• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Method Based on Compatible Manifold Element for Thin Plate Bending

    2010-03-01 01:47:10ZHANGZhengrongZHANGXiangweiandWenge

    ZHANG Zhengrong *, ZHANG Xiangwei, and Lü Wenge

    1 Faculty of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China

    2 Faculty of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China

    1 Introduction

    In thin plate bending FEM analysis based on Kirchhoff assumptions, the typical quadrangular and triangular elements are incompatible elements for discontinuous rotations on element boundary. These elements can pass the patch test, but the lower/upper bound of numerical solutions obtained from the elements can not be estimated for the nonmonotonic convergence, and it will affect computational accuracy and limit application range[1], so some methods have been proposed to construct compatible elements. FRAEIJS[2]presented a scheme to build conforming finite element for plate bending by increasing nodes on the boundaries or in element, and the degrees of freedom(DOFs) of internal nodes were eliminated through static condensation method to reduce the computational cost. MORLEY[3], et al, developed a conforming triangular element by the way of adhesive correction functions, which had cubically varying normal displacements along the sides and employed rational functions to supplement the ten term cubic description of the displaced surface. The mid-side connections were eliminated by means of extended interpolation and explicit ‘best’ linear approximations were derived for the final valuation of the element bending moments. NORMAN, et al[4], developed a complete conforming finite elements by the use of nodal variables of arbitrary polynomial order. PITACCO[5]proposed a compatible plate bending element by means of orthogonal polynomials expansion of the curvature field depending only on the element boundary traces. All the above fully conforming elements have very complicated calculation process and high computational cost, and the additional constraints imposed on the elements will make the structure too stiff, so it will affect computational accuracy and even probably cause worse results. Some generalized conforming finite elements, which can improve the computational accuracy, have been introduced on the basis of the discrete Kirchhoff assumptions or the weak conforming conditions[6–8], but these elements are not fully conforming finite elements, their convergence rate for displacement is not totally satisfactory. So it is very meaning for thin plate bending analysis to propose a numerical method based on fully compatible element without any additional constraints.

    Numerical manifold method(NMM) is a more generalized numerical method than finite element method(FEM). The method performs numerical computation with finite element cover system, which is composed of two independent cover grids: mathematical cover grid and physical cover grid. Mathematical covers define the accuracy of approximate solution, and physical covers determine the solution domain[9–11]. Manifold method unifies finite element method with analysis method through finite cover system. By the use of high order cover functions and cover weight functions, it can construct high order continuous computational elements[12–14], and develop a high efficient and accurate numerical method for mathematical physics equations. The method has been successfully applied in some complicated engineering problems, such as numerical simulation of crack initiation and propagation, etc[15–17].

    In this paper, the authors used NMM to solve thin plate bending problem, built a 16-cover high order conforming manifold element on standard rectangular cover system,derived manifold schemes for thin plate bending, and employed the analyses of square thin plate bending deformation to illustrate the adaptability and validity of the present manifold element.

    2 Cover System of NMM for Thin Plate Bending

    According to elastic theory, bending deformation of thin plate can be described only by the transverse displacement distribution on middle plane of the plate[18]. So, it is feasible just taking the transverse displacement as the basic parameter in NMM analysis.

    Standard rectangular is introduced as mathematical mesh to form finite element cover system in manifold analysis of thin plate bending. In order to ensure compatibility, the transverse displacement on the boundaries and in element should be C1continuous. If 4-cover rectangular element as shown in Fig. 1(a) is employed to form finite element cover system in manifold method, it can not guarantee the continuity of rotations on the boundaries of element because element cover weight functions are polynomials not including full second order terms just like in FEM. So based on theory of manifold method, it is necessary for element compatibility to increase cover number of manifold element.

    16-cover manifold element with the center coordinate(x0, y0) and the side length 2a×2b as shown in Fig. 1(b) is applied in this paper. Every manifold element consists of 16 covers around it. Element cover weight functions can be defined in the same way as B-spline surface construction[19],and expressed as follows:

    Where

    Fig. 1. Element for thin plate bending analysis

    The transverse displacement cover function of every element cover can employ the form of polynomial, and stated as

    which can be denoted for short as

    where

    If the displacement function of every element cover is known, the displacement and rotations distribution in element can be obtained by Eq. (3) and Eq. (4).

