• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    甲醇和氨對腺嘌呤水解脫氨機(jī)理的影響

    2010-03-06 04:44:20劉海英孟凡翠丁世良
    物理化學(xué)學(xué)報(bào) 2010年11期
    關(guān)鍵詞:脫氨理學(xué)院腺嘌呤

    劉海英 孟凡翠 李 萍 丁世良

    (1濟(jì)南大學(xué)理學(xué)院,濟(jì)南 250022; 2天津藥物研究院,天津 300193; 3山東大學(xué)物理學(xué)院,濟(jì)南 250100)

    Adenine is an integral part of DNA and RNA,which is involved in base pairing with thymine in DNA and with uracil in RNA.In addition,adenine is also an important part of adenosine triphosphate(ATP)and adenosine diphosphate(ADP)in energy transfer process and cyclic adenosine monophosphate(cAMP) in signal transduction process.Several bases including adenine, guanine,and cytosine undergo slow but measurable loss of their amino groups,i.e.,deamination under physiological conditions in vitro.The deamination of adenine to produce hypoxanthine can cause codon changes in mRNA,which further induces the synthesis of variant protein structures.The base deamination has been investigated extensively[1-9].Almatarneh and coworkers[2]have studied the deamination reaction of cytosine with H2O and OH-by theoretical method.Two pathways for deamination with H2O were found but either pathway was unlikely due to the high barriers.They also have made further investigations on the deaminationofcytosinewithH2O/OH-and2H2O/OH-[3]andfound that all pathways underwent a tetrahedral intermediate and the obtained energy barrier agreed well with the experimental value. Labet et al.[4]have performed a theoretical study on cytosine deamination and they hold that the tautomerization of cytosine or assistant water was necessary for the deamination.They also investigated the deamination mechanism of 5-methylcytosine with H2O in protic medium[5]and that of the radical cation of 2′-deoxycytidine[6].Zhang et al.[7]have studied the hydrolytic deamination of adenine with one to four water molecules at the B3LYP/6-31G(d,p)level.

    In our previous papers,both non-assisted[8]and water-assisted[9]hydrolyses of adenine have been studied and the results indicated that the water assistance could give rise to large decrease of the activation barrier of adenine deamination.As is well known,the surrounding environment plays an important role in many reactions of nucleic acid bases,such as tautomerism[10-11]and deamination[12].The interaction between nucleic acid bases with water[13], alcohol[14],metal cations[15],and other species[16]have been studied extensively.Then we wonder what effects could be caused by the surrounding environment on the reaction of adenine deamination?To our knowledge,no computational studies of the deamination of adenine under ammonia and methanol conditions have been reported.For this reason,we present a theoretical study of the methanol and ammonia assisted hydrolyses of adenine to simulate the hydroxyl group and amino group occurring in amino acid residues.Methanol and ammonia could act as both proton donor and proton acceptor in the reaction processes. The bond rotation steps are omitted since they are not important in this type of reaction[9].

    1 Calculation methods

    All the stationary points including reactants,intermediates, transition states,and products were obtained using B3LYP/6-311G(d,p)method[17-19]and verified by a vibrational frequency analysis at the same level.Zero point vibrational energies(ZPVE) were also determined through frequency analysis.Intrinsic reaction coordinate(IRC)calculations were performed on the transition states to ensure that the transition states were connected with the corresponding two minima.Single-point energy calculations were performed on the previously optimized geometries obtained by the IRC procedure of nTS01(the transition state of amine-imine tautomerization of adenine)to get the total atomic charge variation along the reaction coordinates.

    To test the accuracy of B3LYP/6-311G(d,p)method,we also calculated all the stationary points using G3MP2//B3LYP/6-311G(d,p)methods.G3MP2//B3LYP[20-21]method is a composite scheme based on the three single point energies,i.e.,QCISD(T)/ 6-31G(d),MP2/6-31G(d),and MP2/G3MP2large.The ZPVE corrections obtained by B3LYP/6-311G(d,p)method were used without scaling due to the fact that the ZPVE corrected results agreed well with the experimental values[22].Single point calculations by using polarized continuum model in the integral equation formalism(IEFPCM)method[23-25]were performed on the obtained stationary points to consider the solvent effects,with the relative dielectric constant 78.39 to simulate the aqueous environment. The cavity was built using the all atom model applied on the atomic radii of the UFF force field[26-27].All calculations were performed using Gaussian 03 program[28].

    2 Results and discussion

    In this paper,the prefix“Al”refers to those of methanolassisted system and“n”refers to those of ammonia-assisted system.The atom labels of the studied system are shown in Fig. 1.The optimized geometries of all the stationary points of methanol-assisted and ammonia-assisted mechanisms are shown in Fig.2 and Fig.3,respectively.The relative energy evolution of both methanol and ammonia assisted deaminations of adenine are shown in Fig.4(a)and 4(b),respectively.From Fig.4(a)and 4(b) we can see that the energy differences between B3LYP/6-311G (d,p)and IEFPCM//B3LYP/6-311G(d,p)are less than 13 kJ· mol-1for most of the stationary points.In addition,the difference between the relative energy barriers of these two methods is also small(less than 14 kJ·mol-1).These results reveal that solventeffects play a minor role for the studied systems and thus in the followingsectionwe use G3MP2//B3LYP/6-311G(d,p)to calculate energy values.

