• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modeling and Verification of an Astronaut Handling Large-mass Payload

    2010-03-01 01:48:58YANGAipingYANGChunxinandKEPeng

    YANG Aiping, YANG Chunxin, *, and KE Peng

    1 School of Aeronautics Science and Engineering, Beihang University, Beijing 100191, China

    2 School of Transportation Science and Engineering, Beihang University, Beijing 100191, China

    1 Introduction

    Because of the high cost of astronaut extravehicular activity (EVA), it is necessary to conduct a detailed design beforehand and perform the training of astronauts’ tasks on the ground. Generally, such exercises are carried out at air bearing floors, neutral buoyancy tanks or aircraft flying parabolic trajectories. However, these facilities have some inner disadvantages such as friction on the air bearing floors, water damping in the neutral buoyancy tank, and narrow time span of the aircraft flying each parabola. It is necessary to simulate the astronauts’ task during EVAs.Therefore, the approach of computer simulation of the EVA tasks is especially essential There are many aspects related to research, such as the concept of advanced EVA systems[1,2], EVA worksites design[3], space-suited locomotion[4], astronaut reorientation[5]and so forth.

    In the EVA tasks, the astronauts frequently need to handle the large-mass payload from one worksite to another.In order to make a good training project related to such a task, the basic kinematics and dynamics characteristics about the astronauts must be known. NEWMAN and SCHAFFNER[6,7]of the Massachusettes Institute of Technology performed the computer simulation involving the manipulation of a large-mass payload based on inverse kinematics and Kane method supported by NASA. Their research revealed a process of simulating astronaut task via the computational multi-body dynamics, although the mechanical effects of a space suit are not accounted for.YANG, et al[8,9], studied the suited astronaut movement based on the Kane method; their contribution is to add the mass properties of each segment of extra vehicle mobility unit (EMU) to the corresponding segment of the astronaut model.

    The goal of this study is to solve the joint angles and joint torques of the astronauts handling a large-mass payload based on inverse kinematics and inverse recursive dynamics, and also to validate the results with the ADAMSTMvirtual model. The differences between this study and the results from other studies are that the torque of each joint in time interval can be obtained under the constraints of the least velocity and acceleration of each joint, and that the results calculated can be verified by the ADAMSTMvirtual model. The approach to calculating joint torques of the specific astronaut motion in detail is presented via minimizing joint velocities and accelerations.In addition, the process of verifying the above results by establishing the ADAMSTMvirtual model is illustrated.

    The remainder of this paper is arranged as follows:Section 2 describes the modeling methods of the EVA task,and gives the flow chart of solving joint angles and torques.The joint motion data which include joint angles, joint velocities, joint accelerations and joint torques in time domain are calculated and discussed. Subsequently, the simulation verification is performed by the ADAMSTMvirtual model in section 3. Conclusions are drawn in section 4.

    2 Modeling Methods for the Astronaut EVA Task and Process of Solving Joint Motion

    The modeling methods consist of four steps: task description, geometric model, forward and inverse kinematics, and inverse recursive dynamics. Then, the flow chart of solving joint angle and torque is given.

    2.1 Task description

    An astronaut of fixed feet to handle a large-mass payload[10]is taken as an example of the EVA task. The payload is Spartan astronomy payload in STS-63 flying tasks[6], 1 201.4 kg in mass and 1.344 m×1.241 m×1.309 m in dimension. The astronaut motion model is to manipulate the payload with his arms around a circle trajectory counterclockwise motion in the human body sagittal plane. The radius of the circle is 0.075 m.

    2.2 Geometric model

    A simplified model of an astronaut based on Hanavan’s fifteen body finite-segment model of the human body is shown in Fig. 1.

    Fig. 1. Model of an astronaut handling large-mass payload

    This model consists of upper arm, forearm, hand, trunk,upper leg, lower leg and foot, which are connected respectively with revolute joints. The upper arm, forearm,upper leg, and lower leg are viewed as frustums of cones,the trunk is an elliptical cylinder, and the hand is a thin cube. Payload is added to the center of mass of the hand.Thus, the model is regarded as a planar movement of a multi-body system which includes seven segments with six revolute joints in the human body sagittal plane.

    The inertial frame shown in Fig. 1 is set up at the ankle joint, where the x coordinate is horizontal right, and the y coordinate is vertical upwards. The end motion equations can be obtained as follows:

    Where θ is the angle of the center of mass of the hand,ω is the angular velocity of circle trajectory, t is time,r is radius of circle, and x and y are the coordinates of the center of mass of the hand in the inertial frame, respectively.and y0are the initial positions of x and y,andare the velocities of the center of mass of the hand,anddenote the accelerations of the center of mass of the hand.

    2.3 Forward kinematics

    The forward kinematics method is used to solve the kinematics parameters of the center of mass of the hand by using joint space variations in the following steps.

