• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multidisciplinary Design Optimization with a New Effective Method

    2010-03-01 01:48:54CHENXiaokaiLIBangguoandLINYi

    CHEN Xiaokai, LI Bangguo, and LIN Yi

    National Engineering Laboratory of Electric Vehicle, Beijing Institute of Technology, Beijing 100081, China

    1 Introduction

    Collaborative optimization (CO) is a new design architecture to tackle the large-scale, distributed-analysis application often found in industry[1]. CO was originally proposed in 1994. It is one of several decomposition based methods that divide a design problem along disciplinary (or other convenient) boundaries. It consists of two-level optimization problems which are system optimization problem and subspace optimization problem. System optimizer optimizes the multidisciplinary variable (system level target)z to satisfy the interdisciplinary constraints while minimizing the system objective. Subspace optimizer minimizes the interdisciplinary compatibility constraints,while satisfying the subspace constraints. Relative to other decomposition-based methods, CO provides the disciplinary subspace with an unusually high level of autonomy[2].

    The basic CO formulation is composed of system level and subspace level, the system level is given by Eq. (1)[2]:

    where F (z) is global objective, z is variable (i.e., system level targets for shared variables),is subspace target response that provides each subspace’s best attempt to meet the system level targets (z), and it is a parameter in system level, n is the number of subspaces.

    The lower subspace level is illustrated in Eq. (2):

    where x is an independent shared variable, xlis a local variable, which is relative only to the local subspace. On the basis of analyzing y = y (x, xl),y is coupling variable,is shared variable, z is a parameter,is a local constraint.

    The subspace objective tries to match targets for the shared variables that have been sent by the system level[2].The dependent variables in subspace level include shared variables (xs) and local variables (xl). The shared variables include both independent variables (x) and coupling variables (y).

    CO has been successfully applied to a variety of mathematical problems and engineering design problems,and used for the conceptual design of launch vehicles[3],high speed civil transports[4], and unmanned aerial vehicles[5]. However, the method also suffers from some challenges, which has been documented by ALEXANDROV, DEMIGUEL, et al[6–8]. They highlighted the features of CO that has an adverse effect on robustness and computational efficiency.

    Three difficulties of the bi-level optimization problem stated in Eqs. (1) and (2) are considered.

    (1) The system level Jacobian is singular at the solution[6]. This can be seen by noting that the constraint gradients are given byEven with a robust optimizer, this has an adverse impact on the rate of convergence.

    (2) The Lagrange multipliers in the subspace problem are either zeroes or converge to zeroes as z converges toThis greatly affects subspace convergence.

    (3) The subspace response ( Ji) is, in general, nonsmooth functions of the targets z[8]. As a result, the system level constraints are nonsmooth, hindering local and global convergence proofs for the system level problem.

    In CO, the system compatibility constraints are equality constraints of quadratic forms, which often lead to some problems of convergence. Because of the quadratic equality constraints, CO also strongly depends on the initial condition for convergence. Inefficient convergence is often caused when gradient-based method is used.

    The basic concept to enhance CO is to modify the system constraints, which cause the convergence difficulties[10]. The current research is focused on using the nature of the subspace problem, therefore the optimum constraints sensitivity is presented to find the closet point from the target point, while satisfying all disciplinary constraints.

    2 Description of the Method

    AZARM and LI[11]gave the formulation of a two level design optimization with an separable objective and separable constraints. The formation is given by Eq. (3) :

    where f is an integrated objective function, fiis an objective function in subspace i.

    The Karush-Kuhn-Tucker (KKT) condition for this problem is given by Eq. (4):

    According to the two-level design optimization problem,CO can be written as another form. System level problem is given by Eq. (5), and subspace problems are given by Eq.(6):

    The KKT optimality condition for subspace level optimization problem can be written as follows:

    In CO, z is fixed and x is varied in subspace problem,we should have

    Likewise, the KKT conditions for the system level optimization problem can be written as follows:

    For CO, the variables in disciplinary optimization problem consist of shared variables and local variables, the KKT conditions for shared variables and local variables can be written as

    CO synergizes the disciplinary problem via shared variables, according to Eqs. (4)–(9), a formulation can be obtained as follows:

    Once the shared variables have been identified, Eq. (12)can be used to obtain. Likewise, Eq. (12) can be used by an optimization method which does not yield the value of ui.