    Fig.1 Molecular structures and atom labels of the studied methanol-assisted(a)and ammonia-assisted(b)systems

    2.1 Methanol assisted hydrolytic deamination

    2.1.1 Formation of the tetrahedral intermediate

    In this step a tetrahedral intermediate has been created through the nucleophilic attacking of water molecule.Adenine forms a cyclic complex(AlInt1)with water and methanol molecules,in which three hydrogen bonds exist.AlInt1 is 71.04 kJ·mol-1more stable than the reactants.AlTS12 is the transition state connecting AlInt1 with the tetrahedral intermediate AlInt2.A six-member ring structure forms through the elongation of O16—H17 and O19—H20 bonds and the shortening of N1…H17,C6…O19 and O16…H20 bonds.The relative energy of AlTS12 is 101.58 kJ·mol-1higher than that of reactants.AlInt2 is a tetrahedral structure with one water molecule.There are two hydrogen bonds in AlInt2,one is N1—H17…O16 and the other is O16—H20…O19.The relative energy of AlInt2 is 32.38 kJ·mol-1.

    2.1.2 Detachment of ammonia

    In pathway a(Fig.2),AlInt3a is obtained through the conformational change of AlInt2,which is 9.50 kJ·mol-1more stable than AlInt2.The hydroxyl group of methanol forms two hydrogen bonds,one is O16—H20…N10 and the other is O19—H21…O16.This facilitates the creation of cyclic transition state. AlTS34a is the transition state obtained from AlInt3a.It is a sixmember ring structure through the decreasing of O16…H21 and N10…H20 bond distances and increasing of O19—H21 and O16—H20 bond distances.The relative energy of AlTS34a is 111.88 kJ·mol-1.AlInt4a is the product obtained from AlTS34a, which is the complex of hypoxanthine with ammonia and methanol.The bond length of C6—O19 changes from 0.140 nm in AlInt3a to 0.122 nm in AlInt4a,implying the formation of C=O bond in AlInt4a.AlInt4a has three hydrogen bonds with a lower energy of-59.45 kJ·mol-1compared with reactants.

    In pathway b(Fig.2),AlInt3b is another intermediate obtained through conformation change of AlInt2,in which the methanol also forms two hydrogen bonds but one of them is formed with cyclic N1.AlInt3b is 7.57 kJ·mol-1more stable than AlInt2.In AlTS34b,the hydrogen atom of hydroxyl group O19—H21 transfers to amino group to release ammonia.The methanol moleculedoesnotparticipateinthe formation of the four-member ring transition structure and only forms hydrogen bond with N1—H17,which results in the higher relative energy of AlTS34b(166.14 kJ·mol-1).AlInt4b is the intermediate obtained from AlTS34b with a relative energy of-38.11 kJ·mol-1.AlInt4b is not as stable as AlInt4a,due to the different locations of ammonia and methanol molecules.

    Fig.2 Optimized geometries in methanol-assisted adenine deaminationThe dashed line indicates hydrogen bond.

    Compared the methanol-assisted hydrolyticdeamination mechanism with the water-assisted one[9],we can find that the methanol assistance does not change the reaction mechanism and the preliminary bond distances and bond angles have little difference.Moreover,the activation energies of the two mechanisms are similar(as shown in Table 1).

    2.2 Ammonia assisted hydrolytic deamination

    2.2.1 Tautomerization of adenine

    As for the ammonia-assisted deamination of adenine,the adenine tautomerized from amine type to imine type structure.In this step,firstly,the canonical adenine forms a complex with ammonia and water molecules,in which three hydrogen bonds exist.nInt0 is 54.14 kJ·mol-1more stable than the reactants. Secondly,with the elongation of bond distances of O16—H17, N19—H20,N10—H11 and the shortening of N1…H17,O16…H20,N19…H11,an eight-member ring transition state nTS01 is formed.In nTS01,the ammonia and water molecules act as both proton donor and proton acceptor,which facilitate the proton transfer from exocyclic amine nitrogen to cyclic N1.The activation energy of the transition state nTS01 is as low as 30.37 kJ· mol-1,which indicates that the amine-imine tautomerization of adenine occurs easily.At the end of this step,nInt1 comes into being.It is a complex of imine form adenine with one water and one ammonia molecules.The relative energy of nInt1 is-18.74 kJ·mol-1.

    2.2.2 Formation of the tetrahedral intermediate

    In this step,nTS12 is the transition state connecting nInt1 and nInt2.nTS12 is also a six-member ring structure like AlTS12. But nTS12 is formed through exocyclic nitrogen atom instead of cyclic ring nitrogen,which is different from AlTS12.The relative energy of nTS12 is 169.15 kJ·mol-1,which is higher than that of AlTS12.nInt2 is a tetrahedral structure with an ammonia molecule.

    2.2.3 Detachment of ammonia

    Fig.3 Optimized geometries in ammonia-assisted adenine deaminationThe dashed line indicates hydrogen bond.