    First, joint angleiq(i = 1, 2, …, 6) is defined as generalized coordinates of the multi-body system, and inertial frame and local joint frames are set up as shown in Fig. 1. s0represents the inertial frame which is fixed on foot,is(i = 1, 2, …, 6) denotes the local joint i frame, xiis the horizontal axis of joint i which the orientation is from joint i to joint i +1. Each joint rotation axis is vertical to paper outwards.

    Secondly, the transformation matrixabout local joint i frame relative to local joint i–1 frame is described:

    Finally, on the basis of the kinematics of multi-body mechanics[13], the local joint kinematics parameters in the local joint frame can be calculated. Angular velocity, linear velocity, angular acceleration, and linear acceleration at the local joint i frame can be obtained from Eqs. (6), (7), (9),and (10). The velocity and acceleration of the mass center of link i can be achieved from Eqs. (8) and (11):

    Therefore, the series transformation matrix can be obtained with Eq. (5). For each joint, we can obtain the corresponding transformation matrix expression. The linear velocity and angular velocity of the center of mass of the hand at the inertial frame can be obtained from Eqs. (13)and (12):

    In Eq. (13), we can obtain matrix J in Eq. (14) by partially differentiating to joint speeds.

    2.4 Inverse kinematics

    The inverse kinematics is used to solve joint space kinematics parameters with known operation space motion trajectory. For serial chain and tree-structured system[14], a relation expression with the velocities in operation space and the velocities in joint space is described as

    In this plane model, ξ ∈R2is known by Eq. (3), andcan be solved by partial differentiating Eq.(13), and then we can determinein Eq. (14); thus,q andcan be obtained by integration and derivation torespectively.

    To obtain the determinate q, the generalandcan be computed by Eqs. (15) and (16):

    Where+

    J denotes the pseudo inverse of J(q) ,φ denotes an arbitrary vector inspace. Here we attain specificandwhen φ=0 ; thus,and˙ are the least.

    2.5 Inverse recursive dynamics

    Inverse recursive dynamics for the above articulated figure model, which is considered as serial multi-link tree-structure system can be described as follows[7]:

    Where Fjand F*jare respectively the generalized force and initial force of the mass center of rigid body j.cR and Mcrepresent the force and torque acted on the mass center of rigid body j, respectively. ν c q˙j is the partial linear velocity forwhich is solved by partial differentiating Eq. (8) , and ωq˙jis the partial angular velocity, which is achieved by partial differentiating Eq. (6).m is the mass of the rigid body. aiis the acceleration of the mass center of the rigid body. I is the moment of inertia for the mass center of rigid body.

    By Eq. (17), the following equation can be easily obtained for the multi-rigid body system:

    Where n is the number of the links of multi-rigid body system.

    By analyzing the forces acted on the links, the joint torque for joint i can be calculated by using Eq. (21), thus,all joint torques can be solved with these recursive formulations, and the results are given in the condition of the least velocity and acceleration of each joint as explained in Eqs. (15) and (16):

    2.6 Flow chart of solving joint angle and torque

    The flow chart given in Fig. 2 illustrates the solution process of solving joint angle and torque.

    Fig. 2. Solution process of solving joint angle and torque

    The system studied in this paper has six degrees of freedom. The center of mass of the hand has three degrees of freedom, which include two planar displacements and one rotation to z axis. On the basis of the above analysis,it can be concluded that this system has three redundancies.Therefore, the joint speeds of Eq. (14) in this system have multi-solutions. In order to obtain the joint determinate speed solution,can be achieved based on the cost of minimizing the Euclidean module in Eq. (14). Each joint angle q can be obtained by integrating these velocities over time.can also be calculated by the same way as solving. First, for differentiating Eq. (14) over time, we can determine the expression including ofvariation.Second,can be achieved by minimizing the Euclidean module on the expression including ofvariation.

    3 Calculation of Joint Angles and Torques and Discussion

    The motion studied in this paper is a planar movement of a multi-body system, which includes seven segments with six revolute joints in the human body sagittal plane as shown in Fig. 1. The mass center of an astronaut’s hand is assumed as a circular trajectory using counterclockwise arm motions; one period movement is finished within 20 s.

    The respective mass properties of each segment of the EMU can be added to the corresponding human body segment according to the geometrical size of the human body and the mass properties[8]. Thus the moment of inertia about the mass center of each segment can be calculated.The geometric size and mass properties of the model in this paper are shown in Table 1[8,11]. As shown in Table 2, the limits of the EMU joint movement are given[12].

    Table 1. Geometric size and mass properties of the model

    Table 2. Limit of the EMU joint movement

    The variation of each joint angle with movement time calculated using the simplified model is shown in Fig. 3.The peak values of all joint angles are within the EMU joint restrictions.

