整版| 国产成人欧美在线观看 | 精品人妻一区二区三区麻豆| 99精品久久久久人妻精品| 亚洲综合色网址| 亚洲自偷自拍图片 自拍| 乱人伦中国视频| 看十八女毛片水多多多| 操出白浆在线播放| 黄色毛片三级朝国网站| 在线亚洲精品国产二区图片欧美| 女性生殖器流出的白浆| 中文字幕人妻熟女乱码| 久久韩国三级中文字幕| 日本91视频免费播放| 亚洲成人av在线免费| 日本wwww免费看| av国产精品久久久久影院| 久久精品久久久久久久性| 亚洲第一青青草原| 日本一区二区免费在线视频| 亚洲欧美清纯卡通| 午夜福利乱码中文字幕| 国产黄频视频在线观看| 黄片播放在线免费| 丝瓜视频免费看黄片| 波野结衣二区三区在线| 日韩中文字幕视频在线看片| a 毛片基地| 精品人妻在线不人妻| 欧美精品一区二区大全| 成人影院久久| 在线亚洲精品国产二区图片欧美| 亚洲av电影在线进入| 亚洲美女视频黄频| 免费日韩欧美在线观看| 国产精品国产av在线观看| 国产精品国产三级专区第一集| 中文字幕最新亚洲高清| 欧美日韩亚洲高清精品| 大陆偷拍与自拍| 各种免费的搞黄视频| 免费日韩欧美在线观看| 亚洲欧美成人精品一区二区| 久久精品久久久久久噜噜老黄| 午夜福利视频精品| 国产精品麻豆人妻色哟哟久久| 色网站视频免费| 操美女的视频在线观看| 老司机在亚洲福利影院| 深夜精品福利| 亚洲欧美成人综合另类久久久| 美女福利国产在线| 精品一区二区三卡| 亚洲国产欧美一区二区综合| 久久久久久久久免费视频了| 精品亚洲成a人片在线观看| 欧美日韩亚洲综合一区二区三区_| 色吧在线观看| 一二三四在线观看免费中文在| 热99久久久久精品小说推荐| 最黄视频免费看| av卡一久久| 亚洲图色成人| 黄频高清免费视频| 欧美久久黑人一区二区| 国产乱人偷精品视频| 精品国产乱码久久久久久男人| xxx大片免费视频| 免费日韩欧美在线观看| 18禁国产床啪视频网站| 观看av在线不卡| av国产精品久久久久影院| 亚洲精品一区蜜桃| 永久免费av网站大全| 亚洲国产中文字幕在线视频| 亚洲精品第二区| 精品少妇黑人巨大在线播放| 中文字幕人妻熟女乱码| 无限看片的www在线观看| 免费少妇av软件| 日韩av在线免费看完整版不卡| 久久影院123| 国产一级毛片在线| 免费观看av网站的网址| 青春草亚洲视频在线观看| 婷婷色av中文字幕| 你懂的网址亚洲精品在线观看| www.精华液| 在线免费观看不下载黄p国产| 亚洲国产精品999| 亚洲一卡2卡3卡4卡5卡精品中文| 99久国产av精品国产电影| 午夜免费观看性视频| 十八禁人妻一区二区| 久久精品久久精品一区二区三区| 欧美97在线视频| 汤姆久久久久久久影院中文字幕| 亚洲,一卡二卡三卡| 国产乱人偷精品视频| 永久免费av网站大全| 久久热在线av| 涩涩av久久男人的天堂| 亚洲精品视频女| 久久久久久久精品精品| 天天影视国产精品| 国产一区二区三区av在线| 91精品伊人久久大香线蕉| 欧美av亚洲av综合av国产av | 亚洲国产欧美日韩在线播放| 高清黄色对白视频在线免费看| 国产高清国产精品国产三级| videos熟女内射| 中文天堂在线官网| 日日摸夜夜添夜夜爱| 精品人妻一区二区三区麻豆| 美女大奶头黄色视频| 久久综合国产亚洲精品| 国产野战对白在线观看| 