• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design and Fabrication of MEMS Gyroscopes on the Silicon-on-insulator Substrate with Decoupled Oscillation Modes

    2010-03-01 01:46:50XIEJianbingYUANWeizhengandCHANGHonglong

    XIE Jianbing, YUAN Weizheng, and CHANG Honglong

    Micro and Nano Electromechanical Systems Laboratory, Northwestern Polytechnical University, Xi’an 710072, China

    1 Introduction

    Micromachined gyroscopes are increasingly used in numerous consumer and automotive applications, primarily due to their small size, light weight, low cost, low power and high reliability. A variety of micromachined gyroscopes utilizing different drive and sense methods have been developed since the late 1980s[1–13], such as the double gimbal micro gyroscopes[1], tuning fork gyroscopes[2–3,12–13],surface acoustic wave resonator gyroscope[4], double linear vibratory gyroscope[5–6], decoupled angular velocity gyroscope[7–8], symmetric decoupled gyroscope[10–11]. Most of them are silicon based vibratory sensors, which utilize the energy transfer between two vibrating modes of a mechanical structure[1].

    The earliest vibratory gyroscope, presented in 1993, has only one moveable inertial mass[2–3], the motion of the drive mode transmits to the inertial mass directly, at the same time, the motion is also transferred to the sense mode,thus creates the mode coupling. The mode coupling will lead to a quadrature error, which is considered as very harmful to the gyroscope. Similarly, the motion of the sense also can lead to a quadrature error.

    To decrease mode coupling, a number of micromachined vibrating rate gyroscopes, which use separate oscillation modes for drive and detection have been developed[5–8]. In these gyroscopes, the sensing mass is separated from the inertial mass by some independent beams. Therefore, the inertial sense mass has one degree of freedom(DOF), the mass two DOFs, so that feedback from the sense mass to the inertial mass is suppressed and the quadrature is reduced[6–8]. But the coupling between drive mass and inertial mass still exists. Some subsequent study reported a more desirable structure by using three movable masses,inertial mass, drive mass and sense mass[9–11]. Due to its symmetric structure, the coupling between any two masses has been eliminated successfully.

    In this paper, we presented a novel MEMS gyroscope with decoupled oscillation modes. Also, we used a three masses system, the drive mass is placed inside the main frame mass and the sense masses outside. In this way, we can make the best of the layout area, and obtain maximal inertial mass, which is very helpful to reduce the mechanical noises. The gyroscope is designed and analyzed through multi-port-element network(MuPEN) method[14]and fabricated through a simple one-mask SOI process.

    2 Design of the MEMS gyroscope

    2.1 Theory of operation

    In general, the vibratory gyroscope shows maximum sensitivity when the driving and sensing mode frequencies are exactly matched. However, the gyroscopes that using the same spring in the driving and sensing modes show nonlinear behaviour when the difference of the driving and sensing mode frequencies are smaller than 100 Hz. To reduce the mode coupling effect that results from interference between the driving and sensing mode, the newly designed gyroscope has independent springs for driving and sensing mode.

    Fig. 1 shows the schematic diagram of the vibratory gyroscope, which is achieved by using three moveable masses and two types of one-dimensional springs. The first type spring restricts the motion of the drive mass to y-axis.Similarly, the second restricts the motion of the sense mass to x-axis.

    Fig. 1. Schematic diagram of the vibratory gyroscope

    In this design the drive and main frame masses are forced by the come driver at resonance along the y-axis,and the Coriolis acceleration induced by rotation around the z-axis is sensed capacitively along the x-axis. The governing equations of the gyroscope having external driving force are as follows:

    Where mx, λx, kxare mass, damping and spring coefficient of x-axis, respectively, my, λy, kyare mass, damping and spring coefficient of y-axis, respectively, Fyis driving force,Fxis Coriolis force, and ? is input angular rate.

    When the z-axis speed is match more smaller than the natural frequency of driving mode and sensing mode, and the angular speed is constantly invariable, namely, ?=0, the equation may go a step further simplification as follows:

    If there is no any external force in sensing mode, namely,Fy=0, at the same time, the Coriolis force coupled from sensing mode to driving mode is mach more smaller than the driving force, than the Coriolis force can be ignored and the governing equations may be simplified as follows:

    Eqs. (5) and (6) are the ideal equations of gyroscope motion.