    Fig. 3. Joints angle plots

    The variation of the six joint angular velocities and accelerations with movement time are shown in Fig. 4 and Fig. 5, respectively. The results show a smooth changing of the six joint velocities and accelerations within one period.Based on the above computing method, it can be concluded that the joint angular velocities and accelerations calculated in this model are the least.

    Fig. 6 indicates the torque curves of six joints during one period. All curves show smooth cosinusoidal curves. The limits of each joint torque both calculated in this paper and Refs. [11-12] are shown in Table 3. For the four torques,except for the hip and ankle torques, the results are found in Refs. [11-12] for comparison which indicates that the four joints’ torques are within the limits obtained by the experimentation in Refs. [11-12].

    Fig. 4. Joints angular velocity plots

    Fig. 5. Joints angular acceleration plots

    Fig. 6. Joints torque plots

    Table 3. Limits of each joint torque both result calculated in this paper and Refs. [11–12]

    4 Simulation Verification

    In this section, the simulation using the ADAMSTMmodel is used to verify the calculated results. The ADAMSTMsoftware applies the Lagrange method of multi-body dynamics for setting up dynamical equations[15,16].

    4.1 Virtual model

    The astronaut simplified model of Fig. 1 was built in the ADAMSTMsoftware. The geometric size and mass properties of the model is defined according to Table 1.

    4.2 Flow chart of verification

    Fig. 7 shows the flow chart of verification. Four steps were used to verify the results calculated in this paper. The first step was to build a virtual model with the ADAMSTMsoftware. The next step was to perform motion simulation via adding rotational joint motion to six joints of virtual model. Here, joint kinematical parameters such as the joint angles calculated were used to rotate the joint motion. The third step was to create the trace the center of mass of the hand and compare with the known circle of the center of mass of the hand. If the two circles are essentially overlapped, it indicates that joint kinematical parameters calculated in this paper are exact. The fourth step was to measure the kinematical and dynamical parameters of virtual model joints in order to compare with the corresponding data calculated in this paper.

    Fig. 7. Flow chart of verification

    4.3 Trajectory verification

    The joint kinematical data calculated in the paper is applied to drive the rotational joint of the virtual model. In addition, the trace of the central mass of hand is obtained and denoted with the blue circle in Fig. 8. The red circle is the known trace of the center of mass of the hand. Since the two circles are coincident, the joint kinematical data can be judged exact. That is to say, joint kinematics data calculated including joint angle, velocity, and acceleration are exact.

    4.4 Data verification

    The joint kinematical and dynamical parameters during one simulation period can be measured and compared with the corresponding data calculated in this paper.

    Fig. 8. Trajectories of the center of mass of the hand (red circle for virtual model,blue one for known trajectory)

    Fig. 9 and Fig. 10 show six joint angular acceleration curves and six joint angular velocity curves, respectively. It is shown that the six measuring curves with star-shaped figures obtained from proposed method are coincident with the six calculated curves with solid lines for the ADAMSTM.Therefore, the joint velocities and acceleration calculated in this paper are exact.

    Fig. 9. Joints angular acceleration comparison

    Fig. 10. Joints angular velocity comparison

    Fig. 11 displays six joint angle curves during one period.By comparing six measuring curves denoted with star-shaped figures to six calculated curves plotted with solid lines, it is seen that two curves of each joint are coincident. Therefore, the joint angles calculated in the paper are exact.

    Fig. 11. Joints angle comparison

    The joint angle, velocity, and acceleration data series calculated in this paper are compared with ADAMSTMmeasuring one. As a result, two data series of each joint from different methods are identically distributed.Therefore, it is revealed that the kinematical data calculated are exact.

    Fig. 12 illustrates six joint torque curves. Comparing the six measuring curves with star-shaped figures to the six calculated curves with solid lines proves that two curves of each joint are essentially coincident. However, there are some departures between the measuring curves and the calculated one, because the torque of each joint has a variation with its joint angle; the velocity and acceleration according to Eq. (21), also the angle and acceleration of each joint are obtained by taking a differentiation of the joint velocity

    Fig. 12. Joints torque comparison

    5 Conclusions

    (1) A simplified model of an astronaut was built, and the astronaut motion was conceived as a planer movement of a multi-body system, which included seven segments with six revolute joints in the human body sagittal plane.

    (2) The inverse kinematics method can be employed to calculate joint angles, joint velocities, and joint accelerations in time domain. Furthermore, joint torques can be solved by using the inverse recursive dynamics. The virtual model can be constructed with the ADAMSTMsoftware to verify the calculated results.

    (3) The simulation verification indicated that the computing methods presented, which consists of the forward and inverse kinematics and the inverse recursive dynamics,were feasible and the ADAMSTMvirtual model can be used as an efficient and effective tool to verify the results calculated for the basic kinematics and dynamics characteristics about the astronaut's tasks.

    [1] DAVID C, DIANE M,MICHELLE M, et al. Concepts for advanced extravehicular activity systems to support NASA’s vision for space exploration[C]// Proceedings of the44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2006: 348–356.