    3 Element Matrix

    3.1 Matrixes of strain and stress

    According to Kirchhoff assumptions of thin plate bending[18], the strain distribution in plate can be given by

    where z is the distance to middle plane of the plate.are the curvatures of deflection surface along x and y direction.is the torsional rate. Substituting Eq. (3)into Eq. (5), we can yield

    Stress can be calculated from strain by generalized Hooker’s law, i.e.,

    where S is the stress matrix, andis the stress submatrix; E is the elastic matrix which can be expressed as

    By the distribution of stress along thickness direction of plate, the bending moment M can be defined as

    3.2 Finite element balanced equation based on manifold method

    Balanced equation in manifold method can also be derived from minimum potential energy principle as in FEM[10–11,14]. On the assumption that there are M manifold elements and m physical covers in solved domain, and every cover has n unknown DOF variables, then the global potential energy Π generated from thin plate bending deformation can be expressed as

    where the first term on the right side of Eq. (9) is the bending deformation potential energy, the second term Ceincludes potential energies generated from external forces,boundary constraints, and so on. Every term in Eq. (9) can be calculated in the same way as in FEM. Then from first order variation of element potential energy being equal to zero, element balanced equation can be derived as follows:

    and ke·De=Fefor short. Where keis the element stiffness matrix; Feis the element load vector; Deis the element DOF variable vector. As every cover has n DOFs,submatrix ki,j(i, j=1, 2,···,16) in Eq. (10) is a matrix of size n×n, Di(i=1, 2, ···,16) and Fi(i=1, 2, ···,16) are submatrixes of size n×1. Diis the DOF variable vector of physical cover Ui. Fidenotes the load vector imposed on cover Ui.

    Element potential energy includes elastic deformation potential energy and other potential energies. So element matrix and vectors in Eq. (10) consists of all parts of element matrixes and vectors derived from differential of relevant potential energies. Those are element stiffness matrix, load matrix, fix point matrix, and so on.

    3.3 Element stiffness matrix

    In manifold element (e), potential energy generated from elastic deformation of thin plate-bending is

    Substituting Eq. (6) and Eq. (7) into Eq. (11), we can yield

    So, element stiffness matrix can be obtained from differential of potential energy Eq. (12) as follows:

    where stiffness submatrix can be expressed as

    3.4 Load matrix

    In thin plate-bending deformation, several kinds of loads can be imposed on the plate, which include transverse concentrated force, distributed transverse surface force,distributed transverse linear force and bending moment.According to finite element cover in manifold method,these loads should be transferred on to the DOF variables of every cover respectively.

    3.4.1 Point load matrix

    Supposing that transverse concentrated force Fzis loaded on the pointin element (e), and the transverse displacement of the point isPotential energy generated from the concentrated force can be defined as

    3.4.2 Linear load matrix

    Assuming that distributed transverse pressure pzis loaded on curve Γ in element (e), potential energy from the distributed load is

    3.4.3 Surface load matrix

    Presuming that distributed transverse surface pressure gzis loaded on element (e), and then potential energy from the distributed surface load can be expressed as

    3.4.4 Bending load matrix

    Granted that bending momentis loaded on curve Γ in element (e), and then potential energy from bending load is Substituting Eq. (4) into Eq. (17), we can obtain

    So, load vector

    can be defined as bending load vector.

    3.5 Fixed boundary matrix

    In FEM, the displacement boundary conditions can only be imposed on nodes and implemented by means of assigning large number, and so on. But in NMM, the displacement boundary conditions can be imposed on any point in element and the basic unknown variables is the cover DOF variables instead of physical variables on the nodes, so it should be implemented with other mathematical methods unlike in FEM, such as penalty function method. While penalty function method is applied in NMM, it assumes that there is a series of springs with high stiffness fixed on the boundary, known displacements are assigned to initial displacement of the springs, and boundary conditions can be implemented by variation of the spring deformation potential energy. There are two kinds of boundary conditions in thin plate bending deformation: known transverse displacement and known rotation. They need to be treated respectively.

    3.5.1 Fix boundary matrix for transverse displacement

    So, differentiating the deformation energy will get where ke(h)is a part of stiffness matrix, called fix boundary stiffness matrix for transverse displacement. The stiffness submatrix is

    3.5.2 Fix boundary matrix for rotation displacement

    Substituting Eq. (4) into Eq. (22), we can yield

    Differentiating the deformation energy, we will obtain

    where ke(m)is a part of stiffness matrix, called fix boundary stiffness matrix for rotation displacement, and the stiffness submatrix is

    and

    is a part of load vector, called fix boundary load vector for rotation displacement.

