• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic Manipulability and Optimization of a Two DOF Parallel Mechanism

    2010-03-01 01:48:40SHAOHuaWANGJinsongWANGLipingandGUANLiwen

    SHAO Hua, WANG Jinsong, WANG Liping, and GUAN Liwen

    Department of Precision Instrument and Mechanology, Tsinghua University, Beijing 100084, China

    1 Introduction

    Parallel manipulators have received much attention in terms of industrial application, high speed machines,motion simulators, and so on, due to their relative advantages of high stiffness, good dynamic characteristic,and high payload capability[1,2].

    The dynamic dexterity is an important issue that should be considered for problems of manipulator design[3]. It is an evaluation on the efficiency and easiness for performing required manipulator tasks. Some indices for evaluating dynamic dexterity such as dynamic manipulability[4]have been proposed. Dynamic manipulability ellipsoid (DME)[5]is an effective tool to perform task space dynamic analysis of robotic manipulators, and it is a measure of the dynamic performance of a robot manipulator based on the maximum acceleration of the end-effector. CHIACCHIO, et al[6],presented a new definition of dynamic manipulability ellipsoid for redundant manipulators. DOTY, et al[7],proposed an alternative formulation of the manipulability ellipsoid by changing the scale factors or performing a rigid-body transformation on the kinematic vectors.

    Some other measures for evaluating dynamic dexterity have been proposed and applied. The acceleration radius[8]was also proposed as performance measure, this method obtained the minimum value of upper boundaries for the feasible acceleration of an end-effector in the task space.ASADA, et al[9,10], proposed a generalized inertial ellipsoid(GIE) that allowed the distributed mass system of the manipulator to be measured as a single-point mass system at the end-effector. TADOKORO, et al[3], defined a measure of stochastic dynamic manipulability by applying the stochastic interpretation to the dynamic problem, and the stochastic dynamic manipulability evaluates the dynamic dexterity considering the deviation of directions of end-effector acceleration. WU, et al[11,12], applied both DME and GIE to some planar two DOF parallel manipulators for dynamic manipulability analysis.

    In this paper, the dynamic manipulability analysis and optimization of a two DOF parallel manipulator are investigated. Utilizing the virtual work principle, a compact dynamic model of the manipulator is derived. The reciprocal of the condition number of generalized inertia matrix is proposed for evaluating the dynamic dexterity of a manipulator. A global dynamic conditioning index, which is based on the distribution of the condition number of generalized inertia matrix over the task workspace, is proposed for dynamic optimization of the manipulator. The index is applied to redesign the manipulator by changing the link lengths. The dynamic manipulability of the manipulator is evaluated by DME and GIE. The dynamic manipulability of the improved manipulator is compared with that of the original manipulator.

    2 Structure Description

    The two DOF parallel mechanism is shown in Fig. 1.The mechanism is composed of a moving platform B1B2,two active kinematic chains O1A1B1, O2A2B2, and a passive kinematic chain O3A3B3. The chains O1A1B1and O3A3B3have the same structure, and their movements are synchronization by a parallelogram, so providing the moving platform with a two-axis translational moving capability in x-y plane. The chain O1A1B1is a RRR linkage driven along the z-axis, and the other chain O2A2B2is a RSS linkage driven along the x-axis.

    Fig. 1. Kinematic model of the two DOF parallel mechanism

    3 Kinematic Analysis

    3.1 Inverse kinematics of the mechanism

    As illustrated in Fig. 1, the coordinate system O ?xyz is attached to base1O and a moving coordinate systemis fixed to the moving platform. 21d is the width between joint point1B and2B along the y-axis,and d2is the width between them along the x-axis.

    Let the coordinate of origin O′ bewhere p is the posture of the moving platform, andz is a constant. The coordinates of B1and2B in coordinate system O ′ x ′y z′′? can be expressed asAccording to Fig. 1, the following equations can be obtained:

    whereioR —Coordinate ofiO,

    Eq. (1) can be rewritten as

    whereiR—Vector from Oito Bi,

    The following equation can be obtained by taking the norm on both sides of Eq. (2):

    (1) For the case of i=1 , s11can be described aswhere θ1is the angle between link l11and x-axis, so the following equation can be obtained from Eq. (3):

    The solution of this equation can be written as

    Direct kinematic singularities occur when links O1A1and A1B1are collinear. To avoid the inverse kinematic singularity, the “±” of Eq. (4) should be only “-”. Thus,the vector of link l12is obtained as

    (2) The other case of i=2,s21is written aswhere θ2is the angle between link l12and y-axis, so the following equation can be obtained from Eq. (3):