    [2] JORDAN N C, SALEH J H, NEWMAN D J. The case for an integrated systems approach to extravehicular activity[C]//Proceedings of the 1st Space Exploration Conference: Continuing the Voyage of Discovery. Orlando, Florida, 2005: 2 782–2 786.

    [3] COAN D A, KAGEY J L. Developing and verifying requirements for extravehicular activity (EVA) worksites[C]// Proceedings of the space 2005, Long Beach, California, 2005: 6 629–6 643.

    [4] CARR C E, NEWMAN D J. Characterization of a lower-body exoskeleton for simulation of space-suited locomotion[J]. Acta Astronautica, 2008, 62: 308–323.

    [5] STIRLING L, WILLCOX K, NEWMAN D J. Development of a computational model for astronaut reorientation [J/OL]. Journal of Biomechanics, 2010-05-17[2010-05-28]. http://www.jbiomech.com/article/S0021-9290(10)00244-7/abstract.

    [6] NEWMAN D J, SCHAFFNER G. Computational dynamic analysis of extravehicular activity (EVA): large mass handling[J]. Journal of Spacecraft and Rockets, 1998, 2(35): 225–227.

    [7] NEWMAN D J, SCHAFFNER G. Dynamic analysis of astronaut motions in microgravity: applications for extravehicular activity(EVA)[R]. MIT: NASA-CR-199668, 1996.

    [8] YANG Feng, YUAN Xiugan, LI Yinxia. Computational simulation of extravehicular activity[J]. Journal of System Simulation, 2003,2(15): 216–225. (in Chinese).

    [9] YANG Feng, YUAN Xiugan. Application of Kane’s method in simulating extra vehicular activity[J]. Chinese Journal of Applied Mechanics, 2004, 21(2): 151–154. (in Chinese).

    [10] RICCIO G E, VERNON MCDNALD P, PETERS B T, et al.Understanding skill in EVA mass handling volume I: theoretical &operational foundations[R]. NASA TP-3684, 1997.

    [11] MORGAN D, WILMINGTON R P, PANDYA A K, et al.Comparison of extravehicular mobility unit(EMU) and unsuited isolated joint strength measurements[R]. NASA TP-3613, 1996.

    [12] Man Systems Integration Standards. NASA STD-3000[S]. Houston:Johnson Space Center, 1995, 1(B): 585–642.

    [13] MA Xiangfeng. The robot mechanisms[M]. Beijing: China Machine Press, 1991. (in Chinese).

    [14] XIONG Youlun. The Robotics[M]. Beijing: China Machine Press,1993. (in Chinese).

    [15] ZHENG Kai, WU Xiren, CHEN Loumin, et al. ADAMS 2005 advanced application examples for mechanical design[M]. Beijing:China Machine Press, 2006. (in Chinese).

    [16] LIU Ning, LI Junfeng, FENG Qingyi, et al. Underwater human model simulation based on ADAMS[J]. Journal of System Simulation, 2007, 19(2): 240–243. (in Chinese).