    2.2 Structure of the gyroscope

    The schematic of the fabricated micro gyroscope can be represented as shown in Fig. 2. The inertial mass is driven together in the x-axis at the driving mode by two drive electrodes. If an angular rate is applied in the z-axis, then the inertial mass moves in the x-axis by the Coriolis force.That is, the micro gyroscope estimates the input angular rate by sensing the displacement of the inertial mass induced by the Coriolis force.

    Fig. 2. Schematic drawing of the gyroscope

    As shown in Fig. 2, the inertial mass has three parts such as the main frame mass, outer mass and the inner mass. The main frame mass is connected to inner mass with 4 driving springs, at the same time, the inner mass is connected to the anchor with two decouple beams. When the driving voltage is applied on the driving electrodes on the side of the inner mass, the main frame mass and the inner mass is driven to a linear oscillation along the y-axis with the driving mode resonant frequency.

    When the gyroscope rotates around the z-axis, Coriolis force arise, which cause an oscillation along the x-axis. In this direction, the high stiffness of the inside decouple beams suspension effectively suppresses the linear oscillation of the sense mass, so it will not follow the movement of the frame mass in the x-axis. Similarly the outer mass can only move in x-axis. Therefore, the mode coupling between drive and sense mode has been successfully decreased by using decouple beams.

    2.3 Modeling and simulation

    For the design of the gyroscope, system level simulation is used to predict the frequencies of the drive and sense mode. Fig. 3 shows the system level model of the gyroscope based on multi-port-element network(MuPEN)method. MuPEN method can presented rapid modeling and simulation of system-level behaviors of MEMS with multiple coupled energy domains. The model of the gyroscopes consists of 4 kinds of components, namely,mass, 3D beam, electrostatic comb and anchor.

    Fig. 3. System level model of the gyroscope based on MuPEN

    Fig. 4 shows the amplitude frequency response and phase frequency characteristics of the designed gyroscope in system level simulation. The frequencies of driving mode and sensing mode are 4.67 kHz and 4.83 kHz,respectively. The sensing mode is designed with 160 Hz higher frequency than the driving mode because of electrostatic tuning and fabrication tolerance. The average quality factor(Q-factor) of an individual gyroscope die is analyzed to be about 669 for the driving mode and about 671 for the sensing mode at atmosphere pressure. Fig. 5 shows the simulation of step response for displacement of the outer mass, inner mass, and the main frame mass in driving mode. The displacement of the inner mass and the main frame are both 212 nm, at the same time, the displacement of the outer mass is just 71.3 pm, only the 1/3 000 of the inner and main frame mass. It is mean that the displacement of main frame mass has not transfer to the outer mass, the couple between driving and sensing mode has bean decoupled successfully.

    Fig. 4. Amplitude frequency response and phase frequency characteristics of the designed gyroscope

    Fig. 5. Step response for displacement of the masses in driving mode

    After the system-level design, we obtained the detail design parameters of the gyroscope. Fig. 6 shows the solid model of the designed gyroscope for the quarter view of the gyroscope (Fig. 6(a)) and comb fingers and release holes(Fig. 6(b)).

    Fig. 6. Solid model of the gyroscope

    3 Fabrication Process

    The decoupled vibratory gyroscope shows in Fig. 7 is fabricated with the SOI wafer in order to achieve a high Q-factor. The SOI wafer is 500 μm thick with a 5 μm thick insulating SiO2layer and a 30μm thick device layer. The device layer, which is the gyroscope structure, is P-type with (100) orientation having a resistivity of 0.01–0.02 ? · cm.

    Fig. 7. Cross-sectional view of the fabrication process flow

    Fig. 7 illustrates the cross-sectional view of the fabrication process flow, which can be described as follows:Step (a): The fabrication begins with a P-type single-crystalline silicon wafer. Highly doped silicon wafer was used because it does not require an additional doping step. Step (b): Photoresist(PR) mask is deposited and patterned to transfer the structures. Step (c): The inductively coupled plasma etching(ICP) is used to vertically etch the device layer of the SOI wafer to form the moving structures of the gyroscope[15–16]. Step (d):Hydrofluoric acid is used to release the sacrificial SiO2layer, and a sublimation method is employed to release structure in order to prevent the suction phenomenon. Step(e): We use magnetron sputtering to generator a thin film metal to reduce the contact resistance. Step (f) is the wire bonding.