汤姆久久久久久久影院中文字幕| 夜夜骑夜夜射夜夜干| 日韩欧美一区视频在线观看| 又大又黄又爽视频免费| 水蜜桃什么品种好| 日韩熟女老妇一区二区性免费视频| av又黄又爽大尺度在线免费看| 97精品久久久久久久久久精品| 久久精品国产亚洲av涩爱| 亚洲伊人久久精品综合| 一级黄片播放器| 19禁男女啪啪无遮挡网站| 最近最新中文字幕免费大全7| 国产精品一区二区精品视频观看| 90打野战视频偷拍视频| 国产视频首页在线观看| 国产精品蜜桃在线观看| 久久久亚洲精品成人影院| 最近中文字幕高清免费大全6| 在线观看人妻少妇| 丝袜人妻中文字幕| 嫩草影院入口| 亚洲成人国产一区在线观看 | 咕卡用的链子| 精品少妇黑人巨大在线播放| www.精华液| 在线亚洲精品国产二区图片欧美| 1024视频免费在线观看| 一本久久精品| 最新的欧美精品一区二区| 国产精品女同一区二区软件| 久久狼人影院| 国产一区二区在线观看av| 国产老妇伦熟女老妇高清| 亚洲男人天堂网一区| 日日撸夜夜添| 婷婷色av中文字幕| 人体艺术视频欧美日本| 亚洲 欧美一区二区三区| 国产精品麻豆人妻色哟哟久久| 汤姆久久久久久久影院中文字幕| 久久精品亚洲熟妇少妇任你| 女人久久www免费人成看片| 午夜激情久久久久久久| 黑人巨大精品欧美一区二区蜜桃| 欧美日韩成人在线一区二区| 热99国产精品久久久久久7| 亚洲,欧美,日韩| 国产97色在线日韩免费| 中文字幕亚洲精品专区| 18在线观看网站| netflix在线观看网站| 欧美变态另类bdsm刘玥| 久久久久视频综合| 国产爽快片一区二区三区| 欧美精品一区二区大全| 99久久综合免费| av视频免费观看在线观看| 国产精品秋霞免费鲁丝片| 一二三四在线观看免费中文在| 日韩熟女老妇一区二区性免费视频| 国产精品三级大全| 一个人免费看片子| 成人国产麻豆网| 亚洲精品第二区| 99国产综合亚洲精品| 丰满迷人的少妇在线观看| 91成人精品电影| 一区二区三区精品91| 婷婷色综合www| 午夜福利,免费看| 精品久久蜜臀av无| 老汉色∧v一级毛片| 精品免费久久久久久久清纯 | 精品少妇一区二区三区视频日本电影 | 欧美激情高清一区二区三区 | 精品国产乱码久久久久久男人| 黑人欧美特级aaaaaa片| 考比视频在线观看| 午夜激情久久久久久久| 熟妇人妻不卡中文字幕| 91aial.com中文字幕在线观看| 免费日韩欧美在线观看| 美女脱内裤让男人舔精品视频| 天堂8中文在线网| 亚洲第一av免费看| 少妇人妻久久综合中文| 欧美 日韩 精品 国产| 男女下面插进去视频免费观看| 91精品伊人久久大香线蕉| 1024香蕉在线观看| 免费久久久久久久精品成人欧美视频| 久久久国产欧美日韩av| bbb黄色大片| 亚洲欧美日韩另类电影网站| 午夜福利网站1000一区二区三区| 国产1区2区3区精品| 一区二区日韩欧美中文字幕| 精品一区二区三区四区五区乱码 | 极品少妇高潮喷水抽搐| 成人国产麻豆网| 国产精品国产三级国产专区5o| 中文字幕人妻丝袜制服| 久久青草综合色| 日韩一区二区视频免费看| 国产成人91sexporn| 超碰97精品在线观看| 成人毛片60女人毛片免费| 久久国产亚洲av麻豆专区| 熟女av电影| 国产亚洲欧美精品永久| 精品亚洲成a人片在线观看| 