    Table 1 Energy barriers of the water-assisted,methanolassisted,and ammonia-assisted reaction mechanisms

    nInt2 transforms to nInt3a and nInt3b through different conformational changes and relocations of water and ammonia molecules.Similar to the methanol-assisted mechanism,in pathway a(Fig.3)ammonia attends in the formation of transition state nTS34a.nTS34a is obtained through the elongation of C6—N10, N19—H22,and O16—H18.The energy difference between nTS34a and the reactants is 149.74 kJ·mol-1,which is about 37 kJ·mol-1larger than that of AlTS34a.nInt4a is the product of pathway a.It is a complex of hypoxanthine with two ammonia molecules.

    nInt3b is another intermediate obtained from nInt2,in which the ammonia forms two hydrogen bonds:N1—H17…N19 and N19—H22…N10.Inthepathwayb(Fig.3)theammoniamolecule is not involved in the creation of transition state.In nTS34b,the hydrogen atom transfers directly from hydroxyl group to ammine nitrogen and the ammonia molecule only acts as a medium.Due to the lack of the ammonia,the hydrogen transfer is difficult to happen.nTS34b has a higher activation energy(143.60 kJ·mol-1) just as expected.nInt4b is also a complex of hypoxanthine with two ammonia molecules.Owning to the different location of the two ammonia molecules,the relative energy of nInt4b is 32.55 kJ·mol-1higher than that of nInt4a.

    2.3 Comparisons of methanol and ammonia effects

    Fig.4 Energy profiles of methanol-assisted(a)and ammonia-assisted(b)deamination of adnineaB3LYP/6-311G(d,p),bG3MP2//B3LYP/6-311G(d,p), cIEFPCM//B3LYP/6-311G(d,p);the relative energy in kJ·mol-1

    The reaction mechanism of methanol-assisted hydrolytic deamination of adenine is the same as that of water-assisted hydrolyticdeamination[9].However,this is not the case for ammoniaassisted hydrolytic deamination,in which tautomerization of adenine is necessary.The structure of the transition state in the following(nTS12)is also different from that of water-assisted mechanism.The six-member ring transition state has been formed through exocyclic amino group and carbon atom under ammonia condition,while it has been formed by cyclic nitrogen and carbon atoms under methanol condition.The more favorable pathway is still pathway a under both conditions.Methanol-assisted hydrolytic deamination of adenine has similar reaction barriers with those of water-assisted reaction,while the energy barriers of the ammonia-assisted reaction are higher than those of waterassisted reaction(as shown in Table 1),which may give useful information on the deamination mechanism of adenine involving amino acid residues.

    2.4 Total atomic charge evolution along adenine tautomerization

    Fig.5(a)is the evolution of total atomic charges of C6 along nTS01.Fig.5(a)indicates that the tautomerization of adenine makes the atomic charge of C6 less positive,thus results in the nucleophilic reaction more difficult to happen.Fig.5(b)presents the evolution of the Mulliken overlap populations between C6 and N1 and between C6 and N10,which can be correlated with the electronic populations between C6 and N1 and between C6 and N10,respectively.Fig.5(b)shows that the overlap populations between C6 and N1 and between C6 and N10 decrease and increase along the reaction coordinate,respectively.The variation of the overlap population is consistent with the change of bond type.In this step,the C6=N1 double bond is transformed into a single one,while the C6—N10 single bond is transformed into a double one.The crossing point of the two bond population can be considered as the starting point of the whole reaction.After the tautomerization,the overlap population between C6 and N10 is larger than that between C6 and N1,thus results in the water attack for C6=N10 instead of C6—N1 in the following step.

    Fig.5 Evolution of the total atomic charge on C6(a)and the overlap populations between C6 and N1 and between C6 and N10(b)along the reaction path of nInt0-nTS01-nInt1 step

    3 Conclusions

    In this paper both the methanol and ammonia assisted hydrolytic deamination mechanisms of adenine were investigated. The geometries of all the stationary points were optimized at the B3LYP/6-311G(d,p)level and single point energies were obtained by both IEFPCM and G3MP2//B3LYP methods.The results show that both the mechanism and the activation energies of methanol-assisted deamination are similar to those of waterassisted deamination.A tetrahedral intermediate forms through nucleophilic attack,then two intermediates are obtained by different conformational changes.The methanol molecule involves in the formation of transition state in pathway a and only acts as a medium in pathway b.In the ammonia-assisted hydrolytic deamination,amine-imine tautomerization of adenine occurs firstly.Then the nucleophilic attack of water takes place and a tetrahedral intermediate forms.There are also two pathways in the following step.In pathway a the ammonia participates in the six-member ring transition state while in pathway b it only acts as a medium.The ammonia-assisted reaction is more difficult to occur compared with methanol-assisted reaction due to higher energy barriers.Pathway a has lower energy barrier than pathway b under both conditions.