    In CO, to modify the system level constraints, we define the derivative of local constraints while the variables areas the optimum sensitivity of disciplinary constraints according to the idea described above. That is

    The optimum sensitivity of disciplinary constraints can reflect the changing information of disciplinary constraints,which enable the system level optimizer to know the boundary where the subspace objectives are zeroes.Through the optimum constraints sensitivity, the linear dynamic constraints of system level can be constructed by Taylor expansion around the subspace optimum as follows:

    Where i is the number of disciplinary optimization problems, m is the dimension of local variables lx, n is the dimension of independent shared variables x.

    These new constraints are linear constraints of variable z in system level, which can avoid the computational difficulties caused by the original quadratic equation constraints.is the constraint value when x = x*and, which is optimal value of each disciplinary optimization. Through these linear dynamic constraints, the optimized information of subspace optimization can be sent to the system level, which reinforces the exchange between system level and subspace level. The reformed CO is referred to as system level linear dynamic constraints collaborative optimization (DCCO).

    3 Flow of DCCO

    The solution process begins with an initial set of system level design variable z0. This variable is sent to the subspace optimization problems and treated as a set of fixed parameters. The subspace optimization problems are then solved while satisfying the subspace constraint ci.The parameterandare optimized in this optimization.

    Then on the basis of

    The system level optimizer determines whether the design variable z0satisfies the new constraints. Until now one whole optimization is finished. The process is repeated until z reaches the optimum.

    4 Analytic Test Case and Application

    This section illustrates the application of DCCO. The results of a typical functional optimization problem and a gear reducer optimization problem are compared with those obtained via the original version of CO. All problems were solved by sequential quadratic programming (SQP) method based on optimizer: NPSOL.

    4.1 Typical function optimization problem

    BRAUN[1]solved this typical function optimization problem via original version of CO. This problem is a constraint nonlinear problem, and its mathematical model is

    where β is a parameter, and β= 0.1. This problem is decomposed in the following manner. The system level problem and subspace level problem are described respectively.

    The problem is solved by original version of CO, and system level problem is as follows:

    Disciplinary problem 1:

    Disciplinary problem 2:

    The problem is solved by DCCO, and the system level problem is as follows:

    Disciplinary problem 3:

    Disciplinary problem 4:

    The results of this example are summarized in Table 1.For all cases, CO and DCCO methods could be used to solve this problem. Compared with CO of original version,the reformed method greatly reduces the number of the system level iteration. The results of this problem areand x2= 1.9 80. Conclusion can be drawn that the DCCO is more accurate than the original version of CO.

    Table 1. Results of the typical function optimization problem solved by CO and DCCO

    4.2 Example 2: gear reducer design problem

    A well-known gear reducer example is presented in this section (see Fig. 1). The example is conducted to illustrate the effectiveness of this approach. The test problem is taken from AZARM, et al[11]. The objective of this optimization problem is to minimize the overall volume (or weight) of the speed reducer.

    Fig. 1. Model of gear reducer example

    There are 7 variables in this example, and the design variables are expressed as follows:

    x1—Gear face width, 2.6 cm ≤ x1≤3.6 cm;

    x2—Teeth module, 0.7 cm ≤ x2≤0.8 cm;

    x3—Number of teeth of opinion, 17 ≤ x3≤28;

    x4—Distance between bearing 1, 7.3 cm ≤ x4≤8.3 cm;

    x5—Distance between bearing 2, 7.3 cm ≤ x5≤8.3 cm;

    x6—Diameter of shaft 1, 2.9 cm ≤ x6≤3.9 cm;

    x7—Diameter of shaft 2, 5 cm ≤ x7≤5.5 cm.

    The nonlinear programming statement for this example is presented:

    The gear reducer is decomposed into three disciplinary D1, D2, D3as follows:

    This problem is solved by DCCO, and the system level problem is as follows:

    where i is the number of disciplinary problems,j is coupling constraints.