日本午夜av视频| 免费黄色在线免费观看| 亚洲一码二码三码区别大吗| 亚洲自偷自拍图片 自拍| 美女高潮到喷水免费观看| 国产视频首页在线观看| 80岁老熟妇乱子伦牲交| 国产一区亚洲一区在线观看| 免费黄网站久久成人精品| 叶爱在线成人免费视频播放| 亚洲精品av麻豆狂野| kizo精华| 国产亚洲午夜精品一区二区久久| 国产xxxxx性猛交| 人人妻人人澡人人看| 啦啦啦啦在线视频资源| 免费人妻精品一区二区三区视频| a 毛片基地| 精品国产露脸久久av麻豆| 最近中文字幕高清免费大全6| 另类亚洲欧美激情| 午夜久久久在线观看| 97在线人人人人妻| 极品人妻少妇av视频| 婷婷色av中文字幕| 国产成人精品久久久久久| 国产人伦9x9x在线观看| 午夜日韩欧美国产| 国产激情久久老熟女| 午夜福利影视在线免费观看| 国产精品99久久99久久久不卡 | 99精品久久久久人妻精品| 99热全是精品| 亚洲人成电影观看| 亚洲三区欧美一区| 亚洲av国产av综合av卡| 少妇 在线观看| 成年美女黄网站色视频大全免费| 亚洲自偷自拍图片 自拍| 久久女婷五月综合色啪小说| 亚洲国产欧美网| 不卡视频在线观看欧美| 国产人伦9x9x在线观看| 亚洲精华国产精华液的使用体验| www.精华液| 日本欧美视频一区| 精品久久蜜臀av无| 欧美97在线视频| 可以免费在线观看a视频的电影网站 | 最新的欧美精品一区二区| av女优亚洲男人天堂| 精品免费久久久久久久清纯 | 一级爰片在线观看| 成年女人毛片免费观看观看9 | 亚洲第一青青草原| www.熟女人妻精品国产| 国产精品久久久人人做人人爽| 精品久久蜜臀av无| 国产成人啪精品午夜网站| 97在线人人人人妻| 国产精品秋霞免费鲁丝片| 国产欧美日韩一区二区三区在线| 国产极品粉嫩免费观看在线| 国产深夜福利视频在线观看| 亚洲国产av新网站| 自线自在国产av| 这个男人来自地球电影免费观看 | 一区二区三区精品91| 一二三四在线观看免费中文在| 欧美在线一区亚洲| 狂野欧美激情性bbbbbb| 亚洲精品久久久久久婷婷小说| 国产精品99久久99久久久不卡 | 亚洲五月色婷婷综合| 电影成人av| 曰老女人黄片| 1024视频免费在线观看| 黄网站色视频无遮挡免费观看| 这个男人来自地球电影免费观看 | 久久精品久久久久久噜噜老黄| 丝袜在线中文字幕| 又大又黄又爽视频免费| 97在线人人人人妻| 狂野欧美激情性xxxx| 精品亚洲成国产av| 亚洲av福利一区| 国产xxxxx性猛交| 精品久久蜜臀av无| 精品一品国产午夜福利视频| 国产精品三级大全| 国产不卡av网站在线观看| 国产视频首页在线观看| 男女床上黄色一级片免费看| 观看美女的网站| 国产成人一区二区在线| 久久综合国产亚洲精品| 国产欧美亚洲国产| 国产免费一区二区三区四区乱码| 中文字幕人妻丝袜制服| 婷婷色综合www| 欧美xxⅹ黑人| 欧美日韩精品网址| 这个男人来自地球电影免费观看 | 亚洲美女视频黄频| 久久久国产欧美日韩av| 熟女少妇亚洲综合色aaa.