    1 Glaser,R.;Rayat,S.;Lewis,M.;Son,M.S.;Meyer,S.J.Am. Chem.Soc.,1999,121:6108

    2 Almatarneh,M.H.;Flinn,C.G.;Poirier,R.A.;Sokalski,W.A. J.Phys.Chem.A,2006,110:8227

    3 Almatarneh,M.H.;Flinn,C.G.;Poirier,R.A.J.Chem.Inf. Model.,2008,48:831

    4 Labet,V.;Morell,C.;Grand,A.;Toro-Labbé,A.J.Phys.Chem.A, 2008,112:11487

    5 Labet,V.;Morell,C.;Cadet,J.;Eriksson,L.A.;Grand,A.J.Phys. Chem.A,2009,113:2524

    6 Labet,V.;Grand,A.;Cadet,J.;Eriksson,L.A.ChemPhysChem, 2008,9:1195

    7 Zhang,A.;Yang,B.;Li,Z.J.Mol.Struct.-Theochem,2007,819: 95

    8 Zhu,C.;Meng,F.Struct.Chem.,2009,20:685

    9 Zheng,H.;Meng,F.Struct.Chem.,2009,20:943

    10 Kim,H.S.;Ahn,D.S.;Chung,S.Y.;Kim,S.K.;Lee,S.J.Phys. Chem.A,2007,111:8007

    11 Gu,J.;Leszczynski,J.J.Phys.Chem.A,1999,103:2744

    12 Matsubara,T.;Ishikura,M.;Aida,M.J.Chem.Inf.Model.,2006, 46:1276

    13 Danilov,V.I.;van Mourik,T.;Kurita,N.;Wakabayashi,H.; Tsukamoto,T.;Hovorun,D.M.J.Phys.Chem.A,2009,113: 2233

    14 Harańczyk,M.;Rak,J.;Gutowski,M.;Radisic,D.;Stokes,S.T.; Bowen,K.H.J.Phys.Chem.B,2005,109:13383

    15 Kabelác,M.;Hobza,P.J.Phys.Chem.B,2006,110:14515

    16 Shukla,M.K.;Dubey,M.;Zakar,E.;Namburu,R.;Leszczynski,J. Chem.Phys.Lett.,2010,493:130

    17 Becke,A.D.J.Chem.Phys.,1993,98:5648

    18 Lee,C.;Yang,W.;Parr,R.G.Phys.Rev.B,1988,37:785

    19 Miehlich,B.;Savin,A.;Stoll,H.;Preuss,H.Chem.Phys.Lett., 1989,157:200

    20 Baboul,A.G.;Curtiss,L.A.;Redfern,P.C.J.Chem.Phys.,1999, 110:7650

    21 Curtiss,L.A.;Raghavachari,K.J.Chem.Phys.,1998,109:7764

    22 Tang,Y.Z.;Sun,J.Y.;Sun,H.;Pan,Y.R.;Wang,R.S.Theor. Chem.Acc.,2008,119:297

    23 Cancès,M.T.;Mennucci,B.;Tomasi,J.J.Chem.Phys.,1997, 107:3032

    24 Cossi,M.;Barone,V.;Mennucci,B.;Tomasi,J.Chem.Phys.Lett., 1998,286:253

    25 Mennucci,B.;Tomasi,J.J.Chem.Phys.,1997,106:5151

    26 Rappé,A.K.;Casewit,C.J.;Colwell,K.S.;Goddard III,W.A.; Skiff,W.M.J.Am.Chem.Soc.,1992,114:10024

    27 Rappé,A.K.;Goddard III,W.A.J.Phys.Chem.,1991,95:3358

    28 Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 03. Revision D.01.Wallingford,CT:Gaussian Inc.,2004