    3.6 Integration of element matrixes

    Global balanced equation can be integrated by all the element balanced equations as follows:

    where K is the global stiffness matrix; F is the global load vector; D is the global DOF variable vector.

    Global stiffness matrix K and global load vector F are obtained by integrating element matrixes and vectors in the way as follows:

    Element stiffness matrix can be obtained by

    and element load vector is

    Global balanced Eq. (26) can be solved as global matrix K and F are known, DOF variables and transverse displacement function of every cover can be obtained, and then all field variables distribution in whole region, such as transverse displacement, rotations, curvature, strain and stress can be acquired.

    4 Analysis of Element Completeness and Compatibility

    Through increasing cover number, high order continuous manifold elements can be constructed. 16-cover manifold element for thin plate-bending can ensure continuous transverse displacement and rotations inside element and on element boundaries, so it is a kind of compatible element meeting completeness requirements.

    In 16-cover element (e) as showed in Fig. 1(b), the element cover weight functionis a complete cubic polynomial, while every displacement cover functionis a kind of continuous function with constant term, such as a polynomial, the global element displacement function

    can express the deformation model of rigid displacement and constant strain. So it meets completeness requirements.

    On the basis of thin plate bending deformation theory,when Ni(x , y ) is a complete cubic polynomial and wi(x, y )is a C1continuous function, it is obvious that transverse displacement w( x , y) and rotations θx, θyare continuous inside element. If it can be proved that transverse displacement and rotations are continuous on element boundaries, then we can draw a conclusion that the element meets compatibility requirements.

    With regard to two adjacent elements as shown in Fig. 2,manifold element (e1) consists of cover (1)–(16), and element (e2) consists of cover (5)–(20), and edge (10) –(11)is the public boundary along y direction.

    Fig. 2. Two adjacent elements

    In element (e1), there existson edge(10)–(11), it can be deduced from the cover weight function Eq. (1) that

    So the weight function of every cover in element (e1)should be as follows:

    In element (e2), there exists, and then

    So the weight function of every cover is as follows:

    Coordinate x0of center point is the same value in both element (e1) and (e2), soand Nx4are also corresponding equal on public boundary. In both elements,the displacement cover function on public boundary is composed of the same covers, and the weight function of every cover is also coincident, so the global transverse displacement on public boundary should be also equal, that is

    Eq. (29) means that the displacement is continuous on public boundary (10)–(11). It can be proved in the same way that the displacement is also continuous on other boundaries.

    As to the rotation θyin manifold element, there exists

    It can get the same result in element (e2). Sinceare the complete cubic polynomials andare continuous,is obviously continuous on public boundary (10)–(11). So it can be seen from above thatyθ is continuous on public boundary (10)–(11).

    As regards to rotation θx, there exists

    As to boundary (10)–(11) in element (e1), substitutinginto Eq. (33), we can obtain

    and then the second term on the right side of Eq. (32) can be simplified as

    In element (e2), there exists on boundary (10)–(11) that

    We can draw a conclusion from the above analyses that 16-cover manifold element is a kind of fully compatible element, as the displacement w( x, y), rotations θxand θyall are continuous on the boundaries and inside the element. A deep study shows that not only θxand θyare continuous,but also w( x, y) is C2continuous, when the cover weight function adopt the form of Eq. (1) and the transverse displacement cover function of every coveris C1continuous, so the curvature of deflection surface is also continuous.

    5 Application Examples

    In this paper, some cases of thin plate bending deformation under different loads and boundary conditions are comparatively analyzed by NMM and FEM. The part for analyses is a square thin plate as shown in Fig. 3, with length L=20 mm and thickness t=1 mm. Material properties of the part are elastic modulus E=210 GPa and Poisson ratio μ=0.3. There are two kinds of loads: uniform load p=1 MPa on plate and concentrated load F=4 N on the center point of plate, and three sorts of boundary conditions: four clamped edges, four simply supported edges and four supported corner points. Considering symmetry, a shadow quarter of the plate is chosen as the analysis region.Numerical manifold analyses are implemented by programming in Matlab, finite element analyses are completed by adopting four-node shell element 63 inclusive only bending in program ANSYS.