    男女免费视频国产| 欧美国产精品一级二级三级| 精品国产国语对白av| 亚洲五月色婷婷综合| 国产深夜福利视频在线观看| 老汉色av国产亚洲站长工具| 一级,二级,三级黄色视频| 国产成人91sexporn| 日本av手机在线免费观看| 97精品久久久久久久久久精品| 午夜免费成人在线视频| 欧美日韩亚洲综合一区二区三区_| 香蕉国产在线看| 欧美另类一区| 手机成人av网站| 国产亚洲精品第一综合不卡| 亚洲中文av在线| 久久性视频一级片| 国产成人av激情在线播放| 亚洲欧美精品综合一区二区三区| 亚洲欧美色中文字幕在线| 90打野战视频偷拍视频| 极品人妻少妇av视频| 久久精品久久精品一区二区三区| 亚洲精品中文字幕在线视频| 尾随美女入室| 日本色播在线视频| 国产成人免费无遮挡视频| 精品国产超薄肉色丝袜足j| 一区二区日韩欧美中文字幕| 大型av网站在线播放| 两人在一起打扑克的视频| 啦啦啦视频在线资源免费观看| 丰满饥渴人妻一区二区三| 久久久精品免费免费高清| 男女之事视频高清在线观看 | 91精品国产国语对白视频| 日韩中文字幕欧美一区二区 | 黄色怎么调成土黄色| 久久久久国产精品人妻一区二区| 在线观看一区二区三区激情| 在线看a的网站| 超色免费av| 性少妇av在线| 亚洲欧美日韩高清在线视频 | 久久久久精品国产欧美久久久 | 啦啦啦啦在线视频资源| 日本黄色日本黄色录像| 久久精品久久久久久噜噜老黄| 午夜免费鲁丝| 啦啦啦啦在线视频资源| 亚洲中文av在线| 亚洲人成电影免费在线| 亚洲欧美一区二区三区久久| 日本五十路高清| 午夜福利免费观看在线| 七月丁香在线播放| www日本在线高清视频| 新久久久久国产一级毛片| 午夜福利免费观看在线| 爱豆传媒免费全集在线观看| 国产黄色视频一区二区在线观看| 热99久久久久精品小说推荐| 亚洲美女黄色视频免费看| 亚洲av电影在线观看一区二区三区| 亚洲欧美一区二区三区国产| 久久亚洲国产成人精品v| 最新的欧美精品一区二区| 久久久久精品国产欧美久久久 | 欧美成人精品欧美一级黄| 午夜福利,免费看| 在线观看免费日韩欧美大片| 国产99久久九九免费精品| 超碰97精品在线观看| 免费在线观看完整版高清| 一区二区三区精品91| 久久ye,这里只有精品| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲成人国产一区在线观看 | 狠狠精品人妻久久久久久综合| 亚洲精品美女久久久久99蜜臀 | av在线app专区| 免费高清在线观看日韩| 国产精品亚洲av一区麻豆| 一本大道久久a久久精品| videos熟女内射| 欧美日韩亚洲综合一区二区三区_| 一级毛片 在线播放| 丰满少妇做爰视频| 日韩精品免费视频一区二区三区| 91国产中文字幕| 国产一区二区 视频在线| 国产精品一二三区在线看| 深夜精品福利| 黄色片一级片一级黄色片| 亚洲精品av麻豆狂野| 国产高清视频在线播放一区 | 精品熟女少妇八av免费久了| 91精品国产国语对白视频| 日韩制服丝袜自拍偷拍| 在线看a的网站| 亚洲国产中文字幕在线视频| 久久久精品区二区三区| 国产精品一区二区在线观看99| 精品久久久久久电影网| 亚洲精品日本国产第一区| 日韩精品免费视频一区二区三区| 久久久亚洲精品成人影院| www.熟女人妻精品国产| 老司机靠b影院| 岛国毛片在线播放| 亚洲成国产人片在线观看| 国产成人精品久久二区二区免费| 欧美97在线视频| 亚洲av欧美aⅴ国产| 国产成人啪精品午夜网站| 国产精品一区二区精品视频观看| 在线天堂中文资源库| 久久久精品国产亚洲av高清涩受| 在线 av 中文字幕| 午夜福利,免费看| 一级片免费观看大全| 欧美精品一区二区免费开放| 新久久久久国产一级毛片| 国产精品麻豆人妻色哟哟久久| 熟女av电影| 成人亚洲精品一区在线观看| 别揉我奶头~嗯~啊~动态视频 | av不卡在线播放| 日韩视频在线欧美| 国产精品成人在线| 久久国产亚洲av麻豆专区| 亚洲av在线观看美女高潮| 免费观看av网站的网址| 伦理电影免费视频| 美女视频免费永久观看网站| 国产亚洲精品久久久久5区| 大片电影免费在线观看免费| 亚洲精品第二区| 欧美黄色片欧美黄色片| 少妇人妻久久综合中文| 亚洲自偷自拍图片 自拍| 日韩电影二区| 99精品久久久久人妻精品| 亚洲国产欧美网| 国产一区有黄有色的免费视频| 亚洲黑人精品在线| 一区二区三区四区激情视频| 日韩 欧美 