| 亚洲精品久久成人aⅴ小说| 国产亚洲欧美精品永久| 久久久欧美国产精品| 久久久久精品国产欧美久久久 | 久久久久久免费高清国产稀缺| 免费人妻精品一区二区三区视频| 欧美亚洲日本最大视频资源| 精品国产乱码久久久久久小说| 纯流量卡能插随身wifi吗| 人人妻人人澡人人看| 人人妻,人人澡人人爽秒播 | 久久久久久久久免费视频了| 19禁男女啪啪无遮挡网站| 少妇猛男粗大的猛烈进出视频| videosex国产| 天天躁日日躁夜夜躁夜夜| 叶爱在线成人免费视频播放| www日本在线高清视频| 在线看a的网站| 一边摸一边抽搐一进一出视频| 天堂中文最新版在线下载| 久久久久网色| 国产精品国产三级专区第一集| 久久精品久久久久久久性| 日本午夜av视频| 亚洲专区中文字幕在线 | 一区二区日韩欧美中文字幕| 丰满迷人的少妇在线观看| 精品少妇黑人巨大在线播放| 91精品伊人久久大香线蕉| 欧美日韩综合久久久久久| 一级毛片我不卡| 久久人妻熟女aⅴ| 中文乱码字字幕精品一区二区三区| 国产免费福利视频在线观看| 亚洲欧美日韩另类电影网站| 国产熟女午夜一区二区三区| 丝瓜视频免费看黄片| 成人国产av品久久久| 99久久精品国产亚洲精品| 国产日韩欧美亚洲二区| 日本猛色少妇xxxxx猛交久久| 国产又色又爽无遮挡免| 亚洲精品久久午夜乱码| 99精国产麻豆久久婷婷| 亚洲一区中文字幕在线| 国产黄频视频在线观看| 亚洲美女搞黄在线观看| 久久久久国产一级毛片高清牌| 国产色婷婷99| 成人影院久久| 女性生殖器流出的白浆| 免费日韩欧美在线观看| 亚洲av国产av综合av卡| 国产欧美日韩一区二区三区在线| 成人国语在线视频| 另类亚洲欧美激情| 日本爱情动作片www.在线观看| 女性生殖器流出的白浆| 国产精品嫩草影院av在线观看| 国产精品久久久久久人妻精品电影 | 国产av精品麻豆| 国产国语露脸激情在线看| 麻豆乱淫一区二区| 69精品国产乱码久久久| 新久久久久国产一级毛片| 大片电影免费在线观看免费| 国产不卡av网站在线观看| 久久99热这里只频精品6学生| 看十八女毛片水多多多| 在线 av 中文字幕| 久久99精品国语久久久| 亚洲国产欧美日韩在线播放| 色吧在线观看| 久久精品aⅴ一区二区三区四区| 国产亚洲最大av| 久久精品国产亚洲av涩爱| 9191精品国产免费久久| 久久精品国产亚洲av高清一级| 九色亚洲精品在线播放| 日本色播在线视频| 久久久国产欧美日韩av| 亚洲精品国产色婷婷电影| 亚洲国产日韩一区二区| 亚洲综合精品二区| 18在线观看网站| 国产日韩欧美视频二区| av网站免费在线观看视频| 免费在线观看视频国产中文字幕亚洲 | 国产 一区精品| 在线 av 中文字幕| 黄频高清免费视频| 最近手机中文字幕大全| 久久女婷五月综合色啪小说| 一区二区三区四区激情视频| 高清视频免费观看一区二区| 久久久欧美国产精品| 国产男女内射视频| 日韩 欧美 亚洲 中文字幕| 日韩一卡2卡3卡4卡2021年| 成年av动漫网址| 日韩精品有码人妻一区| 中文字幕制服av| 成人黄色视频免费在线看| 国产精品一二三区在线看| 国产精品国产三级专区第一集| 秋霞在线观看毛片| 亚洲精品视频女| 在线免费观看不下载黄p国产| 国产精品 国内视频| 欧美精品亚洲一区二区| 老鸭窝网址在线观看| 成年人午夜在线观看视频| 亚洲av日韩在线播放| 国产精品嫩草影院av在线观看| 国产精品国产三级专区第一集| 久久人人97超碰香蕉20202| 爱豆传媒免费全集在线观看| 欧美老熟妇乱子伦牲交| 好男人视频免费观看在线| 