    4 Experimental Results

    Fig. 8 shows micrograph of fabricated gyroscope. The overall size of the fabricated gyroscope is approximately 3 mm×4 mm. The measured drive-mode frequency response is about 4.821 kHz, as shown in Fig. 9, and the simulated response of the gyroscope is 4.67 kHz. The relative error is 3.1%. The Q-factor of the drive-mode is 600, little smaller than simulation,

    Fig. 10 shows the measured random variation of the output bias of the fabricated gyroscope for zero-rate input.Fig. 11 shows the resulting characteristics for determining the scale factor and nonlinearity of the output response of the microgyroscope. The gyroscope demonstrates a scale factor of 8.9 mV/((°)·s), and the R2-nonlinearity of the measured scale factor is better than 0.4% within ±80°/s full-scale.

    Fig. 8. Micrograph of fabricated gyroscope

    Fig. 9. Measured drive-mode frequency response

    Fig. 10. Measured random variation of the output bias of the fabricated gyroscope

    Fig. 11. Resulting characteristics for determining the scale factor and nonlinearity of the output response of the microgyroscope

    5 Conclusions

    (1) A MEMS gyroscope on the SOI substrate with decoupled oscillation modes was successfully designed and fabricated.

    (2) The coupling between driving and sensing mode has been successful reduced using decouple beams.

    (3) The gyroscope is fabricated with single mask process,having 30 μm thick single crystalline silicon structure without residual stress. Measurements results show that the scale factor of the gyroscope is 8.9 mV/((°)·s) and the Q-factor is as high as 600 at atmosphere pressure.

    [1] GREIFF P, BOXENHORN B, KING T, et al. Silicon monolithic micromechanical gyroscope[C]//Transducers 91 Technical Digest,San Francisco, CA, USA, Jun. 24–27, 1991: 966–968.

    [2] BERNSTEIN J, CHO S, KING A T, et al. A micromachined combdrive tuning fork rate gyroscope micro electro mechanical systems[C]//Proceedings of IEEE Micro Electro Mechanical Systems Workshop, Ft. Lauderdale, FL, USA, Feb., 1993: 143–148.

    [3] WEINBERG M, CONNELLY J, KOUREPENIS A, et al.Microelectromechanical instrument and systems development at the Charles Stark Draper Laboratory, Inc[C]//Digital Avionics Systems Conference, 16th DASC., AIAA/IEEE, Irvine, CA, USA, Oct. 26–30,1997: 8.5-33–8.5-40.

    [4] VARADAN V K, SUH W D, XAVIER P B, et al. Design and development of a MEMS-IDT gyroscope[J]. Smart Materials and Structures, 2000, 9(6): 898–905.

    [5] LEE B L, LEE S W, JUNG K D, et al, A de-coupled vibratory gyroscope using a mixed micro-machining technology[C]//Proceedings of the 2001 IEEE International Conference on Robotics 8 Automation, Seoul, Korea, May 21–26, 2001: 3 412–3 416.

    [6] GEIGER W, FOLKMER B, SOBE U, et al. New designs of micromachined vibrating rate gyroscopes with decoupled oscillation modes[J]. Sensor and Actuators, 1998, A66: 118–124.

    [7] GEIGER W, FOLKMER B, MERZ J, et al. A new silicon rate gyroscope[C]//IEEE Micro Electromechanical Systems Workshop MEMS ’98, Heidelberg, Germany, Jan., 1998: 615–620.

    [8] GEIGER W, BUTT W U, GAISSER A, et al, Decoupled microgyro and the design principle DAVED[J]. Sensor and Actuators, 2002,A95: 239–249.

    [9] SAID E A, TAYFUN A. A symmetric surface micromachined gyroscope with decoupled oscillation modes[J]. Sensor and Actuators, 2002, A97: 347–358.

    [10] SAID E A, TAYFUN A. A single-crystal silicon symmetrical and decoupled MEMS gyroscope on an insulating substrate[J]. Journal of Microelectromechanical Systems, 2005, 14(4): 707–717.

    [11] SAID E A, KIVANC A, TAYFUN A. A high-performance silicon-on-insulator MEMS gyroscope operating at atmospheric pressure[J]. Sensor and Actuators, 2007, A135: 34–42.

    [12] SHARMA A, ZAMAN M F, AMINI B, et al. A high-Q in-plane SOI tuning fork device[C]//IEEE Sensors, Vienna, Austria, Oct. 24–27,2004: 467–470.