亚洲 中文字幕| 国产精品国产三级专区第一集| 日本av手机在线免费观看| 亚洲图色成人| 久久免费观看电影| 人人妻人人添人人爽欧美一区卜| 国产在线一区二区三区精| 欧美xxⅹ黑人| 50天的宝宝边吃奶边哭怎么回事| 波多野结衣av一区二区av| 天天操日日干夜夜撸| 国产高清videossex| 婷婷成人精品国产| 大话2 男鬼变身卡| 久久久久久久久免费视频了| 国产成人系列免费观看| 欧美人与性动交α欧美精品济南到| 精品少妇内射三级| 一区福利在线观看| 麻豆国产av国片精品| 午夜日韩欧美国产| 午夜福利乱码中文字幕| 欧美亚洲 丝袜 人妻 在线| 国产免费视频播放在线视频| 日韩精品免费视频一区二区三区| 欧美日韩福利视频一区二区| 国产精品久久久久成人av| 久久久精品免费免费高清| 波多野结衣一区麻豆| 久久精品国产综合久久久| 欧美在线黄色| 中文欧美无线码| 热re99久久国产66热| 男人添女人高潮全过程视频| av福利片在线| 一边摸一边抽搐一进一出视频| 免费在线观看完整版高清| 日本wwww免费看| 中文乱码字字幕精品一区二区三区| 蜜桃在线观看..| 在线观看免费午夜福利视频| 午夜激情av网站| 国产在线视频一区二区| √禁漫天堂资源中文www| 黄色 视频免费看| 免费观看av网站的网址| 搡老乐熟女国产| 久久久久久久国产电影| 亚洲国产欧美一区二区综合| av国产久精品久网站免费入址| 欧美在线黄色| 亚洲国产av影院在线观看| 国产老妇伦熟女老妇高清| 国产精品二区激情视频| 大码成人一级视频| 亚洲专区中文字幕在线| 久久免费观看电影| 亚洲精品国产av成人精品| 国产精品国产av在线观看| 欧美日韩福利视频一区二区| 侵犯人妻中文字幕一二三四区| 欧美黑人欧美精品刺激| 少妇的丰满在线观看| 国产精品国产三级国产专区5o| 成人亚洲精品一区在线观看| 国产成人av激情在线播放| 久久久国产欧美日韩av| av福利片在线| 黄网站色视频无遮挡免费观看| 国产成人精品在线电影| 精品一区二区三区av网在线观看 | 女人爽到高潮嗷嗷叫在线视频| 国产精品国产av在线观看| 美女主播在线视频| 99热全是精品| 人体艺术视频欧美日本| 久久99热这里只频精品6学生| 免费黄频网站在线观看国产| 99精品久久久久人妻精品| 国产精品久久久久久精品电影小说| 成年人免费黄色播放视频| 可以免费在线观看a视频的电影网站| 国产精品一二三区在线看| 你懂的网址亚洲精品在线观看| 成人18禁高潮啪啪吃奶动态图| 亚洲av在线观看美女高潮| 亚洲av国产av综合av卡| 色婷婷久久久亚洲欧美| 国产高清不卡午夜福利| 精品少妇久久久久久888优播| 国产亚洲av片在线观看秒播厂| 这个男人来自地球电影免费观看| 9191精品国产免费久久| 久久av网站| 18禁裸乳无遮挡动漫免费视频| 免费看av在线观看网站| 久久天躁狠狠躁夜夜2o2o | 99国产精品一区二区蜜桃av | 国产男女超爽视频在线观看| 国产视频首页在线观看| 免费少妇av软件| 婷婷色综合大香蕉| 秋霞在线观看毛片| 欧美精品一区二区大全| 高清欧美精品videossex| 人妻一区二区av| 一本色道久久久久久精品综合| 狂野欧美激情性bbbbbb| 最近中文字幕2019免费版| 欧美大码av| 精品亚洲成a人片在线观看| 91国产中文字幕| 高清欧美精品videossex| 亚洲精品美女久久久久99蜜臀 | 欧美人与善性xxx| 久久久久视频综合| 亚洲av在线观看美女高潮| 中文欧美无线码| 国产片特级美女逼逼视频| 国产一区二区激情短视频 | 久热爱精品视频在线9| 国产成人精品在线电影| 欧美另类一区| 美女午夜性视频免费| 久久精品久久久久久噜噜老黄| 一级a爱视频在线免费观看| 亚洲av电影在线进入| 久久午夜综合久久蜜桃| 国产精品久久久人人做人人爽| 黄色片一级片一级黄色片| 秋霞在线观看毛片| 久久99一区二区三区| 99国产精品99久久久久| 99re6热这里在线精品视频| 精品欧美一区二区三区在线| av天堂在线播放| 久久精品亚洲av国产电影网| 国产精品一区二区精品视频观看| 亚洲一码二码三码区别大吗| 一区二区三区乱码不卡18| 亚洲成av片中文字幕在线观看| 国产成人啪精品午夜网站| videos熟女内射| 最黄视频免费看| 九色亚洲精品在线播放| 大型av网站在线播放| av国产久精品久网站免费入址| 在线精品无人区一区二区三| 丰满迷人的少妇在线观看| 