    猜你喜歡
    脫氨理學(xué)院腺嘌呤
    昆明理工大學(xué)理學(xué)院學(xué)科簡介
    昆明理工大學(xué)理學(xué)院簡介
    三元廢水脫氨塔裝置的擴(kuò)能改造及效果
    廣州化工(2022年6期)2022-04-11 13:16:04
    腺嘌呤聚酰亞胺/氧化石墨烯復(fù)合材料的制備及熱解動力學(xué)特性
    云南化工(2021年8期)2021-12-21 06:37:20
    火電廠精處理再生廢水氣態(tài)膜法脫氨工藝中試研究
    能源工程(2021年1期)2021-04-13 02:06:06
    西安航空學(xué)院專業(yè)介紹
    ———理學(xué)院
    糞便污水的臭氧脫氨試驗(yàn)研究
    木醋液與6-芐基腺嘌呤對擬南芥生長的影響研究
    缺氧微環(huán)境下3-甲基腺嘌呤對視網(wǎng)膜神經(jīng)節(jié)細(xì)胞凋亡的影響
    肌苷發(fā)酵過程腺嘌呤含量變化規(guī)律
    亚洲国产精品成人综合色| 国产精品久久电影中文字幕| 91字幕亚洲| 欧美zozozo另类| 国产成人影院久久av| 午夜老司机福利剧场| 一进一出抽搐动态| 久久久精品大字幕| 国产精品1区2区在线观看.| 国内少妇人妻偷人精品xxx网站| 自拍偷自拍亚洲精品老妇| 黄色女人牲交| 一级毛片久久久久久久久女| 在线看三级毛片| 国产成人a区在线观看| 激情在线观看视频在线高清| 日本五十路高清| 国产欧美日韩一区二区三| 在线观看美女被高潮喷水网站 | 欧美zozozo另类| 免费在线观看成人毛片| 赤兔流量卡办理| 成人特级黄色片久久久久久久| 深夜a级毛片| 亚洲熟妇熟女久久| 欧美乱妇无乱码| 亚洲人成网站在线播| 最近视频中文字幕2019在线8| 久久伊人香网站| 亚洲激情在线av| 直男gayav资源| 一本久久中文字幕| 国产成人福利小说| 亚洲精品一区av在线观看| 乱码一卡2卡4卡精品| 国产一区二区在线av高清观看| 床上黄色一级片| 麻豆一二三区av精品| 首页视频小说图片口味搜索| 亚洲av免费高清在线观看| 亚洲av电影在线进入| 国产精品一区二区三区四区久久| 日本五十路高清| a级毛片免费高清观看在线播放| 国产高清有码在线观看视频| 日日摸夜夜添夜夜添av毛片 | 天美传媒精品一区二区| 国产国拍精品亚洲av在线观看| 午夜影院日韩av| 久久国产乱子伦精品免费另类| 悠悠久久av| 最好的美女福利视频网| 少妇的逼好多水| 日本一二三区视频观看| 国产精品一区二区免费欧美| 成人特级黄色片久久久久久久| 国产精品久久久久久精品电影| 欧美zozozo另类| 精品午夜福利视频在线观看一区| 久久久久久久久久成人| av欧美777| 99国产精品一区二区蜜桃av| 99久久成人亚洲精品观看| 久久久久国产精品人妻aⅴ院| 色在线成人网| 俄罗斯特黄特色一大片| 成年女人毛片免费观看观看9| 久久久久免费精品人妻一区二区| 97人妻精品一区二区三区麻豆| 99国产综合亚洲精品| 免费在线观看亚洲国产| 内射极品少妇av片p| 有码 亚洲区| 美女大奶头视频| 99久久精品国产亚洲精品| 禁无遮挡网站| 日本一二三区视频观看| 亚洲一区高清亚洲精品| 亚洲国产精品久久男人天堂| 国产亚洲精品综合一区在线观看| 麻豆久久精品国产亚洲av| www日本黄色视频网| 我要看日韩黄色一级片| 一边摸一边抽搐一进一小说| 国产日本99.免费观看| 免费黄网站久久成人精品 | 看十八女毛片水多多多| 中文亚洲av片在线观看爽| 久久精品91蜜桃| 日本五十路高清| 亚洲国产精品sss在线观看| 亚洲av.av天堂| 丰满的人妻完整版| 国产真实伦视频高清在线观看 | 久久久成人免费电影| 亚洲av电影在线进入| 在线免费观看不下载黄p国产 | 老熟妇仑乱视频hdxx| 波多野结衣高清作品| 1024手机看黄色片| 韩国av一区二区三区四区| av天堂在线播放| 欧美性猛交╳xxx乱大交人| 成年免费大片在线观看| 老熟妇乱子伦视频在线观看| av欧美777| 男女视频在线观看网站免费| 久久精品国产亚洲av天美| 波野结衣二区三区在线| 亚洲av免费在线观看| 美女xxoo啪啪120秒动态图 | 波多野结衣高清无吗| 黄色一级大片看看| 国产av一区在线观看免费| 免费一级毛片在线播放高清视频| 色哟哟哟哟哟哟| 亚洲熟妇中文字幕五十中出| 十八禁人妻一区二区| 又爽又黄a免费视频| 少妇高潮的动态图| 国产精品免费一区二区三区在线| 俺也久久电影网| 尤物成人国产欧美一区二区三区| 欧美最新免费一区二区三区 | 精品99又大又爽又粗少妇毛片 | 日本黄色视频三级网站网址| 亚洲精品粉嫩美女一区| 久久九九热精品免费| 日韩大尺度精品在线看网址| 两个人的视频大全免费| 国产精品女同一区二区软件 | 欧美激情久久久久久爽电影| 免费电影在线观看免费观看| 亚洲欧美清纯卡通| 欧美高清成人免费视频www| 精品久久久久久,| 成人午夜高清在线视频| 国产 一区 欧美 日韩| 熟女电影av网| 亚洲最大成人av| 国产美女午夜福利| 天天一区二区日本电影三级| 一进一出好大好爽视频| 国产真实乱freesex| 小蜜桃在线观看免费完整版高清| 亚洲 国产 在线| 18禁在线播放成人免费| 内地一区二区视频在线| 一区二区三区高清视频在线| 长腿黑丝高跟| 又爽又黄无遮挡网站| 老熟妇乱子伦视频在线观看| 日韩欧美三级三区| 成人鲁丝片一二三区免费| 午夜免费男女啪啪视频观看 | 精品久久久久久久久久免费视频| 日韩精品中文字幕看吧| 亚洲内射少妇av| 简卡轻食公司| 12—13女人毛片做爰片一| 嫁个100分男人电影在线观看| 天堂动漫精品| 国产精品一及| 日本 av在线| 九色成人免费人妻av| 综合色av麻豆| 天天躁日日操中文字幕| 美女 人体艺术 gogo| 国产精品不卡视频一区二区 | 日本撒尿小便嘘嘘汇集6| 99国产精品一区二区三区| 国产伦精品一区二区三区视频9| 18禁裸乳无遮挡免费网站照片| 久久久精品大字幕| 少妇人妻一区二区三区视频| 桃红色精品国产亚洲av| 欧美日韩国产亚洲二区| 黄片小视频在线播放| 简卡轻食公司| 亚洲av五月六月丁香网| 哪里可以看免费的av片| 亚洲欧美激情综合另类| 黄色日韩在线| 国产一区二区亚洲精品在线观看| 色综合欧美亚洲国产小说| 又紧又爽又黄一区二区| 亚洲无线在线观看| 国产v大片淫在线免费观看| 在线天堂最新版资源| 亚洲av日韩精品久久久久久密| 一进一出抽搐动态| 久久久久久久久久成人| 国产国拍精品亚洲av在线观看| 亚洲欧美激情综合另类| 亚洲av五月六月丁香网| 长腿黑丝高跟| 婷婷丁香在线五月| 亚洲中文字幕日韩| 欧美日韩乱码在线| 观看免费一级毛片| 一级a爱片免费观看的视频| 男人和女人高潮做爰伦理| 真人做人爱边吃奶动态| 男女做爰动态图高潮gif福利片| 亚洲成av人片免费观看| 欧美不卡视频在线免费观看| 色吧在线观看| 亚洲人成伊人成综合网2020| 亚洲第一区二区三区不卡| 亚洲最大成人av| 欧美国产日韩亚洲一区| 亚洲乱码一区二区免费版| 天天躁日日操中文字幕| 国产午夜精品论理片| 国产精品av视频在线免费观看| 亚洲av免费高清在线观看| 国产成+人综合+亚洲专区| www.色视频.com| 欧美日韩福利视频一区二区| 亚洲专区国产一区二区| 成年女人永久免费观看视频| av在线老鸭窝| 亚洲国产精品sss在线观看| 色精品久久人妻99蜜桃| 国产在线男女| 美女黄网站色视频| 麻豆av噜噜一区二区三区| 又紧又爽又黄一区二区| 搡老妇女老女人老熟妇| 午夜免费男女啪啪视频观看 | 成人三级黄色视频| 亚洲成人久久爱视频| 久久久久国产精品人妻aⅴ院| 一二三四社区在线视频社区8| 熟女人妻精品中文字幕| 少妇高潮的动态图| 亚洲性夜色夜夜综合| 国产精品永久免费网站| 国产真实伦视频高清在线观看 | 啦啦啦观看免费观看视频高清| 少妇人妻一区二区三区视频| 欧美成狂野欧美在线观看| 国产免费男女视频| 床上黄色一级片| 亚洲avbb在线观看| 久久久久久九九精品二区国产| 99国产精品一区二区蜜桃av| 久久久久免费精品人妻一区二区| 欧美黑人欧美精品刺激| 丰满人妻熟妇乱又伦精品不卡| 国产高潮美女av| 啪啪无遮挡十八禁网站| 国产av麻豆久久久久久久| 国产伦精品一区二区三区视频9| 非洲黑人性xxxx精品又粗又长| .国产精品久久| 最近视频中文字幕2019在线8| www.熟女人妻精品国产| 久久国产乱子免费精品| 最后的刺客免费高清国语| 欧美日本视频| 国产成人福利小说| 亚洲人成网站高清观看| 色综合亚洲欧美另类图片| 一级黄片播放器| 日本成人三级电影网站| 一区二区三区四区激情视频 | 欧美zozozo另类| 赤兔流量卡办理| 少妇被粗大猛烈的视频| 成人鲁丝片一二三区免费| 不卡一级毛片| 欧美xxxx黑人xx丫x性爽| 色5月婷婷丁香| 亚洲18禁久久av| 99久国产av精品| 成人av一区二区三区在线看| 禁无遮挡网站| .国产精品久久| 偷拍熟女少妇极品色| 国产精品一区二区免费欧美| 日韩欧美一区二区三区在线观看| 午夜福利成人在线免费观看| 久久欧美精品欧美久久欧美| 国产成人aa在线观看| 在线a可以看的网站| 国产精品日韩av在线免费观看| 国产高清三级在线| 午夜a级毛片| xxxwww97欧美| 亚洲精品亚洲一区二区| 老鸭窝网址在线观看| 国产 一区 欧美 日韩| 中文字幕av成人在线电影| 99国产综合亚洲精品| 首页视频小说图片口味搜索| 国产精品1区2区在线观看.