    Fig. 3. Square thin plate

    The maximum transverse displacements under different loads and boundary constraint conditions, which are the deflections at the center point of plate, are calculated out by NMM and FEM with different number and size of elements. The results are listed in Tables 1–3.

    Table 1. Maximum deflections of the plate with four clamped edges

    Table 2. Maximum deflections of the plate with four simply-supported edges

    Table 3. Maximum deflections of the plate with four supported corner points

    In NMM solutions, while adopting single DOF element cover (namely, the basic series f=(1)), the manifold element can satisfy completeness and compatibility requirements.High accurate solutions can be obtained by using 4×4 elements under all different conditions. The accuracy can be improved by taking 8×8 elements, and the results are approximately equal to these of series solutions. When adopting three DOF element cover (namely, the basic series f=(1 x–xiy–yi), where xi, yiare the center point coordinates of cover Ui), the element can also meet completeness and compatibility requirements. It can make further improvement on computational accuracy for increase of the displacement function order inside element,and the results from 4×4 elements are approximately equal

    to these of series solutions. The same results can be obtained by FEM, but it needs to use about 100×100 or more elements in the calculation. It shows that NMM with compatible element, compared with FEM with four-node element, can improve accuracy and convergence greatly.

    6 Conclusions

    (1) In order to overcome the defects of incompatible four-node thin plate element in FEM, numerical manifold method was applied to analyze thin plate bending deformation based on Kirchhoff assumptions.

    (2) 16-cover manifold element for thin plate bending was constructed on standard rectangular cover system, in which the weight functions of element covers were defined by the way like B-spline surface construction.

    (3) All element matrixes for 16-cover element were derived on base of the minimum potential energy principle,and penalty function method was applied to implement displacement boundary conditions. The present numerical manifold schemes are much simpler than FEM schemes for employing only the deflection cover DOF as the basic unknown variables.

    (4) 16-cover manifold element was proved to meet the requirements of completeness and compatibility, so it is a kind of fully conforming element.

    (5) Bending deformation of square thin plate has been comparatively analyzed by manifold method with 16-cover manifold element and FEM with four-node plate element.The results illustrate that numerical manifold method can improve accuracy and convergence greatly.

    [1] ROBERT D Cook, DAVID S Malkus, MICHAEL E Plesha, et al.Concepts and applications of finite element analysis[M]. 4th ed.New York: John Wiley & Sons, 2001.

    [2] FRAEIJS de Veubeke B. A conforming finite element for plate bending[J]. Int. J. of Solids Struct., 1968, 4(1): 95–108.

    [3] MORLEY L S D, MERRIFIELD B C. On the conforming cubic triangular element for plate bending[J]. Comput. Struct., 1972,2(5–6): 875–892.

    [4] NORMAN Katz I, ALBERTO G Peano, MARK P Rossow. Nodal variables for complete conforming finite elements of arbitrary polynomial order[J]. Comput. Math. Appl., 1978, 4(2): 85–112.

    [5] PITACCO I. A new plate bending element based on orthogonal polynomials expansion of the curvature field[J]. Int. J. Numer. Meth.Eng., 2007, 72(2): 156–179.

    [6] SHI Zhongci, CHEN Qianyong. A rectangular plate element with high accuracy[J]. Science in China (Series A), 2000, 30(6): 504–515.(in Chinese)

    [7] SOH A K, LONG Zhifei, CEN Song. Development of a new quadrilateral thin plate element using area coordinates[J]. Comput.Methods Appl. Mech. Engrg., 2000, 190(8–10): 979–987.

    [8] RAZAQPUR A G, NOFAL M, VASILESCU A. An improved quadrilateral finite element for analysis of thin plates[J]. Finite Elem.Anal. Des., 2003, 40(1): 1–23.

    [9] SHI Genhua. Manifold method[C]//Proc. of the First Int. Forum on Discon. Defor. Anal. & Simu. of Discon. Media, California USA,1996: 152–204.

    [10] SHI G H. Numerical manifold method[C]//Proc. of the 2nd International Congress on Analysis of Discontinuous Deformation,New York, USA, 1997: 1–36.

    [11] KENJIRO Terada, MAO Kurumatani. Performance assessment of generalized elements in the finite cover method[J]. Finite Elem. Anal.Des., 2004, 41(2): 111–132.

    [12] CHEN G, OHNISHI Y, ITO T. Development of high-order manifold method[J]. Int. J. Num. Meth. Engrg., 1998, 43(4): 685–712.