    Disciplinary problem 5:

    Disciplinary problem 6:

    Disciplinary problem 7:

    According to the range of design variables, choose X = (3.6, 0.8, 28, 7.3, 7.3, 2.9, 5.0) as the test design variable. The optimization process begins at X. Table 2 shows the summarized results of the given test design variables using DCCO method and CO method.

    The original objective value is 6 533.6, after 25 iteration of system level optimizer, the objective function f (x)converges at 2 993.2, which is the final objective function value.

    Table 2 also shows the summarized results of the given test design variables using CO method. The final objective function converges at 5 314.4, which is not the precise result of the optimization problem. AZARM, et al[12], gave the results of this problem. Design variables X is (3.5, 0.7,17, 7.3, 7.71, 3.35, 5.29), and objective function is 2 994.Now a conclusion can be drawn that the reformed collaborative optimization is effective to solve this multidisciplinary problem.

    Fig. 2 gives the objective function iteration history via DCCO, which reveals the detailed convergence process.

    Table 2. Results of the gear reducer optimization problem via DCCO and CO

    Fig. 2. Objective function iteration history via DCCO

    5 Conclusions

    (1) A new approach is investigated to modify collaborative optimization. The new approach is focused on making a breakthrough to find an approximate model of system constraints that allow system to converge faster and more robustly.

    (2) A system-level linear dynamic collaborative optimization is presented by modifying the compatibility constraints of the original version of collaborative.

    (3) Results of analytic analysis cases reveal that the reformed collaborative optimization can significantly improve system convergence and save computational time,compared to collaborative optimization. The price for this computational savings is a small increase in the complexity of constructing the system level constraints.

    (4) The modified system level constraints are linear dynamic constraints, which can avoid some computational difficulties caused by the quadratic constraints contrast to the quadratic equality constraints of the original version of collaborative optimization.

    [1] BRAUN R D. Collaborative optimization: an architecture for large-scale distributed design[D]. Palo Alto: Stanford University,1996.

    [2] ROTH B, KROO I. Enhanced collaborative optimization: Application to analytic test problem and aircraft design[C]//12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,Victorian, British Columbia Canada, 10–12 September, 2008.

    [3] BRAUN R, KROO I, MOORE A. Use of the collaborative optimization architecture for launch vehicle design[C]//6th AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Reston, VA, Sept. 4–6, 1996.

    [4] MANNING V. Larger-scale design of supersonic aircraft via collaborative optimization[D]. Palo Alto: Stanford University, 1999.

    [5] SOBIESKI I. Multidisciplinary design using collaborative optimization[D]. Palo Alto: Stanford University, 1998.

    [6] ALEXANDROV N M, LEWIS R. Analytical and computational aspects of collaborative optimization and multidisciplinary design[J]. AIAA Journal, 2002, 40(2): 301–309.

    [7] ALEXANDROV N M, LEWIS R. Comparative properties of collaborative optimization and other approaches to MDO[M].Bradford: MCB University Press, 1999.

    [8] DEMIGUEL A, MURRAY W. An analysis of collaborative optimization methods[C]//8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Long Beach,CA, 2000.

    [9] ALEXANDROV N M, LEWIS R. Engineering design optimization[M]. Bradford: MCB University Press, 1999.

    [10] KOBAYASHI K, KROO I. The new effective MDO method based on collaborative optimization[C]//35th AIAA Fluid Dynamics Conference and Exhibit, 6–9 June, 2005, Toronto, Ontario Canada,AIAA Paper No. 2005–4799.

    [11] AZARM S, LI W C. Optimality and constrained derivatives in Two-level Design Optimization[J]. ASME Journal of Mechanical Design, 1990, 112 (12): 563–568.

    [12] AZARM S, LI W C. Multi-level design optimization using global momonicity analysis[J]. ASME Journal of Mechanisms and Automation in Design, 1989, 11(2): 259–263.