    Similar to chain O1, the solution to this equation for chain O2should be

    Vector s22can be obtained from Eq. (2):

    3.2 Jacobian matrix of the inverse kinematic problem

    Taking the time derivative of Eq. (1) leads to

    Then, multiplying both side byEq. (8) can be written as

    (1) For the case of i=1 , link l11is always in x-y plane,thus w11should be, combining w11and Eq. (9) lead to

    (2) Similarly, angular velocity vector w21can be defined asand the following equation can be obtained:

    The idle DOF spinning along AiBiof link li2can be neglected, the result ofshould be 0. Thus,multiplying both sides of Eq. (8) byandand assembling in matrix form lead to

    The Jacobian matrix of the inverse kinematic can be obtained from Eqs. (10–11):

    where

    4 Dynamic Model Based on Virtual Work Principle

    4.1 Acceleration analysis

    Taking the time derivative of Eq. (8) leads to

    (1) For the case of i=1 , link l11is always in x-y plane,thus ε11should be, combining ε11and Eq. (14) lead to

    (2) Similarly, the angular acceleration vector ε21can be defined asand the following equation can be obtained:

    So the angular velocity of link OiiA can be written as

    where

    Cross multiplying both sides of Eq. (15) by si2lead to

    It can be rewritten as

    where

    4.2 Particular velocity matrix and particular angle velocity matrix

    The virtual work principle[13,14]was employed to derive the dynamic model with a more compact form. First, the particular velocity and particular angular velocity matrix should be determined for dynamic modeling. For the purpose of finding the particular velocity matrix, pointis selected as the pivot point of barandiB is the pivot point of link AiiB. The mass center O′ of the moving platform is regarded as the pivot point of the platform. Then, the partial velocity matrix and partial angular velocity matrix of each part can be computed.

    Since bar OiiA has only the rotational capability, the partial velocity matrix can be expressed as

    According to Eqs. (10)–(11), the partial angular velocity matrix of bar OiiA is given by as follows:

    Since link AiiB is connected to the moving platform,thus, the partial velocity matrix of pointiB can be written as

    where I3-3-order unit matrix.

    On the basis of Eq. (12), the partial angular velocity matrix can be expressed as

    The moving platform can not rotate in this mechanism,the partial velocity matrix and partial angular velocity matrix are written as

    4.3 Inertial forces and moments of moving parts

    The inertial force and moment of each moving part about the part’s pivot point is derived by utilizing Newton-Euler formulation.1im , mi2and mNare denoted as the masses of links OiiA, AiiB and the moving platform,respectively. I1i, Ii2and INare denoted as the moment of inertial of links OiiA, AiiB and the moving platform about each pivot point, respectively.

    The inertial force and moment of link OiiA aboutiO can be expressed as follows:

    where g is the gravitational acceleration vector and, and

    The inertial force and moment of link AiiB aboutiB can be expressed as follows:

    The inertial force and moment of the moving platform about O′ can be expressed as

    4.4 Dynamic model

    The dynamic formulation of the parallel manipulator can be derived based on the virtual principle

    where and Ν consists of the centrifugal, coriolis, and gravitational forces.can be rewritten asfor the reason that z is a constant. Thus,Eq. (35) was modified in the form

    5 Dynamic Manipulability Evaluation and Optimization

    5.1 Performance indices

    There are many performance indices for evaluating dynamic manipulability, but DME and GIE were conventionally used to evaluate the dynamic manipulability of a manipulator. As addressed in Refs. [9] and [11], both DME and GIE are based on the relationship between the generalized acceleration of the end-effector and the generalized inertia torques of the joints. Thus, the force N can be neglected and Eq. (36) can be rewritten in a unified form

    where M ( ˙p˙) is the generalized inertia matrix.

    On the basis of the GIE, the moving platform can easily accelerate in the direction of major axis of the ellipsoid and hardly in the direction of minor axis. The lengths of the principal axes represent the maximum and minimum singular values of the inertia matrix, and the difference between them stands for the anisotropy of the accelerating performance, which is isotropic when the lengths of the principal axes are the same.

    In the dynamic optimum design, if the issue that the accelerating capabilities along all directions should be more isotropic is considered, the condition numberDκ of the generalized inertia matrix is proposed to quantify the dynamic dexterity of the manipulators, which is defined as

    where1δ and2δ are the minimum and maximum singular values of the inertia matrix.