    [13] SHARMA A, ZAMAN M F, ZUCHER M, et al. A 0.1°/HR bias drift electronically matched tuning fork microgyroscope[C]//Micro Electro Mechanical Systems, Tucson, AZ, USA, January 13–17,2008: 6–9.

    [14] HE Yang, JIANG Chengyu, YUAN Weizheng. System-level modeling of segmented deformable micromirror using multi-port-element network method[C]//Proceedings of SPIE, the International Society for Optical Engineering, Changchun, China,2005: 122–134.

    [15] PARK W J, KIM J H, CHO S M, et al, High aspect ratio via etching conditions for deep trench of silicon[J]. Surface and Coatings Technology, 2003, 171: 290–295.

    [16] PARK W J, KIM Y T, KIM J H, et al, Etching characterization of shaped hole high density plasma for using MEMS devices[J].Surface & Coatings Technology, 2005, 193: 314–318.

    日韩免费高清中文字幕av| 丰满乱子伦码专区| 91精品一卡2卡3卡4卡| 亚洲图色成人| 国产精品久久久久久精品电影小说| 久久久精品94久久精品| 女人精品久久久久毛片| 久久99精品国语久久久| 少妇高潮的动态图| av视频免费观看在线观看| 晚上一个人看的免费电影| 国产黄片视频在线免费观看| 在线观看三级黄色| 久久精品久久久久久噜噜老黄| 狠狠婷婷综合久久久久久88av| 两个人免费观看高清视频| 久久精品国产自在天天线| 在线观看三级黄色| 亚洲色图综合在线观看| 日韩 亚洲 欧美在线| 精品亚洲乱码少妇综合久久| 亚洲人成网站在线观看播放| 亚洲中文av在线| 久久99精品国语久久久| 如日韩欧美国产精品一区二区三区 | 亚洲四区av| 九色亚洲精品在线播放| 乱人伦中国视频| 国产淫语在线视频| 在线精品无人区一区二区三| 成年美女黄网站色视频大全免费 | a 毛片基地| 亚洲人成网站在线播| 成人综合一区亚洲| 亚洲成色77777| 国产黄频视频在线观看| 亚洲av成人精品一二三区| 国产成人精品婷婷| 久久影院123| 久久99热这里只频精品6学生| 老司机亚洲免费影院| 在线亚洲精品国产二区图片欧美 | 大码成人一级视频| 搡老乐熟女国产| 一区二区三区免费毛片| 下体分泌物呈黄色| 婷婷色综合www| 久久国内精品自在自线图片| 亚洲欧美日韩卡通动漫| 18禁在线播放成人免费| 国产亚洲最大av| 高清av免费在线| 亚洲国产精品专区欧美| 国产熟女午夜一区二区三区 | av电影中文网址| 高清不卡的av网站| 久久综合国产亚洲精品| 国国产精品蜜臀av免费| 亚洲综合色网址| 国产成人91sexporn| 国产国语露脸激情在线看| 蜜臀久久99精品久久宅男| 三级国产精品欧美在线观看| 夫妻性生交免费视频一级片| 一个人看视频在线观看www免费| kizo精华| 亚洲丝袜综合中文字幕| 国产一区有黄有色的免费视频| 一级毛片aaaaaa免费看小| 中文字幕久久专区| 成人午夜精彩视频在线观看| 