    国产欧美日韩一区二区三| 国产亚洲一区二区精品| 欧美精品高潮呻吟av久久| 久久久国产精品麻豆| 1024视频免费在线观看| 成人国语在线视频| 亚洲av成人一区二区三| 在线观看人妻少妇| 午夜福利免费观看在线| 热99re8久久精品国产| 国产在线精品亚洲第一网站| 成年版毛片免费区| 国产精品久久久av美女十八| 久久久久久久精品吃奶| 国产男女内射视频| 97人妻天天添夜夜摸| 美女午夜性视频免费| 丝袜美腿诱惑在线| 国产单亲对白刺激| 岛国在线观看网站| 久久亚洲精品不卡| 麻豆av在线久日| 国产激情久久老熟女| 免费日韩欧美在线观看| 男女无遮挡免费网站观看| 国产亚洲精品久久久久5区| 99热网站在线观看| 欧美性长视频在线观看| 亚洲国产毛片av蜜桃av| 国产一区二区激情短视频| 后天国语完整版免费观看| 国产高清国产精品国产三级| 黄色视频在线播放观看不卡| 国产av一区二区精品久久| 人成视频在线观看免费观看| 777米奇影视久久| 王馨瑶露胸无遮挡在线观看| 久久久国产欧美日韩av| 久久精品国产亚洲av高清一级| 国产精品亚洲av一区麻豆| 亚洲欧美一区二区三区久久| 午夜福利视频在线观看免费| 人成视频在线观看免费观看| 欧美大码av| 亚洲欧美精品综合一区二区三区| 80岁老熟妇乱子伦牲交| 成人手机av| 久久人妻av系列| 亚洲三区欧美一区| 国产欧美亚洲国产| 免费不卡黄色视频| 亚洲午夜精品一区,二区,三区| 国产又爽黄色视频| 中亚洲国语对白在线视频| www.精华液| 老司机在亚洲福利影院| 亚洲,欧美精品.| 日韩大码丰满熟妇| 99精品在免费线老司机午夜| 国产精品影院久久| 欧美激情高清一区二区三区| 桃花免费在线播放| 国产精品久久久久久精品电影小说| 精品一区二区三卡| 欧美亚洲 丝袜 人妻 在线| 高清在线国产一区| 欧美 日韩 精品 国产| 成年人免费黄色播放视频| a级毛片在线看网站| 免费av中文字幕在线| 国产精品98久久久久久宅男小说| 国产伦理片在线播放av一区| 18禁黄网站禁片午夜丰满| 少妇猛男粗大的猛烈进出视频| 天天躁夜夜躁狠狠躁躁| 国产av精品麻豆| 国产97色在线日韩免费| 不卡av一区二区三区| 国产真人三级小视频在线观看| 亚洲av日韩在线播放| 91麻豆av在线| 曰老女人黄片| 精品人妻熟女毛片av久久网站| 男人操女人黄网站| 欧美乱码精品一区二区三区| 久热这里只有精品99| 精品福利永久在线观看| 国产精品免费大片| 999精品在线视频| 捣出白浆h1v1| 国产区一区二久久| 国产精品熟女久久久久浪| 精品一区二区三卡| 久久精品91无色码中文字幕| 99精品在免费线老司机午夜| 国产成人系列免费观看| 欧美日韩成人在线一区二区| 人人澡人人妻人| 女人被躁到高潮嗷嗷叫费观| 18禁美女被吸乳视频| 成人三级做爰电影| 国产日韩欧美视频二区| 一个人免费在线观看的高清视频| 法律面前人人平等表现在哪些方面| 一级黄色大片毛片| 国产在线免费精品| 人妻久久中文字幕网| 在线观看66精品国产| 亚洲男人天堂网一区| 一区在线观看完整版| 少妇猛男粗大的猛烈进出视频| 极品少妇高潮喷水抽搐| 亚洲一区二区三区欧美精品| 午夜福利视频精品| 男女无遮挡免费网站观看| 这个男人来自地球电影免费观看| 精品第一国产精品| av线在线观看网站| 电影成人av| av一本久久久久| 亚洲精品在线美女| 久久中文字幕一级| 亚洲精品国产色婷婷电影| 一区二区三区激情视频| 99精国产麻豆久久婷婷| 