国产成人精品久久二区二区91 | 精品免费久久久久久久清纯 | 老汉色av国产亚洲站长工具| 男女边摸边吃奶| 女人被躁到高潮嗷嗷叫费观| 国产男人的电影天堂91| 十八禁网站网址无遮挡| 亚洲四区av| 黄片无遮挡物在线观看| 波多野结衣av一区二区av| 亚洲av电影在线观看一区二区三区| 90打野战视频偷拍视频| 狂野欧美激情性bbbbbb| 久久久精品国产亚洲av高清涩受| 人妻 亚洲 视频| 国产1区2区3区精品| 天天操日日干夜夜撸| 国产无遮挡羞羞视频在线观看| 免费不卡黄色视频| 18禁国产床啪视频网站| 欧美乱码精品一区二区三区| 又大又爽又粗| 精品亚洲成a人片在线观看| 成人影院久久| 最近中文字幕2019免费版| 亚洲欧美日韩另类电影网站| 亚洲伊人久久精品综合| 1024香蕉在线观看| 女人爽到高潮嗷嗷叫在线视频| 视频在线观看一区二区三区| 国产深夜福利视频在线观看| 国产片内射在线| 90打野战视频偷拍视频| 最近2019中文字幕mv第一页| 久久久久精品久久久久真实原创| 午夜免费观看性视频| 卡戴珊不雅视频在线播放| 美女大奶头黄色视频| 亚洲精品国产av蜜桃| 国产男人的电影天堂91| 啦啦啦 在线观看视频| 亚洲国产精品成人久久小说| 少妇被粗大猛烈的视频| 欧美黑人精品巨大| 久久 成人 亚洲| 国产女主播在线喷水免费视频网站| 亚洲精品国产区一区二| e午夜精品久久久久久久| 国产成人午夜福利电影在线观看| 日韩欧美精品免费久久| 国产成人啪精品午夜网站| 欧美激情 高清一区二区三区| av电影中文网址| 亚洲美女黄色视频免费看| 亚洲国产毛片av蜜桃av| 青青草视频在线视频观看| 黄频高清免费视频| 晚上一个人看的免费电影| 国产男女内射视频| 国产成人精品在线电影| 日韩一区二区三区影片| 国产成人欧美在线观看 | 中文字幕人妻熟女乱码| 欧美黑人精品巨大| netflix在线观看网站| av在线观看视频网站免费| 国产一区有黄有色的免费视频| 精品少妇久久久久久888优播| 男女下面插进去视频免费观看| 久久久久久久国产电影| 男女国产视频网站| 99国产综合亚洲精品| 亚洲熟女毛片儿| 国产麻豆69| 国产毛片在线视频| 无限看片的www在线观看| 十八禁人妻一区二区| 国产亚洲午夜精品一区二区久久| svipshipincom国产片| 建设人人有责人人尽责人人享有的| 如日韩欧美国产精品一区二区三区| 婷婷色av中文字幕| 亚洲美女视频黄频| 精品一区二区三卡| 国产av国产精品国产| 香蕉丝袜av| 国产精品国产三级国产专区5o| 成人国产麻豆网| 久热这里只有精品99| 91老司机精品| 国产免费福利视频在线观看| 如何舔出高潮| 亚洲精品国产一区二区精华液| 黄色一级大片看看| 9热在线视频观看99| 日韩伦理黄色片| 亚洲人成网站在线观看播放| 99久久综合免费| 一区二区三区精品91| 国产野战对白在线观看| 欧美少妇被猛烈插入视频| 久久精品人人爽人人爽视色| 久热爱精品视频在线9| 99久久精品国产亚洲精品| 国产精品国产av在线观看| 嫩草影院入口| 91国产中文字幕| 免费少妇av软件| 久久99热这里只频精品6学生| av网站免费在线观看视频| 另类精品久久| 最近最新中文字幕免费大全7| 国产欧美亚洲国产| 在线免费观看不下载黄p国产| 日日撸夜夜添|