    The dynamic dexterity can be evaluated bysinceis better behaved than κDitself over the overall workspace. For the purpose of obtaining a measure of the global behaviour of the manipulator dynamic condition number, similar to that introduced in Ref. [15], a global dynamic conditioning indexDη is proposed as follows:

    where W is the task workspace of the manipulator.

    The index defined in Eq. (39) is to maximize over the space of manipulator parameters. Thus, the closer to unity the index is, the better the overall dynamic dexterity of the manipulator is.

    5.2 Dynamic manipulability analysis

    As an example to investigate the dynamic dexterity, the designed motion parameters and inertial parameters of the manipulator are given in Table.

    Table. Geometrical and inertial parameters

    The task workspace of the manipulator is defined as a rectangle area with width 30 mm and height 30 mm.

    Fig. 2 shows the generalized inertia ellipsoid of the task workspace. The moving platform can possess a maximum(minimum) acceleration in the direction of the ellipsoid’s major (minor) axis. The larger the area of ellipsoid, the larger is the output acceleration. Fig. 2 shows that the accelerating capability of the point is maximum along x-axis and minimum along y-axis.

    Fig. 2. Distribution of generalized inertia ellipsoid

    Fig. 3. Dynamic dexterity of the inertia matrix

    5.3 Dynamic manipulability optimization

    l11and l21are optimized by maximizingDη over the manipulator’s parameter space on the basis ofDη . It is defined that

    The distribution ofDη and its counter map over the parameter space are shown in Fig.4 and Fig.5,respectively.

    From Fig. 4 and Fig. 5, it can be seen thatDη get the maximum value 0.791 6 whenandOn the basis of ηD, this optimized parameter design result is applied to the manipulator.Fig. 6 and Fig. 7 show the dynamic performances of the optimized mechanism.

    Fig. 4. Distribution of Dη over the parameter space

    Fig. 5. Counter map of Dη over the parameter space

    The generalized inertia ellipsoid of the optimized mechanism in the task workspace is shown in Fig. 6, from which one can see that the axis of the ellipsoid along the y-axis is much longer than that of the origin mechanism,and the area of the ellipsoid is lager than the older one.That means the optimized mechanism can get larger output acceleration over the workspace and along the y-axis with the same input.

    Fig. 7 shows the dynamic dexterityin the same workspace W. It can be seen that the dynamic dexterity is less than 1.0, and more than 0.6, the dynamic dexterity is bigger than that of the original mechanism, which is shown in Fig. 3. That means the optimized mechanism has better dynamic performance.

    Fig. 6. Distribution of GIE of the optimized mechanism

    Fig. 7. Dynamic dexterity of the optimized mechanism

    6 Conclusions

    (2) The dynamic manipulability optimization is performed based onDη . A design result is given with respect to a desired task workspace, then the parameters of the manipulator are improved by consideringDη . The optimized manipulator shows better dynamic performance than the original one.

    [1] LIU Xinjun. Optimal kinematic design of a three translational DoFs parallel manipulator[J]. Robotica, 2006, 24: 239–250.

    [2] GAO Feng, PENG Binbin, ZHAO Hui, et al. A novel 5-DOF fully parallel kinematic machine tool[J]. International Journal of Advanced Manufacturing Technology, 2006, 31: 201–207.

    [3] TADOKORO S, KIMURA I, TAKAMORI T. A measure for evaluation of dynamic dexterity based on a stochastic interpretation of manipulator motion[C]//Proceedings of the Fifth International Conference on Advanced Robotics, Pisa, Italy, 1991: 509–514.

    [4] YOSHIKAWA T. Analysis and design of articulated robot arms from the viewpoint of the dynamic manipulability[C]//The Third International Symposium of Robotics Research, Cambridge, MA,USA, 1985: 273–279.

    [5] YOSHIKAWA T. Dynamic manipulability of robot manipulators[J].Journal of Robotic Systems, 1985, 2(1): 113–124.

    [6] CHIACCHIO P, CONCILIO M. The dynamic manipulability ellipsoid for redundant manipulators[C]//Proceedings of IEEE International Conference on Robotics and Automation, Leuven,Belgium, May 16-20, 1998: 95–100.

    [7] DOTY K L, MELCHIORRI C, SCHWARTZ E M, et al. Robot manipulability[J]. IEEE Transactions on Robotics and Automation,1995, 11(3): 462–468,.

    [8] GRAETTINGER T J, KROGH B H. The acceleration radius: A global performance measure for robotic manipulators[J]. IEEE Journal of Robotics and Automation, 1988, 4(1): 60–69.