国产精品一区二区在线不卡| 精品亚洲乱码少妇综合久久| 男女边摸边吃奶| 天堂8中文在线网| 久久久久久久大尺度免费视频| 午夜福利免费观看在线| 男女高潮啪啪啪动态图| 成人av一区二区三区在线看| 在线看a的网站| 久久久精品94久久精品| 亚洲精品国产区一区二| 亚洲av第一区精品v没综合| 夫妻午夜视频| 嫩草影视91久久| 最近最新中文字幕大全免费视频| 色视频在线一区二区三区| 欧美+亚洲+日韩+国产| 中文字幕另类日韩欧美亚洲嫩草| 黑人欧美特级aaaaaa片| 亚洲国产欧美日韩在线播放| 亚洲一码二码三码区别大吗| 日日爽夜夜爽网站| 亚洲精品久久成人aⅴ小说| 日本av免费视频播放| 午夜日韩欧美国产| 欧美激情 高清一区二区三区| 一进一出抽搐动态| 欧美精品亚洲一区二区| 亚洲精品国产精品久久久不卡| 久久久久久亚洲精品国产蜜桃av| 精品国产亚洲在线| 黄频高清免费视频| 国产99久久九九免费精品| 国产亚洲精品第一综合不卡| 大香蕉久久成人网| 成人永久免费在线观看视频 | 大香蕉久久成人网| av电影中文网址| av欧美777| 一区在线观看完整版| 一本久久精品| 国产精品二区激情视频| 一级片'在线观看视频| 日本黄色视频三级网站网址 | 99热国产这里只有精品6| 一区二区三区乱码不卡18| 两个人免费观看高清视频| tocl精华| 欧美精品啪啪一区二区三区| 成年人免费黄色播放视频| 一本—道久久a久久精品蜜桃钙片| 亚洲精品一卡2卡三卡4卡5卡| 老汉色av国产亚洲站长工具| 国产男女内射视频| 午夜免费成人在线视频| 久久精品亚洲av国产电影网| 在线观看舔阴道视频| 亚洲精品久久成人aⅴ小说| 成人黄色视频免费在线看| 日韩免费高清中文字幕av| 一进一出好大好爽视频| 亚洲成国产人片在线观看| 女同久久另类99精品国产91| 中文字幕人妻丝袜制服| 国精品久久久久久国模美| 国产又爽黄色视频| 国产麻豆69| 亚洲色图av天堂| 老汉色av国产亚洲站长工具| 老司机午夜福利在线观看视频 | 国产成人精品久久二区二区91| 精品第一国产精品| 成年动漫av网址| 久9热在线精品视频| 又黄又粗又硬又大视频| 99re6热这里在线精品视频| 国产成人免费观看mmmm| 免费在线观看影片大全网站| 男女边摸边吃奶| 中文字幕高清在线视频| 国产91精品成人一区二区三区 | 久久精品aⅴ一区二区三区四区| 国产熟女午夜一区二区三区| 久热爱精品视频在线9| 欧美精品人与动牲交sv欧美| 亚洲av成人一区二区三| 亚洲第一青青草原| 国产区一区二久久| 18禁观看日本| 免费看十八禁软件| 免费日韩欧美在线观看| 国产精品一区二区在线观看99| 黑人猛操日本美女一级片| 亚洲专区中文字幕在线| 电影成人av| 亚洲成人手机| 高清视频免费观看一区二区| 黑人猛操日本美女一级片| 亚洲av成人不卡在线观看播放网| 国产精品成人在线| 9热在线视频观看99| 成年人免费黄色播放视频| 熟女少妇亚洲综合色aaa.