    [13] CAI Yongchang, LIAO Lincan, ZHANG Xiangwei. 4-node quadrilateral manifold element with high accuracy[J]. Chinese J. of Appl. Mech., 2001, 18(2): 75–80. (in Chinese)

    [14] CAI Yongchang, ZHANG Xiangwei. Expansion to high-order cover function and improvement of the stress accuracy in numerical manifold method[J]. Chinese J. of Mech. Engrg., 2000, 36(9): 20–25.

    [15] TERADA K, ASAI M, YAMAGISHI M. Finite cover method for linear and non-linear analyses of heterogeneous solids[J]. Int. J.Numer. Methods Eng., 2003, 58(9): 1 321–1 346.

    [16] SUZUKI K, OHTSUBO H, HINO Kei. Analysis of fracture mechanism using adaptive finite cover method[J]. Nippon Kikai Gakkai Ronbunshu A., 2004, 70(3): 399–405.

    [17] WEI Gaofeng, FENG Wei. An incompatible numerical manifold method for elasticity problem[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 36(1): 79–88. (in Chinese)

    [18] XU Zhilun. Theory of elasticity[M]. Beijing: People’s Education Press, 1982. (in Chinese)

    [19] ZHU Xinxiong. Free form curve/surface modeling[M]. Beijing:Science Press, 2000. (in Chinese)