    [9] ASADA H, TOUMI K Y. Analysis and design of a direct-drive arm with a five-bar-link parallel drive mechanism[J]. ASME Journal of Dynamic Systems Measurement and Control, 1984, 106(3): 225–230.

    [10] ASADA H. A geometrical representation of manipulator dynamics and its application to arm design[J]. J. Dyn. Syst., Meas. Control,1983, 105(3): 131–135.

    [11] WU Jun, WANG Jinsong, LI Tiemin, et al. Dynamic dexterity of a planar 2-DOF parallel manipulator in a hybrid machine tool[J].Robotica, 2007, 26(1): 93–98,.

    [12] WU Jun, WANG Jinsong, WANG Liping, et al. Dimensional synthesis and dynamic manipulability of a planar two-degree-offreedom parallel manipulator[J]. Proceedings of the I MECH E Part C: Journal of Mechanical Engineering Science, 2008, 222(6):1 061–1 069.

    [13] ZHANG C D, SONG S M. An efficient method for inverse dynamic of manipulators base on the virtual work principle[J]. Journal of Robotic Systems, 1993, 10(5): 605–627.

    [14] TSAI L W. Solving the inverse dynamics of a Stewart-Gough manipulator by the principle of virtual work[J]. Journal of Mechanical Design, 2000, 122(1): 3–9.

    [15] GOSSELIN C M, ANGELES J. A global performance index for the kinematic optimization of robotic manipulators[J]. ASME Journal of Mechanical Design, 1991, 113(3): 220–226.