欧美变态另类bdsm刘玥| 亚洲精品一二三| 国产精品国产av在线观看| 新久久久久国产一级毛片| 国产深夜福利视频在线观看| 晚上一个人看的免费电影| 欧美3d第一页| 99热这里只有是精品在线观看| 亚洲国产精品成人久久小说| av女优亚洲男人天堂| 老司机亚洲免费影院| 春色校园在线视频观看| 王馨瑶露胸无遮挡在线观看| 日韩成人av中文字幕在线观看| a级毛片免费高清观看在线播放| 久久 成人 亚洲| 秋霞在线观看毛片| 三上悠亚av全集在线观看| 国产成人精品一,二区| 国产成人免费无遮挡视频| 成人国产av品久久久| 在线观看免费视频网站a站| 水蜜桃什么品种好| 国产精品嫩草影院av在线观看| 国语对白做爰xxxⅹ性视频网站| 99九九在线精品视频| 国产成人a∨麻豆精品| 国产精品一区二区在线不卡| 爱豆传媒免费全集在线观看| 国产极品粉嫩免费观看在线 | 国产伦精品一区二区三区视频9| 黄片无遮挡物在线观看| av.在线天堂| 国产免费现黄频在线看| 看十八女毛片水多多多| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲国产精品成人久久小说| 日韩亚洲欧美综合| 久久久久国产精品人妻一区二区| 久久精品国产a三级三级三级| 国产av一区二区精品久久| 九九在线视频观看精品| 超色免费av| 精品久久蜜臀av无| 午夜91福利影院| 国产深夜福利视频在线观看| 成人免费观看视频高清| 国产一区二区三区av在线| 亚洲精品色激情综合| 国产黄片视频在线免费观看| 老司机亚洲免费影院| 久久久精品区二区三区| 在线亚洲精品国产二区图片欧美 | 免费av不卡在线播放| 夫妻性生交免费视频一级片| 久久久久久久久久人人人人人人| 女性生殖器流出的白浆| 波野结衣二区三区在线| 国产免费现黄频在线看| 亚洲人成77777在线视频| av有码第一页| 在线精品无人区一区二区三| 国产一区二区三区综合在线观看 | 在线观看人妻少妇| 久久久国产欧美日韩av| 十八禁高潮呻吟视频| 亚洲第一av免费看| 一级爰片在线观看| 久久久国产欧美日韩av| 乱码一卡2卡4卡精品| 国产亚洲精品第一综合不卡 | 欧美xxxx性猛交bbbb| 九色亚洲精品在线播放| 精品人妻熟女av久视频| 日韩亚洲欧美综合| a 毛片基地| 亚洲人与动物交配视频| 久久99热6这里只有精品| 精品人妻熟女av久视频| 青春草国产在线视频| 国产69精品久久久久777片| 性色av一级| 国产精品久久久久久精品古装| 亚洲国产欧美日韩在线播放| 久久久久久久国产电影| 免费黄频网站在线观看国产| h视频一区二区三区| 国产av一区二区精品久久| 久久av网站| 岛国毛片在线播放| 美女脱内裤让男人舔精品视频| 亚洲国产精品一区二区三区在线| 亚洲av日韩在线播放| 母亲3免费完整高清在线观看 | 少妇人妻久久综合中文| 极品人妻少妇av视频| 爱豆传媒免费全集在线观看| 一边亲一边摸免费视频| 精品一区在线观看国产| 亚洲国产精品一区三区| 日日爽夜夜爽网站| 免费观看无遮挡的男女| 一区二区三区免费毛片| 国产精品熟女久久久久浪| 人妻系列 视频| 久热久热在线精品观看| 在线观看人妻少妇| 欧美变态另类bdsm刘玥| 日韩熟女老妇一区二区性免费视频| 在线精品无人区一区二区三| 婷婷成人精品国产| 日本欧美视频一区| 国产高清不卡午夜福利| 日韩大片免费观看网站| 2021少妇久久久久久久久久久| av在线app专区| 免费观看在线日韩| 亚州av有码| 男人爽女人下面视频在线观看| 在线观看免费视频网站a站| 天天操日日干夜夜撸| 一级毛片电影观看| 成人二区视频| 亚洲成色77777| 成人国产av品久久久| 精品少妇黑人巨大在线播放| 秋霞在线观看毛片| 一边摸一边做爽爽视频免费| 久久精品国产鲁丝片午夜精品| 一级爰片在线观看| 亚洲在久久综合| 全区人妻精品视频| 