国产精品久久久av美女十八| 在线av久久热| 老熟女久久久| 亚洲欧美成人综合另类久久久| 日韩一区二区三区影片| 美女大奶头黄色视频| 午夜91福利影院| 在线精品无人区一区二区三| 久久人人爽av亚洲精品天堂| 国产一卡二卡三卡精品| 伦理电影免费视频| 国产淫语在线视频| av网站在线播放免费| 精品人妻一区二区三区麻豆| 久久久精品国产亚洲av高清涩受| 国产爽快片一区二区三区| 一区二区三区精品91| 手机成人av网站| 欧美激情高清一区二区三区| 欧美日韩国产mv在线观看视频| 大香蕉久久网| 国产99久久九九免费精品| 免费看不卡的av| 又粗又硬又长又爽又黄的视频| 亚洲图色成人| 日韩制服骚丝袜av| 亚洲 国产 在线| 日本色播在线视频| 999精品在线视频| 国产成人影院久久av| 男人爽女人下面视频在线观看| 香蕉丝袜av| 男男h啪啪无遮挡| 十八禁网站网址无遮挡| 久久人人爽av亚洲精品天堂| 一本一本久久a久久精品综合妖精| √禁漫天堂资源中文www| 天天影视国产精品| 777米奇影视久久| 亚洲av在线观看美女高潮| 99精品久久久久人妻精品| 亚洲精品在线美女| 国产一区二区三区av在线| 国产精品免费视频内射| 男女边摸边吃奶| a级毛片黄视频| 欧美xxⅹ黑人| 久久久久网色| 亚洲一码二码三码区别大吗| a级毛片黄视频| 亚洲av日韩在线播放| av电影中文网址| 老司机影院毛片| 热re99久久国产66热| 19禁男女啪啪无遮挡网站| 精品少妇久久久久久888优播| 熟女av电影| 中文字幕最新亚洲高清| 宅男免费午夜| 国产高清videossex| 国产精品国产av在线观看| 国产精品三级大全| 欧美黑人精品巨大| 国产男女内射视频| 久热这里只有精品99| 高清av免费在线| 国产在线观看jvid| 国产亚洲欧美精品永久| 精品一品国产午夜福利视频| 欧美日韩亚洲国产一区二区在线观看 | 99国产精品免费福利视频| 欧美久久黑人一区二区| 国产不卡av网站在线观看| 国产精品三级大全| 国产又色又爽无遮挡免| 欧美久久黑人一区二区| 久久久久精品人妻al黑| 高清不卡的av网站| 国产精品一区二区在线观看99| 中文字幕高清在线视频| 捣出白浆h1v1| 亚洲,一卡二卡三卡| 在线天堂中文资源库| 看免费av毛片| 大香蕉久久网| 99九九在线精品视频| 天天添夜夜摸| 一本久久精品| 欧美xxⅹ黑人| 97人妻天天添夜夜摸| 电影成人av| 97精品久久久久久久久久精品| 日韩av在线免费看完整版不卡| 水蜜桃什么品种好| 国产精品国产三级专区第一集| 亚洲欧美激情在线| 婷婷色综合大香蕉| 黑人巨大精品欧美一区二区蜜桃| 极品人妻少妇av视频| 日本五十路高清| 亚洲免费av在线视频| 免费黄频网站在线观看国产| 一级片'在线观看视频| 欧美在线黄色| av一本久久久久| 91麻豆精品激情在线观看国产 | 欧美日韩av久久| 欧美在线一区亚洲| 美女国产高潮福利片在线看| 久久久亚洲精品成人影院| 久久国产精品影院| 国产一区二区三区av在线| 黄色 视频免费看| av福利片在线| 新久久久久国产一级毛片| 在线av久久热| 午夜福利乱码中文字幕| 青春草亚洲视频在线观看| 18禁国产床啪视频网站| 色视频在线一区二区三区| 亚洲精品美女久久av网站| 真人做人爱边吃奶动态| 国产有黄有色有爽视频| 亚洲欧美中文字幕日韩二区| 婷婷色麻豆天堂久久| 99热全是精品| 亚洲人成电影免费在线| 在线观看人妻少妇| xxx大片免费视频| 久久国产精品男人的天堂亚洲| 国产亚洲午夜精品一区二区久久| 免费在线观看完整版高清| 日本av手机在线免费观看| 国产一区二区激情短视频 | 人人妻,人人澡人人爽秒播 | 999久久久国产精品视频| 亚洲伊人久久精品综合| 无遮挡黄片免费观看| 久久久久视频综合| 人妻 亚洲 视频| 久久久久精品国产欧美久久久 | 视频区欧美日本亚洲| 精品卡一卡二卡四卡免费| 丝袜美腿诱惑在线| 免费日韩欧美在线观看| 久久人妻熟女aⅴ| 欧美日韩精品网址| 久久九九热精品免费| 在线亚洲精品国产二区图片欧美| 菩萨蛮人人尽说江南好唐韦庄| 精品人妻一区二区三区麻豆| 2018国产大陆天天弄谢| 大话2 男鬼变身卡| 成年人午夜在线观看视频| 久久免费观看电影| 啦啦啦啦在线视频资源| 亚洲国产av影院在线观看| 日本欧美视频一区| 国产人伦9x9x在线观看| 日韩,欧美,国产一区二区三区| 在线观看免费高清a一片| 最近中文字幕2019免费版| 