    九九久久精品国产亚洲av麻豆| 久久国内精品自在自线图片| 午夜激情福利司机影院| 国产色婷婷99| 在线a可以看的网站| 亚洲精品日韩在线中文字幕 | 亚洲自偷自拍三级| 一区二区三区免费毛片| 精品午夜福利视频在线观看一区| 18+在线观看网站| 三级男女做爰猛烈吃奶摸视频| 嫩草影视91久久| 99久久精品热视频| 99国产精品一区二区蜜桃av| 夜夜夜夜夜久久久久| 国产在线精品亚洲第一网站| 国产探花极品一区二区| 日韩一本色道免费dvd| 日韩三级伦理在线观看| 免费搜索国产男女视频| 日本一二三区视频观看| 国产精品精品国产色婷婷| 国产精品一及| 一进一出好大好爽视频| 日韩制服骚丝袜av| 成人三级黄色视频| 五月伊人婷婷丁香| 午夜福利18| av天堂在线播放| 亚洲成人中文字幕在线播放| 国产精品无大码| 日本色播在线视频| 久久亚洲精品不卡| 国产成年人精品一区二区| 少妇猛男粗大的猛烈进出视频 | 欧美日本视频| 日韩人妻高清精品专区| 亚洲国产欧美人成| 亚洲精品国产av成人精品 | 亚洲精品色激情综合| av卡一久久| 秋霞在线观看毛片| 天堂av国产一区二区熟女人妻| 精品熟女少妇av免费看| 国产精品一及| 在线观看午夜福利视频| 成人亚洲精品av一区二区| 午夜日韩欧美国产| 日韩一本色道免费dvd| 国产一区亚洲一区在线观看| 亚洲精品影视一区二区三区av| 久久草成人影院| av在线亚洲专区| 国内精品美女久久久久久| 国产男人的电影天堂91| 亚洲欧美日韩高清专用| 精品久久久噜噜| 亚洲成人av在线免费| 亚洲成人精品中文字幕电影| 偷拍熟女少妇极品色| 99在线视频只有这里精品首页| 人妻久久中文字幕网| 亚洲国产日韩欧美精品在线观看| 日本色播在线视频| 91在线精品国自产拍蜜月| 麻豆精品久久久久久蜜桃| 精品国内亚洲2022精品成人| 亚洲中文字幕一区二区三区有码在线看| 免费av毛片视频| 18禁在线无遮挡免费观看视频 | 香蕉av资源在线| 岛国在线免费视频观看| 午夜精品国产一区二区电影 | 变态另类成人亚洲欧美熟女| 国产精品,欧美在线| 久久天躁狠狠躁夜夜2o2o| 欧美中文日本在线观看视频| 18+在线观看网站| 亚洲中文字幕日韩| 成人国产麻豆网| 综合色av麻豆| 麻豆精品久久久久久蜜桃| 日韩在线高清观看一区二区三区| 91av网一区二区| 欧美性猛交╳xxx乱大交人| 精品无人区乱码1区二区| 淫妇啪啪啪对白视频| 婷婷精品国产亚洲av| 婷婷精品国产亚洲av在线| 女生性感内裤真人,穿戴方法视频| 99久国产av精品国产电影| 国内久久婷婷六月综合欲色啪| 免费看光身美女| 久久久午夜欧美精品| 变态另类丝袜制服| 久久午夜亚洲精品久久| 看十八女毛片水多多多| 日韩精品青青久久久久久| 色吧在线观看| 亚洲最大成人手机在线| 国产精品野战在线观看| 亚洲美女黄片视频| 欧美在线一区亚洲| 观看免费一级毛片| 91久久精品电影网| 国产人妻一区二区三区在| 国产综合懂色| 我的老师免费观看完整版| 99热只有精品国产| 韩国av在线不卡| 久久久久久久久中文| 一进一出抽搐gif免费好疼| 床上黄色一级片| 简卡轻食公司| 亚洲在线自拍视频| 久久热精品热| 国产精品精品国产色婷婷| a级毛色黄片| av在线亚洲专区| 美女免费视频网站| 久久久久国内视频| 精品久久久噜噜| 精品一区二区三区人妻视频| 狂野欧美激情性xxxx在线观看| 成人鲁丝片一二三区免费| 日日摸夜夜添夜夜添av毛片| 国产一区二区三区av在线 | 又爽又黄无遮挡网站| 国产伦在线观看视频一区| 亚洲真实伦在线观看| 久久久久久久午夜电影| 国产精品久久久久久久久免| 在线a可以看的网站| 五月玫瑰六月丁香| 国产视频内射| 老熟妇乱子伦视频在线观看| 亚洲自偷自拍三级| 夜夜夜夜夜久久久久| 精品久久久久久久人妻蜜臀av| 人人妻人人澡人人爽人人夜夜 | 精品久久久久久成人av| 级片在线观看| 看黄色毛片网站| 老熟妇乱子伦视频在线观看| 免费看a级黄色片| 国产私拍福利视频在线观看| 亚洲国产欧洲综合997久久,| 国产精品久久电影中文字幕| 午夜免费激情av| 日日摸夜夜添夜夜爱| 男女视频在线观看网站免费| 1024手机看黄色片| 国产人妻一区二区三区在| 国产精品久久久久久久久免| av在线老鸭窝| 国产成人freesex在线 | 综合色av麻豆| 国产精品久久久久久av不卡| 久久韩国三级中文字幕| 国产中年淑女户外野战色| 又黄又爽又刺激的免费视频.