    亚洲欧美精品综合久久99| 18禁黄网站禁片午夜丰满| 50天的宝宝边吃奶边哭怎么回事| 久久久久国内视频| 久久天堂一区二区三区四区| 欧美老熟妇乱子伦牲交| 搡老乐熟女国产| 操美女的视频在线观看| 久久久久久久久久久久大奶| 91精品国产国语对白视频| 亚洲国产精品999在线| 国产亚洲欧美精品永久| 女生性感内裤真人,穿戴方法视频| 国产成人一区二区三区免费视频网站| 国产av精品麻豆| 一级a爱视频在线免费观看| 欧美日韩亚洲国产一区二区在线观看| 又紧又爽又黄一区二区| 亚洲aⅴ乱码一区二区在线播放 | 国产成人精品久久二区二区免费| 如日韩欧美国产精品一区二区三区| 丝袜美腿诱惑在线| 涩涩av久久男人的天堂| 欧美日韩av久久| 午夜91福利影院| 在线播放国产精品三级| av片东京热男人的天堂| 51午夜福利影视在线观看| 久久中文字幕人妻熟女| 国产成人系列免费观看| 久久 成人 亚洲| 久久性视频一级片| 最近最新免费中文字幕在线| 日韩欧美免费精品| 麻豆成人av在线观看| 久久精品亚洲精品国产色婷小说| 一本综合久久免费| 久久精品国产99精品国产亚洲性色 | 欧美成狂野欧美在线观看| 亚洲精品一卡2卡三卡4卡5卡| 亚洲欧美激情综合另类| 一级黄色大片毛片| 久久热在线av| 热99re8久久精品国产| 人成视频在线观看免费观看| 精品国产一区二区三区四区第35| 亚洲 国产 在线| 亚洲人成网站在线播放欧美日韩| 欧美 亚洲 国产 日韩一| 日日夜夜操网爽| 国产精品 国内视频| 免费人成视频x8x8入口观看| 婷婷六月久久综合丁香| 老司机午夜福利在线观看视频| 这个男人来自地球电影免费观看| av有码第一页| 亚洲片人在线观看| 女性被躁到高潮视频| 欧美另类亚洲清纯唯美| 人人妻,人人澡人人爽秒播| 精品久久久久久久久久免费视频 | 免费在线观看黄色视频的| 99在线人妻在线中文字幕| 99国产精品免费福利视频| 国产深夜福利视频在线观看| 成人国产一区最新在线观看| 人人妻,人人澡人人爽秒播| 国产精品电影一区二区三区| 亚洲精品在线美女| 丰满人妻熟妇乱又伦精品不卡| 三级毛片av免费| 精品国产乱码久久久久久男人| 久久精品人人爽人人爽视色| 午夜视频精品福利| 老司机靠b影院| 妹子高潮喷水视频| 黄网站色视频无遮挡免费观看| 免费在线观看视频国产中文字幕亚洲| 中文字幕av电影在线播放| 久久中文字幕一级| 啦啦啦免费观看视频1| 亚洲国产看品久久| 亚洲少妇的诱惑av| 18禁观看日本| 免费在线观看影片大全网站| 亚洲av五月六月丁香网| 色婷婷久久久亚洲欧美| 精品福利观看| 免费在线观看视频国产中文字幕亚洲| 女人爽到高潮嗷嗷叫在线视频| 国产精品野战在线观看 | 成人国产一区最新在线观看| 日韩中文字幕欧美一区二区| 国产精品98久久久久久宅男小说| 欧美 亚洲 国产 日韩一| 亚洲va日本ⅴa欧美va伊人久久| 亚洲欧美日韩高清在线视频| av国产精品久久久久影院| 国产色视频综合| 亚洲色图 男人天堂 中文字幕| av福利片在线| 性少妇av在线| 黄色片一级片一级黄色片| 夜夜爽天天搞| 国产精品av久久久久免费| 大陆偷拍与自拍| 久久精品国产清高在天天线| 免费在线观看完整版高清| 女生性感内裤真人,穿戴方法视频| 波多野结衣av一区二区av| 日本五十路高清| 久久久久久久午夜电影 | 日韩欧美在线二视频| 精品久久久久久久久久免费视频 | 九色亚洲精品在线播放| 亚洲人成网站在线播放欧美日韩| 久久精品91蜜桃| 日日爽夜夜爽网站| 国产精品 欧美亚洲| 高清在线国产一区| 亚洲人成77777在线视频| 国产视频一区二区在线看| 自拍欧美九色日韩亚洲蝌蚪91| 国产不卡一卡二| 激情视频va一区二区三区| 日韩精品中文字幕看吧| 午夜成年电影在线免费观看| 一级作爱视频免费观看| 国产精品偷伦视频观看了| 国产精品久久视频播放| 两性夫妻黄色片| 国产一区二区三区综合在线观看| 亚洲激情在线av| 欧美激情 高清一区二区三区| 久久久久久久午夜电影 | 国产欧美日韩一区二区精品| 亚洲五月天丁香| 超色免费av| 在线观看日韩欧美| 日韩一卡2卡3卡4卡2021年| 精品欧美一区二区三区在线| 国产av一区在线观看免费| 精品第一国产精品| 国产精品电影一区二区三区| 精品久久久精品久久久| 麻豆一二三区av精品| 黑人欧美特级aaaaaa片| 午夜免费鲁丝| 亚洲中文日韩欧美视频| 久久精品亚洲精品国产色婷小说| 精品少妇一区二区三区视频日本电影| 久久久久久免费高清国产稀缺| 国产精品久久久久久人妻精品电影| 老熟妇仑乱视频hdxx| 亚洲一区中文字幕在线| 又紧又爽又黄一区二区| 高清在线国产一区| 久久人人爽av亚洲精品天堂| 日本撒尿小便嘘嘘汇集6| 中文欧美无线码| 免费在线观看黄色视频的| 亚洲国产精品一区二区三区在线| 欧美日韩亚洲综合一区二区三区_| 