国产精品熟女久久久久浪| 亚洲激情五月婷婷啪啪| 999精品在线视频| 亚洲欧美成人综合另类久久久| 免费黄频网站在线观看国产| 一级毛片电影观看| 亚洲精品美女久久av网站| 午夜91福利影院| 男女下面插进去视频免费观看| 亚洲精品一卡2卡三卡4卡5卡 | 色婷婷av一区二区三区视频| 在线观看一区二区三区激情| 亚洲国产精品一区三区| 国产精品九九99| 婷婷色综合www| 亚洲欧美一区二区三区黑人| 亚洲成人免费电影在线观看 | 美女午夜性视频免费| 欧美精品av麻豆av| 看免费成人av毛片| 国语对白做爰xxxⅹ性视频网站| 美女大奶头黄色视频| 国产无遮挡羞羞视频在线观看| bbb黄色大片| 国产成人系列免费观看| 中国国产av一级| 女性生殖器流出的白浆| 在线 av 中文字幕| 日本av免费视频播放| 韩国精品一区二区三区| 日韩中文字幕视频在线看片| 久久国产精品男人的天堂亚洲| 久久久久精品国产欧美久久久 | 久久狼人影院| 在线观看国产h片| 中文字幕人妻丝袜一区二区| 99久久综合免费| 丝袜美腿诱惑在线| 亚洲午夜精品一区,二区,三区| 只有这里有精品99| 悠悠久久av| 18禁黄网站禁片午夜丰满| 日本五十路高清| 一级片'在线观看视频| 91麻豆精品激情在线观看国产 | 男女国产视频网站| 久久精品国产亚洲av涩爱| 国产免费视频播放在线视频| 国产免费福利视频在线观看| 99热全是精品| 国产极品粉嫩免费观看在线| 少妇精品久久久久久久| 男女高潮啪啪啪动态图| 亚洲精品美女久久av网站| 精品高清国产在线一区| 精品国产乱码久久久久久男人| 9热在线视频观看99| 国产一区二区三区av在线| 欧美+亚洲+日韩+国产| av又黄又爽大尺度在线免费看| 久久久欧美国产精品| 精品少妇久久久久久888优播| 色网站视频免费| 手机成人av网站| 一区二区三区精品91| 伊人久久大香线蕉亚洲五| 日韩中文字幕视频在线看片| 国产91精品成人一区二区三区 | 日本av免费视频播放| 伊人久久大香线蕉亚洲五| 老司机午夜十八禁免费视频| 成人午夜精彩视频在线观看| 午夜免费鲁丝| 你懂的网址亚洲精品在线观看| 秋霞在线观看毛片| 久9热在线精品视频| 精品亚洲成a人片在线观看| 欧美日韩亚洲国产一区二区在线观看 | 亚洲精品一区蜜桃| 2018国产大陆天天弄谢| 男女床上黄色一级片免费看| 国产精品久久久久成人av| 久久免费观看电影| 天天躁夜夜躁狠狠躁躁| 爱豆传媒免费全集在线观看| 欧美激情 高清一区二区三区| 中文字幕av电影在线播放| 日本a在线网址| 国产视频一区二区在线看| 黄色片一级片一级黄色片| 精品视频人人做人人爽| 人人妻人人添人人爽欧美一区卜| 国产av精品麻豆| 黄色视频在线播放观看不卡| 亚洲美女黄色视频免费看| 精品亚洲乱码少妇综合久久| √禁漫天堂资源中文www| 捣出白浆h1v1| 欧美性长视频在线观看| 18在线观看网站| 成人国产一区最新在线观看 | 黄色视频不卡| 一边摸一边抽搐一进一出视频| 欧美日韩一级在线毛片| 国产主播在线观看一区二区 | 人成视频在线观看免费观看| 欧美成人精品欧美一级黄| 高清av免费在线| 岛国毛片在线播放| 九色亚洲精品在线播放| 亚洲伊人久久精品综合| 尾随美女入室| 欧美性长视频在线观看| 美女主播在线视频| 欧美黑人精品巨大| 亚洲国产欧美网| 免费人妻精品一区二区三区视频| 丝袜喷水一区| av在线播放精品| 美女大奶头黄色视频| 99久久人妻综合| 青春草亚洲视频在线观看| 中文字幕人妻丝袜制服| 蜜桃国产av成人99| 一级片'在线观看视频| 国产亚洲欧美在线一区二区| 少妇 在线观看| 老司机午夜十八禁免费视频| 免费在线观看完整版高清| 不卡av一区二区三区| 日韩伦理黄色片| 国产午夜精品一二区理论片| 午夜日韩欧美国产| 亚洲五月婷婷丁香| 亚洲国产毛片av蜜桃av| 午夜免费鲁丝| 欧美精品人与动牲交sv欧美| 人人妻,人人澡人人爽秒播 | 午夜影院在线不卡| 啦啦啦在线免费观看视频4| 日韩av在线免费看完整版不卡| videos熟女内射| 久久99热这里只频精品6学生| a级毛片在线看网站| av在线app专区| 脱女人内裤的视频| 日韩av不卡免费在线播放| 无遮挡黄片免费观看| av在线播放精品| 久久精品成人免费网站| 国产野战对白在线观看| 免费在线观看日本一区| 色精品久久人妻99蜜桃| 午夜福利视频在线观看免费| 久久久久久久精品精品| 久久久亚洲精品成人影院|