| 午夜视频精品福利| 久久免费观看电影| 欧美人与性动交α欧美软件| 美女高潮到喷水免费观看| 亚洲精品国产一区二区精华液| 999久久久国产精品视频| 亚洲国产欧美一区二区综合| 精品少妇内射三级| 高清视频免费观看一区二区| 色尼玛亚洲综合影院| 亚洲av成人不卡在线观看播放网| 亚洲天堂av无毛| 9热在线视频观看99| 久久精品人人爽人人爽视色| 免费在线观看日本一区| 久久久精品免费免费高清| 热99re8久久精品国产| 亚洲精品成人av观看孕妇| 久久中文字幕一级| 亚洲中文日韩欧美视频| 99re6热这里在线精品视频| 亚洲avbb在线观看| 国产精品久久久av美女十八| 免费在线观看黄色视频的| av免费在线观看网站| 人人妻人人澡人人爽人人夜夜| 成人18禁高潮啪啪吃奶动态图| 91成人精品电影| 国产色视频综合| 国产老妇伦熟女老妇高清| 国产亚洲欧美在线一区二区| 亚洲精品久久午夜乱码| 久久av网站| 亚洲综合色网址| 日韩欧美国产一区二区入口| 亚洲av国产av综合av卡| 老司机在亚洲福利影院| 亚洲国产精品一区二区三区在线| 黑人操中国人逼视频| 天堂动漫精品| 中文字幕最新亚洲高清| 国产不卡一卡二| 国产麻豆69| 亚洲精品中文字幕在线视频| 汤姆久久久久久久影院中文字幕| 777久久人妻少妇嫩草av网站| 老司机影院毛片| 黄色a级毛片大全视频| 欧美黑人精品巨大| 成人国语在线视频| 涩涩av久久男人的天堂| 菩萨蛮人人尽说江南好唐韦庄| 国产亚洲一区二区精品| 最新的欧美精品一区二区| 国产精品熟女久久久久浪| 色94色欧美一区二区| 久久人人爽av亚洲精品天堂| 国产一卡二卡三卡精品| 欧美国产精品一级二级三级| 午夜福利乱码中文字幕| 大片电影免费在线观看免费| 搡老岳熟女国产| 三级毛片av免费| 国产精品久久久久久精品古装| 夜夜爽天天搞| a级毛片黄视频| 极品教师在线免费播放| 午夜日韩欧美国产| 色94色欧美一区二区| 精品一区二区三区av网在线观看 | 久久久久视频综合| 免费黄频网站在线观看国产| 久久久久久亚洲精品国产蜜桃av| 涩涩av久久男人的天堂| 两人在一起打扑克的视频| 久久久久久久大尺度免费视频| 嫁个100分男人电影在线观看| 五月天丁香电影| 久久中文字幕一级| 久久精品亚洲精品国产色婷小说| 丝袜美腿诱惑在线| 一本综合久久免费| 极品教师在线免费播放| 香蕉久久夜色| 91av网站免费观看| 我要看黄色一级片免费的| 亚洲人成77777在线视频| 精品少妇久久久久久888优播| 午夜福利一区二区在线看| 大码成人一级视频| 搡老岳熟女国产| 桃花免费在线播放| 色在线成人网| 成年女人毛片免费观看观看9 | 国产高清激情床上av| 国产97色在线日韩免费| 午夜免费成人在线视频| e午夜精品久久久久久久| 久久人人97超碰香蕉20202| 国产av又大| 一区二区三区激情视频| 日本av免费视频播放| 亚洲熟女毛片儿| 男女边摸边吃奶| 欧美日韩精品网址| av超薄肉色丝袜交足视频| 久久精品亚洲熟妇少妇任你| 男女免费视频国产| 在线十欧美十亚洲十日本专区| 一个人免费在线观看的高清视频| 亚洲午夜理论影院| 欧美日韩亚洲综合一区二区三区_| 黄色毛片三级朝国网站| 性高湖久久久久久久久免费观看| 丝袜美足系列| 国产男女超爽视频在线观看| 一本综合久久免费| 亚洲精品中文字幕一二三四区 | 18在线观看网站| 精品福利观看| a级毛片在线看网站| 下体分泌物呈黄色| 电影成人av| 老司机在亚洲福利影院| 午夜福利在线观看吧| 97人妻天天添夜夜摸| 亚洲黑人精品在线| 在线观看66精品国产| 中亚洲国语对白在线视频| 777久久人妻少妇嫩草av网站| 69av精品久久久久久 | 欧美亚洲 丝袜 人妻 在线| 又紧又爽又黄一区二区| 久久久久国内视频| 黄网站色视频无遮挡免费观看| 又大又爽又粗| 国产亚洲一区二区精品| 日本av免费视频播放| 妹子高潮喷水视频| 精品熟女少妇八av免费久了| 国产精品久久久久久精品古装| 