蜜臀久久99精品久久宅男| 日本wwww免费看| 男女边吃奶边做爰视频| 久久 成人 亚洲| 一本久久精品| 国产亚洲一区二区精品| 国产亚洲精品第一综合不卡 | 国产无遮挡羞羞视频在线观看| 伊人久久国产一区二区| 久久婷婷青草| 亚洲第一区二区三区不卡| 久久精品国产自在天天线| 大片电影免费在线观看免费| 免费观看性生交大片5| 一本一本综合久久| 特大巨黑吊av在线直播| 秋霞伦理黄片| 黄色一级大片看看| 纵有疾风起免费观看全集完整版| 国产 一区精品| 又粗又硬又长又爽又黄的视频| 在线观看美女被高潮喷水网站| 性色avwww在线观看| 麻豆乱淫一区二区| 99热这里只有精品一区| 久久这里有精品视频免费| 亚洲人成77777在线视频| 少妇被粗大猛烈的视频| 久久99热这里只频精品6学生| a级毛片黄视频| 在线亚洲精品国产二区图片欧美 | 亚洲av成人精品一二三区| 国产精品三级大全| 亚洲国产最新在线播放| 久久精品国产亚洲网站| 在线观看免费视频网站a站| 国产欧美亚洲国产| 最新的欧美精品一区二区| 爱豆传媒免费全集在线观看| 中文字幕av电影在线播放| 少妇 在线观看| av黄色大香蕉| 亚洲国产日韩一区二区| 91久久精品电影网| 人人妻人人澡人人看| 色哟哟·www| 一区二区三区免费毛片| 热re99久久精品国产66热6| 大又大粗又爽又黄少妇毛片口| 亚洲精品美女久久av网站| 欧美精品一区二区大全| 亚洲怡红院男人天堂| 97在线视频观看| 成人无遮挡网站| 97精品久久久久久久久久精品| 高清毛片免费看| 精品人妻在线不人妻| 国产免费现黄频在线看| 欧美亚洲 丝袜 人妻 在线| 爱豆传媒免费全集在线观看| 最近中文字幕高清免费大全6| 亚洲欧美中文字幕日韩二区| 狠狠精品人妻久久久久久综合| 秋霞伦理黄片| 免费av不卡在线播放| 久久99蜜桃精品久久| 十分钟在线观看高清视频www| 视频中文字幕在线观看| 少妇熟女欧美另类| 中文字幕人妻熟人妻熟丝袜美| 亚洲av二区三区四区| 国产精品国产三级专区第一集| 男女高潮啪啪啪动态图| 在线 av 中文字幕| 免费少妇av软件| 亚洲精品乱码久久久久久按摩| 欧美精品国产亚洲| 99久国产av精品国产电影| 在线观看一区二区三区激情| 一个人看视频在线观看www免费| 亚洲欧美精品自产自拍| 精品国产乱码久久久久久小说| 久久人人爽av亚洲精品天堂| 中文乱码字字幕精品一区二区三区| 中文字幕免费在线视频6| 日日摸夜夜添夜夜添av毛片| 国产精品 国内视频| 日日撸夜夜添| 超碰97精品在线观看| a级毛色黄片| 亚洲人与动物交配视频| a级毛片黄视频| 在线观看美女被高潮喷水网站| 亚洲精品自拍成人| 最黄视频免费看| 国产男人的电影天堂91| 天堂8中文在线网| 日日爽夜夜爽网站| 九九爱精品视频在线观看| 久久精品熟女亚洲av麻豆精品| 91精品一卡2卡3卡4卡| 国产免费福利视频在线观看| 日本与韩国留学比较| 观看av在线不卡| 99热国产这里只有精品6| 美女xxoo啪啪120秒动态图| 成人漫画全彩无遮挡| 国产在视频线精品| 一本久久精品| 亚洲国产精品一区三区| 18禁裸乳无遮挡动漫免费视频| 制服人妻中文乱码| 能在线免费看毛片的网站| 一级黄片播放器| 久久久久久人妻| 热99久久久久精品小说推荐| 免费av不卡在线播放| 91国产中文字幕| 午夜久久久在线观看| 亚洲欧美清纯卡通| 欧美日韩亚洲高清精品| 午夜免费男女啪啪视频观看| 欧美三级亚洲精品| 久久久久久伊人网av| 伦理电影免费视频| 久久国产精品男人的天堂亚洲 | av在线播放精品| 蜜桃在线观看..