| 精品久久久久久久久久免费视频| 久久久久久久久久成人| 免费av不卡在线播放| av在线观看视频网站免费| 丰满的人妻完整版| 国产精品一区二区三区四区久久| 精品免费久久久久久久清纯| 欧美潮喷喷水| 国产午夜精品久久久久久一区二区三区 | videossex国产| 日韩欧美国产在线观看| 我的老师免费观看完整版| 男女边吃奶边做爰视频| 精品无人区乱码1区二区| 亚洲,欧美,日韩| 美女免费视频网站| 国产淫片久久久久久久久| 午夜久久久久精精品| 在线播放无遮挡| 亚洲成人精品中文字幕电影| 一本久久中文字幕| 国产精品不卡视频一区二区| 成人特级黄色片久久久久久久| 日韩制服骚丝袜av| 国模一区二区三区四区视频| 亚洲精品乱码久久久v下载方式| 小说图片视频综合网站| 成年女人永久免费观看视频| 精品日产1卡2卡| 在线观看免费视频日本深夜| 超碰av人人做人人爽久久| 成年av动漫网址| 女同久久另类99精品国产91| or卡值多少钱| 亚洲国产精品久久男人天堂| 久久精品人妻少妇| 一个人免费在线观看电影| 国产精品久久电影中文字幕| 中文字幕av成人在线电影| 欧美在线一区亚洲| 成人欧美大片| 深夜a级毛片| 夜夜爽天天搞| 可以在线观看毛片的网站| 亚洲激情五月婷婷啪啪| 色播亚洲综合网| 男女那种视频在线观看| av在线蜜桃| 久久久久久久午夜电影| 精品99又大又爽又粗少妇毛片| 欧美最新免费一区二区三区| 国产精品爽爽va在线观看网站| 久久久国产成人精品二区| .国产精品久久| 久久久成人免费电影| 给我免费播放毛片高清在线观看| 日韩成人伦理影院| 最新中文字幕久久久久| 在现免费观看毛片| 久久久久久久久久成人| 99久久精品热视频| 一级黄片播放器| 赤兔流量卡办理| 亚洲欧美日韩无卡精品| 欧美成人a在线观看| 亚洲人成网站高清观看| av中文乱码字幕在线| 欧美成人a在线观看| 午夜久久久久精精品| 悠悠久久av| 少妇裸体淫交视频免费看高清| 成人av在线播放网站| 看片在线看免费视频| 99国产极品粉嫩在线观看| 一个人免费在线观看电影| 久久久久久久久久久丰满| 亚洲人成网站在线播放欧美日韩| 欧美一区二区亚洲| 成人一区二区视频在线观看| 日韩制服骚丝袜av| 久久精品夜色国产| 91在线观看av| 日韩精品有码人妻一区| 成人性生交大片免费视频hd| 中文字幕av在线有码专区| 日本免费一区二区三区高清不卡| 欧美日韩乱码在线| 亚洲久久久久久中文字幕| 国内精品美女久久久久久| АⅤ资源中文在线天堂| 国产精品伦人一区二区| 九九在线视频观看精品| 久久久久久国产a免费观看| 91精品国产九色| 少妇熟女aⅴ在线视频| 搡女人真爽免费视频火全软件 | 国产白丝娇喘喷水9色精品| 久久99热这里只有精品18| 久久久色成人| 日韩,欧美,国产一区二区三区 | 久久精品国产亚洲av香蕉五月| 一级毛片我不卡| 成人综合一区亚洲| 国产精品无大码| 99国产精品一区二区蜜桃av| 亚洲人成网站在线播| 国产麻豆成人av免费视频| 91久久精品国产一区二区三区| 亚洲av第一区精品v没综合| 久久久国产成人免费| 老司机午夜福利在线观看视频| 黄色配什么色好看| 午夜影院日韩av| 亚洲熟妇熟女久久| 狂野欧美白嫩少妇大欣赏| 免费一级毛片在线播放高清视频| 中文亚洲av片在线观看爽| 一进一出好大好爽视频| 性插视频无遮挡在线免费观看| 久久久久国内视频| 国产色爽女视频免费观看| 亚洲第一区二区三区不卡| 亚洲av美国av| 久久久色成人| 国产精品人妻久久久久久| 亚洲成人精品中文字幕电影| 亚洲欧美日韩卡通动漫| 色尼玛亚洲综合影院| 久久热精品热| a级毛片免费高清观看在线播放| 干丝袜人妻中文字幕| 久久6这里有精品| 久久久久久久午夜电影| 日韩高清综合在线| 日本一本二区三区精品| av天堂中文字幕网| 日韩大尺度精品在线看网址| 欧美日本视频| 久久人人精品亚洲av| 国内揄拍国产精品人妻在线| 麻豆国产97在线/欧美| 午夜福利在线观看免费完整高清在 | 色尼玛亚洲综合影院| 两个人的视频大全免费| 国产伦精品一区二区三区视频9| 在线观看一区二区三区| 欧美xxxx黑人xx丫x性爽| 在线天堂最新版资源| 