日本av免费视频播放| 欧美日韩黄片免| 欧美精品一区二区免费开放| 欧美日韩亚洲高清精品| 精品国产乱码久久久久久小说| 亚洲国产成人一精品久久久| 国产麻豆69| 精品亚洲乱码少妇综合久久| 少妇的丰满在线观看| 亚洲美女黄片视频| 大片电影免费在线观看免费| 国产主播在线观看一区二区| 国产片内射在线| 国产精品国产av在线观看| 午夜成年电影在线免费观看| 国产91精品成人一区二区三区 | 精品国产一区二区三区久久久樱花| 99九九在线精品视频| 精品国产一区二区三区久久久樱花| 女人爽到高潮嗷嗷叫在线视频| 久久人妻福利社区极品人妻图片| 久久久久网色| 欧美精品人与动牲交sv欧美| 亚洲成人免费电影在线观看| 欧美人与性动交α欧美精品济南到| 高清在线国产一区| 精品乱码久久久久久99久播| 日日夜夜操网爽| 欧美日韩中文字幕国产精品一区二区三区 | √禁漫天堂资源中文www| 在线观看免费视频网站a站| 国产亚洲欧美精品永久| 男女无遮挡免费网站观看| 午夜成年电影在线免费观看| 国产伦理片在线播放av一区| 亚洲色图综合在线观看| 90打野战视频偷拍视频| 一本综合久久免费| 啪啪无遮挡十八禁网站| 建设人人有责人人尽责人人享有的| 国产色视频综合| 悠悠久久av| 一进一出抽搐动态| tube8黄色片| 欧美一级毛片孕妇| 久久毛片免费看一区二区三区| 少妇的丰满在线观看| 99re在线观看精品视频| 伦理电影免费视频| 亚洲久久久国产精品| 国产精品电影一区二区三区 | 国产成人一区二区三区免费视频网站| 91成人精品电影| 亚洲综合色网址| 考比视频在线观看| 怎么达到女性高潮| 99国产综合亚洲精品| 老司机亚洲免费影院| 亚洲精华国产精华精| 日本黄色视频三级网站网址 | 久久国产亚洲av麻豆专区| 日韩熟女老妇一区二区性免费视频| 在线观看舔阴道视频| 亚洲欧美一区二区三区黑人| 一级黄色大片毛片| 99香蕉大伊视频| 精品人妻1区二区| 91麻豆av在线| 亚洲,欧美精品.| 亚洲精品av麻豆狂野| 亚洲人成77777在线视频| 欧美 亚洲 国产 日韩一| 男女免费视频国产| 黄网站色视频无遮挡免费观看| 久久香蕉激情| 丁香六月天网| 午夜久久久在线观看| 欧美老熟妇乱子伦牲交| 日日摸夜夜添夜夜添小说| 精品国产一区二区三区久久久樱花| 老司机亚洲免费影院| 久久精品成人免费网站| 午夜精品国产一区二区电影| 国产成人系列免费观看| 久久精品国产a三级三级三级| 欧美成狂野欧美在线观看| 国产亚洲精品一区二区www | 99国产综合亚洲精品| 欧美日韩国产mv在线观看视频| 黄色视频不卡| 国产精品电影一区二区三区 | 中亚洲国语对白在线视频| 下体分泌物呈黄色| 电影成人av| 亚洲欧美日韩另类电影网站| 男女边摸边吃奶| 超碰成人久久| 视频区欧美日本亚洲| 50天的宝宝边吃奶边哭怎么回事| 国产欧美日韩一区二区三| 成人18禁在线播放| 久久久欧美国产精品| 国产aⅴ精品一区二区三区波| 欧美黑人精品巨大| 大码成人一级视频| 涩涩av久久男人的天堂| 免费观看a级毛片全部| 黑人巨大精品欧美一区二区mp4| 亚洲av欧美aⅴ国产| 激情在线观看视频在线高清 | 日本a在线网址| 欧美日韩国产mv在线观看视频| 国产成人精品在线电影| 成人精品一区二区免费| 国产一区二区激情短视频| 久久99热这里只频精品6学生| 成年动漫av网址| 欧美日韩一级在线毛片| 成年版毛片免费区| 久久久久久久精品吃奶| 脱女人内裤的视频| 午夜福利欧美成人| 