| 中文精品一卡2卡3卡4更新| 伊人久久国产一区二区| 日本wwww免费看| 超碰97精品在线观看| 亚洲av国产av综合av卡| 狂野欧美白嫩少妇大欣赏| 永久网站在线| 2021少妇久久久久久久久久久| 日韩熟女老妇一区二区性免费视频| 国产高清国产精品国产三级| 国产午夜精品一二区理论片| 一级a做视频免费观看| 国产高清三级在线| 色吧在线观看| 丝瓜视频免费看黄片| 18在线观看网站| xxxhd国产人妻xxx| 国产午夜精品一二区理论片| 国产男女内射视频| 国产精品久久久久久久久免| 成人毛片60女人毛片免费| 一本久久精品| 亚洲第一区二区三区不卡| 一区二区三区免费毛片| 老司机影院毛片| 一二三四中文在线观看免费高清| 国产成人精品福利久久| 国产成人免费无遮挡视频| 久热久热在线精品观看| 99热全是精品| 日本爱情动作片www.在线观看| 国产老妇伦熟女老妇高清| 久久精品久久久久久久性| 欧美亚洲日本最大视频资源| 免费少妇av软件| 中文天堂在线官网| 成人影院久久| 性色av一级| 不卡视频在线观看欧美| 少妇人妻久久综合中文| 国产免费视频播放在线视频| 国产亚洲一区二区精品| 国产高清三级在线| 亚洲成人一二三区av| 久久久精品免费免费高清| 亚洲精品日韩在线中文字幕| 日韩中文字幕视频在线看片| 国产成人a∨麻豆精品| 久久久久国产精品人妻一区二区| 老女人水多毛片| 国产成人精品在线电影| 久久久久久伊人网av| 热99国产精品久久久久久7| 亚洲第一av免费看| 人成视频在线观看免费观看| 男女边吃奶边做爰视频| 丝袜脚勾引网站| 中文字幕最新亚洲高清| 午夜免费鲁丝| 简卡轻食公司| 国产淫语在线视频| 蜜桃在线观看..| 两个人的视频大全免费| 精品久久久久久久久亚洲| 国产亚洲午夜精品一区二区久久| 一本一本综合久久| 国产成人av激情在线播放 | 日本色播在线视频| 精品国产一区二区久久| 久久97久久精品| 新久久久久国产一级毛片| 大话2 男鬼变身卡| 日韩强制内射视频| 国产精品蜜桃在线观看| 久久久国产精品麻豆| 2018国产大陆天天弄谢| 免费观看的影片在线观看| 欧美变态另类bdsm刘玥| 91国产中文字幕| 欧美日韩国产mv在线观看视频| 国产av一区二区精品久久| 精品久久久久久久久亚洲| 高清欧美精品videossex| 午夜免费男女啪啪视频观看| 国产精品秋霞免费鲁丝片| 亚洲国产色片| www.av在线官网国产| 亚洲综合色网址| 另类精品久久| 欧美日韩一区二区视频在线观看视频在线| 一级a做视频免费观看| 黄色视频在线播放观看不卡| 91精品国产九色| 国产爽快片一区二区三区| 久久久久久久久久久免费av| av免费在线看不卡| 能在线免费看毛片的网站| 国产爽快片一区二区三区| 久久精品熟女亚洲av麻豆精品| 大话2 男鬼变身卡| 18禁在线播放成人免费| 久久久久久人妻| 我的老师免费观看完整版| 久热久热在线精品观看| 国产免费现黄频在线看| 精品久久国产蜜桃| 亚洲不卡免费看| 午夜日本视频在线| 亚洲高清免费不卡视频| 精品一品国产午夜福利视频| 少妇被粗大猛烈的视频| 丝袜脚勾引网站| 老司机影院毛片| 黑人欧美特级aaaaaa片| 一个人免费看片子| 哪个播放器可以免费观看大片| av卡一久久| 特大巨黑吊av在线直播| 国产成人精品在线电影| 日本vs欧美在线观看视频| 成人无遮挡网站| 成年女人在线观看亚洲视频| av免费观看日本| 男人爽女人下面视频在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 极品人妻少妇av视频| 丝袜脚勾引网站| 少妇高潮的动态图| 日韩中文字幕视频在线看片| 亚洲国产色片| 另类亚洲欧美激情| 视频在线观看一区二区三区| 制服人妻中文乱码| 国产一级毛片在线| 日本黄色日本黄色录像| 国产精品久久久久久精品电影小说| 久久精品国产a三级三级三级| 伊人亚洲综合成人网| 青春草亚洲视频在线观看| 中文字幕亚洲精品专区| 99国产综合亚洲精品| 免费av不卡在线播放| 久久99精品国语久久久| 久久综合国产亚洲精品| 精品99又大又爽又粗少妇毛片| 