| 宅男免费午夜| 三级毛片av免费| 免费看光身美女| 亚洲av免费在线观看| 欧美3d第一页| 国产精品亚洲美女久久久| av欧美777| 给我免费播放毛片高清在线观看| 国语自产精品视频在线第100页| 免费看a级黄色片| 舔av片在线| 可以在线观看的亚洲视频| 9191精品国产免费久久| 一进一出好大好爽视频| 男人和女人高潮做爰伦理| 久久久久免费精品人妻一区二区| 男人舔女人下体高潮全视频| 日韩欧美精品免费久久 | 欧美午夜高清在线| 亚洲国产色片| 国产午夜精品论理片| 国产成年人精品一区二区| 亚洲欧美日韩高清专用| 好看av亚洲va欧美ⅴa在| 国产精品永久免费网站| 黄色配什么色好看| 精品国产三级普通话版| 日日干狠狠操夜夜爽| 亚洲一区高清亚洲精品| 亚洲最大成人中文| 日韩欧美一区二区三区在线观看| 男人的好看免费观看在线视频| 免费av观看视频| 男女下面进入的视频免费午夜| 日韩亚洲欧美综合| 级片在线观看| 亚洲成人免费电影在线观看| 最近视频中文字幕2019在线8| 久久久久久久亚洲中文字幕 | 久久午夜亚洲精品久久| a级一级毛片免费在线观看| 亚洲精品一区av在线观看| 日本a在线网址| 亚洲久久久久久中文字幕| 精品一区二区三区视频在线观看免费| 亚洲,欧美精品.| 99久久无色码亚洲精品果冻| 天堂影院成人在线观看| av天堂在线播放| 嫁个100分男人电影在线观看| 亚洲国产精品久久男人天堂| 国产精品影院久久| 亚洲精品久久国产高清桃花| 国产精品不卡视频一区二区 | 69人妻影院| 高清在线国产一区| 大型黄色视频在线免费观看| 精品久久国产蜜桃| 91麻豆av在线| 一区二区三区激情视频| 听说在线观看完整版免费高清| 99热这里只有精品一区| 亚洲色图av天堂| 免费电影在线观看免费观看| 久99久视频精品免费| 国产精品99久久久久久久久| 亚洲美女视频黄频| 日韩高清综合在线| 怎么达到女性高潮| 国产精品影院久久| 97热精品久久久久久| 中文字幕人妻熟人妻熟丝袜美| 99久久九九国产精品国产免费| 他把我摸到了高潮在线观看| 午夜精品久久久久久毛片777| 国产熟女xx| 美女大奶头视频| 给我免费播放毛片高清在线观看| 91狼人影院| 精品人妻视频免费看| 久久亚洲真实| 看十八女毛片水多多多| 国产高清有码在线观看视频| 人妻制服诱惑在线中文字幕| 日日干狠狠操夜夜爽| 国产精品亚洲美女久久久| 少妇的逼好多水| 亚洲在线观看片| 他把我摸到了高潮在线观看| 精品久久久久久久久久久久久| 五月伊人婷婷丁香| 色综合欧美亚洲国产小说| 久久国产乱子伦精品免费另类| 国内精品久久久久久久电影| 久久欧美精品欧美久久欧美| 亚洲人与动物交配视频| 国产精品久久久久久亚洲av鲁大| 午夜激情福利司机影院| 精品人妻1区二区| 国产中年淑女户外野战色| 亚洲专区中文字幕在线| 男人的好看免费观看在线视频| 三级男女做爰猛烈吃奶摸视频| 午夜福利18| 免费大片18禁| 欧美绝顶高潮抽搐喷水| 国产高清有码在线观看视频| 国产毛片a区久久久久| 制服丝袜大香蕉在线| 麻豆一二三区av精品| 色哟哟·www| 美女被艹到高潮喷水动态| 变态另类丝袜制服| 国产亚洲精品综合一区在线观看| 日本a在线网址| 又黄又爽又免费观看的视频| 夜夜爽天天搞| 久久香蕉精品热| 青草久久国产| 日本免费一区二区三区高清不卡| 少妇人妻精品综合一区二区 | 亚洲最大成人av| 少妇的逼水好多| 九九热线精品视视频播放| 午夜免费男女啪啪视频观看 | 波多野结衣高清作品| 日韩欧美国产在线观看| 久久中文看片网| 亚洲人成网站高清观看| 麻豆国产97在线/欧美| 亚洲三级黄色毛片| 国产精品爽爽va在线观看网站| 亚洲成av人片在线播放无| 极品教师在线免费播放| 特级一级黄色大片| 国产精品久久久久久人妻精品电影| 日本熟妇午夜| 天天躁日日操中文字幕| 女同久久另类99精品国产91| 1024手机看黄色片| 自拍偷自拍亚洲精品老妇| 成年女人毛片免费观看观看9| 国产一区二区在线观看日韩| 午夜福利成人在线免费观看| 久久久久久久久大av| 此物有八面人人有两片| 精品无人区乱码1区二区| 村上凉子中文字幕在线| 亚洲精品456在线播放app | 一个人免费在线观看电影| 亚洲国产精品合色在线| 俺也久久电影网| 国产免费一级a男人的天堂| 日韩有码中文字幕| 嫩草影视91久久| 国产日本99.