在线a可以看的网站| 男人舔女人下体高潮全视频| 亚洲自偷自拍三级| 国产精品嫩草影院av在线观看| 可以在线观看毛片的网站| 国内精品久久久久精免费| av中文乱码字幕在线| 99久久无色码亚洲精品果冻| 亚洲精品久久国产高清桃花| 中文字幕精品亚洲无线码一区| 赤兔流量卡办理| 久久久久久九九精品二区国产| 少妇裸体淫交视频免费看高清| 高清毛片免费看| 国内精品一区二区在线观看| 亚洲综合色惰| 简卡轻食公司| 日韩大尺度精品在线看网址| 悠悠久久av| 岛国在线免费视频观看| 人妻丰满熟妇av一区二区三区| 免费看a级黄色片| 欧美成人a在线观看| 亚洲三级黄色毛片| 97人妻精品一区二区三区麻豆| 性色avwww在线观看| 久久久欧美国产精品| 国产午夜精品久久久久久一区二区三区 | 欧美一区二区国产精品久久精品| 精品日产1卡2卡| 日本黄大片高清| 国产精品久久视频播放| 亚洲精品一卡2卡三卡4卡5卡| 欧美zozozo另类| 亚洲最大成人中文| 69人妻影院| 特级一级黄色大片| 一夜夜www| av在线亚洲专区| 国产精品精品国产色婷婷| 午夜免费男女啪啪视频观看 | 久久久久国产网址| 一个人观看的视频www高清免费观看| 亚洲最大成人中文| 99久久无色码亚洲精品果冻| 成年版毛片免费区| 嫩草影院入口| 你懂的网址亚洲精品在线观看 | 日日摸夜夜添夜夜爱| 亚洲最大成人中文| 欧美成人a在线观看| 国产黄片美女视频| 在线观看午夜福利视频| 成年女人看的毛片在线观看| 搡女人真爽免费视频火全软件 | 村上凉子中文字幕在线| 欧美3d第一页| 国产一区二区在线观看日韩| 亚洲国产精品久久男人天堂| 五月伊人婷婷丁香| 亚洲国产精品久久男人天堂| 色吧在线观看| 国产探花在线观看一区二区| 九九热线精品视视频播放| 日韩大尺度精品在线看网址| 久久久久久久午夜电影| 中国美白少妇内射xxxbb| 18禁在线播放成人免费| 91在线观看av| 狠狠狠狠99中文字幕| 黄色一级大片看看| 亚洲五月天丁香| 亚洲av二区三区四区| 欧美xxxx黑人xx丫x性爽| 精品不卡国产一区二区三区| 男人和女人高潮做爰伦理| 国产亚洲精品久久久久久毛片| 男人的好看免费观看在线视频| 小说图片视频综合网站| 男人和女人高潮做爰伦理| 99久久久亚洲精品蜜臀av| 最近手机中文字幕大全| 91久久精品电影网| 99热这里只有是精品在线观看| 午夜福利18| 如何舔出高潮| avwww免费| 久久久久久久久久久丰满| 我的女老师完整版在线观看| 国内精品久久久久精免费| 97超视频在线观看视频| 日本三级黄在线观看| 色在线成人网| 国内精品宾馆在线| 男女那种视频在线观看| 婷婷六月久久综合丁香| 97超级碰碰碰精品色视频在线观看| 在线观看免费视频日本深夜| 91久久精品国产一区二区三区| 中文在线观看免费www的网站| 亚洲激情五月婷婷啪啪| 一本久久中文字幕| 精品少妇黑人巨大在线播放 | 日日摸夜夜添夜夜添小说| 国产免费一级a男人的天堂| 亚洲av熟女| 国产在线男女| 高清日韩中文字幕在线| 女人被狂操c到高潮| 99久久久亚洲精品蜜臀av| 亚洲中文字幕一区二区三区有码在线看| 精品人妻视频免费看| 午夜精品在线福利| 日本撒尿小便嘘嘘汇集6| 欧美色欧美亚洲另类二区| 插逼视频在线观看| 一级毛片电影观看 | 白带黄色成豆腐渣| 国产精品三级大全| 日本三级黄在线观看| 国内少妇人妻偷人精品xxx网站| a级毛片免费高清观看在线播放| 真实男女啪啪啪动态图| 国产真实伦视频高清在线观看| av卡一久久| 久久亚洲国产成人精品v| 亚洲内射少妇av| 国产乱人偷精品视频| 久久欧美精品欧美久久欧美| 久久久色成人| 国产黄片美女视频| 国产精品日韩av在线免费观看| 精品人妻一区二区三区麻豆 | 天美传媒精品一区二区| 赤兔流量卡办理| 亚洲精品色激情综合| 老司机福利观看| 精品人妻视频免费看| 最近手机中文字幕大全| 欧美日韩综合久久久久久| 两个人视频免费观看高清| 人人妻人人看人人澡| 九色成人免费人妻av| 日韩欧美在线乱码| 少妇猛男粗大的猛烈进出视频 | 精品久久久久久久久av| 欧美人与善性xxx| 午夜亚洲福利在线播放| 伦精品一区二区三区| av视频在线观看入口| 99视频精品全部免费 在线| 男插女下体视频免费在线播放| 国内少妇人妻偷人精品xxx网站| 99热全是精品| 