国产男女内射视频| 日韩 欧美 亚洲 中文字幕| 一级片'在线观看视频| 欧美在线黄色| 精品欧美一区二区三区在线| 巨乳人妻的诱惑在线观看| 可以免费在线观看a视频的电影网站| 亚洲少妇的诱惑av| 女人精品久久久久毛片| tube8黄色片| 精品久久蜜臀av无| 日韩视频在线欧美| 一级片'在线观看视频| 免费少妇av软件| 99久久精品国产亚洲精品| 涩涩av久久男人的天堂| 国产区一区二久久| 一个人免费看片子| 日韩大片免费观看网站| 久久国产精品男人的天堂亚洲| 成人18禁高潮啪啪吃奶动态图| 亚洲av电影在线进入| 777久久人妻少妇嫩草av网站| 99香蕉大伊视频| 啦啦啦免费观看视频1| 午夜免费鲁丝| 天堂中文最新版在线下载| 午夜两性在线视频| 国产区一区二久久| 国产伦理片在线播放av一区| 国产在视频线精品| 欧美亚洲 丝袜 人妻 在线| 午夜免费成人在线视频| 欧美大码av| 精品国产一区二区三区久久久樱花| 亚洲五月色婷婷综合| 日本一区二区免费在线视频| av在线播放免费不卡| 窝窝影院91人妻| 国产av精品麻豆| 中文字幕精品免费在线观看视频| 亚洲精品中文字幕一二三四区 | 最黄视频免费看| 国产不卡一卡二| 亚洲色图综合在线观看| 亚洲黑人精品在线| 久久人人97超碰香蕉20202| 国产亚洲午夜精品一区二区久久| 久久精品人人爽人人爽视色| 麻豆成人av在线观看| 热99re8久久精品国产| 80岁老熟妇乱子伦牲交| 王馨瑶露胸无遮挡在线观看| a在线观看视频网站| 日本五十路高清| 亚洲精品国产色婷婷电影| 老司机影院毛片| 欧美成人午夜精品| av片东京热男人的天堂| 欧美激情 高清一区二区三区| 一本久久精品| 香蕉国产在线看| 日韩视频在线欧美| 91精品国产国语对白视频| 久久免费观看电影| 97在线人人人人妻| 天堂8中文在线网| 在线看a的网站| 久久久久久久国产电影| 午夜久久久在线观看| 91成年电影在线观看| 一级a爱视频在线免费观看| 精品久久久久久电影网| 免费在线观看完整版高清| 两性午夜刺激爽爽歪歪视频在线观看 | 国产男靠女视频免费网站| 国产精品一区二区在线不卡| 中文字幕另类日韩欧美亚洲嫩草| 婷婷成人精品国产| 国产激情久久老熟女| 国产成人精品在线电影| 一区二区三区激情视频| 婷婷丁香在线五月| 国产午夜精品久久久久久| 无遮挡黄片免费观看| 黄片播放在线免费| 久久久久久久精品吃奶| 嫩草影视91久久| 成人18禁高潮啪啪吃奶动态图| 精品免费久久久久久久清纯 | 欧美激情极品国产一区二区三区| 九色亚洲精品在线播放| 国产97色在线日韩免费| 久久久久精品人妻al黑| 国产精品99久久99久久久不卡| 午夜老司机福利片| a级片在线免费高清观看视频| 又黄又粗又硬又大视频| 欧美日韩一级在线毛片| 在线永久观看黄色视频| 欧美乱码精品一区二区三区| 后天国语完整版免费观看| 久久精品aⅴ一区二区三区四区| 在线观看舔阴道视频| 欧美日韩视频精品一区| 一区二区日韩欧美中文字幕| 王馨瑶露胸无遮挡在线观看| 欧美乱妇无乱码| 久久亚洲精品不卡| 香蕉久久夜色| 午夜精品久久久久久毛片777| av视频免费观看在线观看| 中文字幕精品免费在线观看视频| 亚洲人成电影免费在线| 1024香蕉在线观看| 女性被躁到高潮视频| 国产麻豆69| 99re6热这里在线精品视频| 欧美精品亚洲一区二区| 日韩大片免费观看网站| 国产三级黄色录像| 亚洲欧美激情在线| 2018国产大陆天天弄谢| 国产av精品麻豆|