免费高清在线观看视频在线观看| 高清欧美精品videossex| 久久女婷五月综合色啪小说| 国精品久久久久久国模美| 精品少妇黑人巨大在线播放| 搡老乐熟女国产| 久久久精品免费免费高清| 国产精品免费大片| 少妇精品久久久久久久| 色吧在线观看| 国产亚洲av片在线观看秒播厂| 亚洲综合色惰| av线在线观看网站| 人人妻人人澡人人看| 蜜桃久久精品国产亚洲av| 成人黄色视频免费在线看| 国产视频内射| 久久99精品国语久久久| 麻豆精品久久久久久蜜桃| 久久免费观看电影| a级毛片黄视频| 中文天堂在线官网| 国产成人aa在线观看| 精品人妻偷拍中文字幕| 熟女人妻精品中文字幕| 一级,二级,三级黄色视频| 97精品久久久久久久久久精品| 男女边摸边吃奶| 亚洲五月色婷婷综合| av网站免费在线观看视频| 热99国产精品久久久久久7| 中文字幕人妻丝袜制服| 亚洲精品国产av成人精品| 一级毛片黄色毛片免费观看视频| 18禁在线播放成人免费| 午夜91福利影院| 国产探花极品一区二区| 色视频在线一区二区三区| 考比视频在线观看| 国产一区亚洲一区在线观看| 一级,二级,三级黄色视频| 22中文网久久字幕| av电影中文网址| 熟女电影av网| 午夜福利在线观看免费完整高清在| 黑人欧美特级aaaaaa片| 欧美+日韩+精品| 日本爱情动作片www.在线观看| 91精品三级在线观看| 久久久久久久久大av| 激情五月婷婷亚洲| av国产精品久久久久影院| a级片在线免费高清观看视频| 亚洲欧洲国产日韩| 亚洲内射少妇av| 亚洲国产毛片av蜜桃av| 爱豆传媒免费全集在线观看| 97在线人人人人妻| 七月丁香在线播放| 国产精品麻豆人妻色哟哟久久| 欧美日韩精品成人综合77777| 狠狠精品人妻久久久久久综合| 九九久久精品国产亚洲av麻豆| 久久久国产欧美日韩av| 色婷婷av一区二区三区视频| 视频在线观看一区二区三区| 久久人人爽人人片av| 免费观看在线日韩| 春色校园在线视频观看| 国产成人精品无人区| 黄色视频在线播放观看不卡| 国产黄频视频在线观看| 国产高清三级在线| xxxhd国产人妻xxx| 亚洲精品aⅴ在线观看| 中文字幕制服av| 高清av免费在线| 伦理电影大哥的女人| 国产黄色视频一区二区在线观看| 精品一区二区免费观看| 中国美白少妇内射xxxbb| 免费观看的影片在线观看| 亚洲熟女精品中文字幕| 少妇精品久久久久久久| 国产黄片视频在线免费观看| 黄色一级大片看看| 日韩 亚洲 欧美在线| 亚洲国产av新网站| 国产精品人妻久久久久久| 一级毛片我不卡| 亚洲美女黄色视频免费看| 欧美精品高潮呻吟av久久| 综合色丁香网| 人成视频在线观看免费观看| 国产一级毛片在线| 日本猛色少妇xxxxx猛交久久| 精品酒店卫生间| 午夜激情福利司机影院| 亚洲欧美成人综合另类久久久| 赤兔流量卡办理| 能在线免费看毛片的网站| 国产午夜精品久久久久久一区二区三区| 久久久国产欧美日韩av| 国产黄片视频在线免费观看| 22中文网久久字幕| av在线app专区| 综合色丁香网| 母亲3免费完整高清在线观看 | 日韩大片免费观看网站| 91精品三级在线观看| 丝袜脚勾引网站| 日本vs欧美在线观看视频| 欧美+日韩+精品| 久久久久精品性色| 亚洲综合色惰| 十八禁网站网址无遮挡| a 毛片基地| 亚洲国产精品专区欧美| 尾随美女入室| 日韩亚洲欧美综合| 少妇被粗大猛烈的视频| 热99久久久久精品小说推荐| 精品久久久精品久久久| 久久久久网色| 亚洲伊人久久精品综合| 久久av网站| 亚洲精品日本国产第一区| 亚洲国产av新网站| 国产精品99久久久久久久久| 久久久久精品性色| 久久久久久伊人网av| 十八禁网站网址无遮挡| 久久精品夜色国产| 日韩三级伦理在线观看| 亚洲中文av在线| 国产日韩欧美视频二区| 国产成人精品婷婷| videosex国产| 丰满饥渴人妻一区二区三|