一区福利在线观看| 久久久久精品国产欧美久久久| 哪里可以看免费的av片| 欧美绝顶高潮抽搐喷水| 国产精品久久久久久av不卡| 亚洲成人久久性| 麻豆av噜噜一区二区三区| 最新中文字幕久久久久| 大又大粗又爽又黄少妇毛片口| 中文字幕熟女人妻在线| 欧美不卡视频在线免费观看| 好男人在线观看高清免费视频| 国产av在哪里看| 亚洲美女搞黄在线观看 | 熟妇人妻久久中文字幕3abv| 精品久久久久久久末码| 日韩欧美 国产精品| 女人被狂操c到高潮| 国产成人91sexporn| 99久久精品一区二区三区| 久久综合国产亚洲精品| 99视频精品全部免费 在线| 一进一出抽搐动态| 少妇被粗大猛烈的视频| 国内精品久久久久精免费| 俄罗斯特黄特色一大片| 一级黄色大片毛片| 可以在线观看的亚洲视频| 精华霜和精华液先用哪个| 十八禁国产超污无遮挡网站| 黄色视频,在线免费观看| 婷婷精品国产亚洲av| 亚洲国产精品成人久久小说 | av在线播放精品| 亚洲第一区二区三区不卡| 在线看三级毛片| 日韩中字成人| 大又大粗又爽又黄少妇毛片口| 亚洲av一区综合| 国产熟女欧美一区二区| a级毛色黄片| www.色视频.com| 可以在线观看毛片的网站| 69人妻影院| 亚洲欧美精品自产自拍| 男人狂女人下面高潮的视频| 久久中文看片网| 久久久久久久久中文| 国产精品久久久久久av不卡| 日韩一本色道免费dvd| 中文字幕免费在线视频6| 天堂√8在线中文| 搞女人的毛片| 嫩草影院入口| 此物有八面人人有两片| 久久精品国产鲁丝片午夜精品| 久久久久久久午夜电影| 人人妻人人澡人人爽人人夜夜 | 麻豆久久精品国产亚洲av| 99热这里只有是精品在线观看| 一进一出好大好爽视频| 中文资源天堂在线| 高清毛片免费观看视频网站| av中文乱码字幕在线| 天堂影院成人在线观看| 日韩强制内射视频| 欧美区成人在线视频| 国产日本99.免费观看| 日韩中字成人| 国产欧美日韩精品一区二区| 亚洲欧美日韩卡通动漫| 午夜福利高清视频| 久久精品国产亚洲av天美| 色综合站精品国产| 三级男女做爰猛烈吃奶摸视频| 午夜激情福利司机影院| 日本免费a在线| 亚洲中文字幕日韩| 久久久国产成人精品二区| 国产一区亚洲一区在线观看| 伊人久久精品亚洲午夜| 最近在线观看免费完整版| 亚洲精品日韩av片在线观看| 亚洲三级黄色毛片| 少妇猛男粗大的猛烈进出视频 | 欧美性感艳星| 欧美三级亚洲精品| 亚洲精品456在线播放app| 天堂动漫精品| 国产精品一区二区三区四区免费观看 | 天天一区二区日本电影三级| 国产片特级美女逼逼视频| 色噜噜av男人的天堂激情| 成人欧美大片| 国产精品久久视频播放| 欧美日本亚洲视频在线播放| 国产色爽女视频免费观看| 校园人妻丝袜中文字幕| 国产高潮美女av| 欧美极品一区二区三区四区| 久久久久久国产a免费观看| av福利片在线观看| 国产精华一区二区三区| 欧美日韩精品成人综合77777| 成人一区二区视频在线观看| 六月丁香七月| 亚洲乱码一区二区免费版| 男女那种视频在线观看| 亚洲av熟女| 欧美+亚洲+日韩+国产| 午夜久久久久精精品| 一个人免费在线观看电影| 国产女主播在线喷水免费视频网站 | 人人妻,人人澡人人爽秒播| 成年av动漫网址| 亚洲自偷自拍三级| 国产在线男女| 最近中文字幕高清免费大全6| 又爽又黄a免费视频| 午夜福利高清视频| 午夜老司机福利剧场| 日本-黄色视频高清免费观看| 人妻少妇偷人精品九色| 亚洲精品在线观看二区| 亚洲精品456在线播放app| 日韩精品有码人妻一区| 国产色爽女视频免费观看| 久久久精品94久久精品| 精品少妇黑人巨大在线播放 | 寂寞人妻少妇视频99o| 非洲黑人性xxxx精品又粗又长| 亚洲成人精品中文字幕电影| 久久精品国产鲁丝片午夜精品| 国产男人的电影天堂91| 亚洲国产日韩欧美精品在线观看| av视频在线观看入口| 精品不卡国产一区二区三区| 能在线免费观看的黄片| 亚洲精品一区av在线观看| 女人被狂操c到高潮| 亚洲av五月六月丁香网| 国产一区二区激情短视频| 国产欧美日韩精品一区二区| 欧美一区二区亚洲| 亚洲色图av天堂| 老熟妇仑乱视频hdxx| 久久久国产成人免费| 蜜臀久久99精品久久宅男| 蜜桃亚洲精品一区二区三区| 久久婷婷人人爽人人干人人爱| 色视频www国产| 校园人妻丝袜中文字幕|