免费观看| 1000部很黄的大片| 日本 欧美在线| 亚洲在线观看片| 国产不卡一卡二| 日韩有码中文字幕| 国产伦在线观看视频一区| 久久中文看片网| 欧美成人免费av一区二区三区| 自拍偷自拍亚洲精品老妇| 在线免费观看不下载黄p国产 | 夜夜躁狠狠躁天天躁| 日韩国内少妇激情av| 亚洲精华国产精华精| 亚洲一区二区三区色噜噜| 亚洲人成伊人成综合网2020| 亚洲片人在线观看| 啦啦啦观看免费观看视频高清| 黄色视频,在线免费观看| 白带黄色成豆腐渣| 精品一区二区三区视频在线| 国产精品久久久久久亚洲av鲁大| 亚洲人成网站在线播| 日本精品一区二区三区蜜桃| 久久久久免费精品人妻一区二区| 午夜福利在线观看吧| 亚洲一区二区三区色噜噜| xxxwww97欧美| 亚洲综合色惰| 国产在线男女| 亚洲黑人精品在线| 永久网站在线| 久久久国产成人精品二区| 国产精品久久久久久精品电影| 亚洲人成网站在线播放欧美日韩| av在线观看视频网站免费| 中文字幕精品亚洲无线码一区| av天堂中文字幕网| 一区二区三区四区激情视频 | 欧美精品啪啪一区二区三区| 欧美日韩中文字幕国产精品一区二区三区| 最新中文字幕久久久久| 一本久久中文字幕| 99久久99久久久精品蜜桃| 日韩欧美精品v在线| 欧美黑人巨大hd| 中文字幕高清在线视频| 人妻久久中文字幕网| 日韩人妻高清精品专区| 1024手机看黄色片| 国产精品一区二区免费欧美| 午夜福利欧美成人| a在线观看视频网站| 91九色精品人成在线观看| 深夜精品福利| 国产综合懂色| 国语自产精品视频在线第100页| 99久久99久久久精品蜜桃| 午夜福利欧美成人| 69av精品久久久久久| 国产免费男女视频| 最近视频中文字幕2019在线8| 国产成人欧美在线观看| 亚洲av二区三区四区| 波多野结衣高清作品| 亚洲avbb在线观看| 国内少妇人妻偷人精品xxx网站| 狠狠狠狠99中文字幕| 在线十欧美十亚洲十日本专区| 最好的美女福利视频网| а√天堂www在线а√下载| 国产欧美日韩精品一区二区| 亚洲熟妇熟女久久| 老司机午夜十八禁免费视频| 日韩精品中文字幕看吧| www日本黄色视频网| 性欧美人与动物交配| 黄色日韩在线| 色哟哟·www| 国产在线男女| 欧美黑人欧美精品刺激| 日本一本二区三区精品| 婷婷色综合大香蕉| 亚洲一区高清亚洲精品| 成人三级黄色视频| 午夜福利视频1000在线观看| 亚洲专区国产一区二区| 欧美性猛交╳xxx乱大交人| 亚洲无线观看免费| 五月玫瑰六月丁香| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 一个人观看的视频www高清免费观看| 99久久九九国产精品国产免费| www.www免费av| 国产亚洲精品综合一区在线观看| 日韩av在线大香蕉| 亚洲中文日韩欧美视频| 久久久久国内视频| 色在线成人网| av在线观看视频网站免费| 99久久成人亚洲精品观看| 乱人视频在线观看| 99精品在免费线老司机午夜| 亚洲七黄色美女视频| 亚洲精品在线美女| 国产成人影院久久av| 国产午夜精品久久久久久一区二区三区 | 老女人水多毛片| 日本精品一区二区三区蜜桃| 99热精品在线国产| 黄色女人牲交| 99热这里只有是精品在线观看 | 一本精品99久久精品77| 男女做爰动态图高潮gif福利片| aaaaa片日本免费| 国产在线精品亚洲第一网站| 精品人妻视频免费看| 国产精品三级大全| 国产在视频线在精品| 亚洲自偷自拍三级| 老司机午夜福利在线观看视频| 欧美在线黄色| 一卡2卡三卡四卡精品乱码亚洲| 欧美日韩瑟瑟在线播放| 成人特级黄色片久久久久久久| 美女xxoo啪啪120秒动态图 | 成人特级黄色片久久久久久久| 亚洲av日韩精品久久久久久密| 最近最新中文字幕大全电影3| www.色视频.com| 久久久国产成人精品二区| 人人妻人人澡欧美一区二区| 国产真实乱freesex| 91午夜精品亚洲一区二区三区 | 日韩中字成人| 高潮久久久久久久久久久不卡| 亚洲黑人精品在线| 日韩欧美国产一区二区入口| 亚洲男人的天堂狠狠| 我要看日韩黄色一级片| 全区人妻精品视频| 成年人黄色毛片网站| 国内揄拍国产精品人妻在线| 欧美色欧美亚洲另类二区| 五月伊人婷婷丁香| 在线国产一区二区在线| 久久久久九九精品影院| 国产精品影院久久| 亚洲欧美日韩高清在线视频| 亚洲精华国产精华精| 色5月婷婷丁香| 99精品久久久久人妻精品| 久久久久久久久大av| 国产精品乱码一区二三区的特点| 午夜亚洲福利在线播放| 成人av一区二区三区在线看| 亚洲不卡免费看| 久久中文看片网| 少妇高潮的动态图| 桃色一区二区三区在线观看| 18禁黄网站禁片免费观看直播| 99久久精品一区二区三区| 在线观看午夜福利视频|