免费搜索国产男女视频| 免费搜索国产男女视频| 国产成人一区二区三区免费视频网站| 精品午夜福利视频在线观看一区| 久久久久久久久免费视频了| 男女高潮啪啪啪动态图| 中出人妻视频一区二区| 欧美大码av| 精品卡一卡二卡四卡免费| 女同久久另类99精品国产91| 亚洲欧美日韩另类电影网站| 国产高清视频在线播放一区| 国产又爽黄色视频| 男女床上黄色一级片免费看| 黄片大片在线免费观看| 性少妇av在线| 国产精品久久电影中文字幕| 久久人人爽av亚洲精品天堂| 91精品国产国语对白视频| 欧美乱码精品一区二区三区| 亚洲午夜理论影院| 亚洲va日本ⅴa欧美va伊人久久| 国产精品久久久久成人av| 黄色a级毛片大全视频| 可以在线观看毛片的网站| 一本大道久久a久久精品| 久久精品国产综合久久久| 黑人巨大精品欧美一区二区mp4| 国产精品亚洲一级av第二区| 亚洲熟女毛片儿| 三上悠亚av全集在线观看| av天堂在线播放| 亚洲片人在线观看| 亚洲精品国产精品久久久不卡| 岛国视频午夜一区免费看| 女生性感内裤真人,穿戴方法视频| 69av精品久久久久久| 成人黄色视频免费在线看| 久久久国产成人精品二区 | 97碰自拍视频| 亚洲男人天堂网一区| 99国产综合亚洲精品| 久久亚洲真实| 国产成人欧美在线观看| 欧美 亚洲 国产 日韩一| 久久精品91蜜桃| 无遮挡黄片免费观看| 亚洲精品国产精品久久久不卡| 黄频高清免费视频| 高清黄色对白视频在线免费看| 午夜福利在线观看吧| 亚洲黑人精品在线| 国产国语露脸激情在线看| 国产成人啪精品午夜网站| 一级毛片高清免费大全| 一二三四在线观看免费中文在| 亚洲 国产 在线| 欧美激情 高清一区二区三区| 精品国产乱码久久久久久男人| 国产精品美女特级片免费视频播放器 | 精品国产一区二区三区四区第35| 国产精品98久久久久久宅男小说| 日韩国内少妇激情av| 老司机在亚洲福利影院| 神马国产精品三级电影在线观看 | 欧美日韩亚洲高清精品| 亚洲精品美女久久久久99蜜臀| 国产欧美日韩一区二区三| 丝袜在线中文字幕| 新久久久久国产一级毛片| 成人三级黄色视频| 亚洲av成人不卡在线观看播放网| 亚洲精品中文字幕在线视频| 成人永久免费在线观看视频| 精品国产国语对白av| 757午夜福利合集在线观看| 九色亚洲精品在线播放| 欧美一区二区精品小视频在线| 男女午夜视频在线观看| 天天影视国产精品| 亚洲av成人不卡在线观看播放网| 欧美一区二区精品小视频在线| 免费在线观看视频国产中文字幕亚洲| 精品国产亚洲在线| 亚洲精品在线美女| 不卡一级毛片| 久久婷婷成人综合色麻豆| 无遮挡黄片免费观看| 少妇粗大呻吟视频| 亚洲国产毛片av蜜桃av| 久热这里只有精品99| 国产精品国产av在线观看| 一二三四社区在线视频社区8| 19禁男女啪啪无遮挡网站| 午夜福利在线观看吧| 免费在线观看黄色视频的| 日韩视频一区二区在线观看| 天天添夜夜摸| 中文字幕人妻熟女乱码| 精品熟女少妇八av免费久了| 性少妇av在线| av天堂久久9| 搡老熟女国产l中国老女人| 黄色毛片三级朝国网站| 国产精品久久久久成人av| 曰老女人黄片| 超碰成人久久| 欧美精品亚洲一区二区| 久久久久精品国产欧美久久久| 国内久久婷婷六月综合欲色啪| 搡老熟女国产l中国老女人| 午夜91福利影院| 一本综合久久免费| 国产1区2区3区精品| 岛国在线观看网站| 国产精品一区二区精品视频观看| 男人舔女人的私密视频| 成人三级黄色视频| 午夜福利免费观看在线| 中文字幕人妻丝袜制服| 视频在线观看一区二区三区| 又大又爽又粗| 精品无人区乱码1区二区| 国产精品久久电影中文字幕| 可以在线观看毛片的网站| 欧美色视频一区免费| 免费久久久久久久精品成人欧美视频| 亚洲在线自拍视频| 亚洲人成伊人成综合网2020| 黄色丝袜av网址大全| 人人澡人人妻人| 精品一区二区三区四区五区乱码| av网站在线播放免费| 美女福利国产在线| 99国产精品一区二区三区| 国产成人av激情在线播放| svipshipincom国产片| 成人18禁高潮啪啪吃奶动态图| 日韩大尺度精品在线看网址 | 一区二区日韩欧美中文字幕| 长腿黑丝高跟| 国产精品av久久久久免费| 十八禁人妻一区二区| 精品日产1卡2卡| 在线国产一区二区在线| 亚洲熟女毛片儿| 美女午夜性视频免费| 午夜福利在线免费观看网站| www.www免费av| 狂野欧美激情性xxxx| 高清在线国产一区| av电影中文网址| 亚洲一区二区三区色噜噜 | 高清毛片免费观看视频网站 | 18禁黄网站禁片午夜丰满| 在线av久久热| 亚洲av成人一区二区三| 动漫黄色视频在线观看| 国产又色又爽无遮挡免费看| 国产精品二区激情视频| 黄频高清免费视频| 久久久久国产一级毛片高清牌| 岛国在线观看网站| 男女午夜视频在线观看| 午夜福利在线免费观看网站| 少妇裸体淫交视频免费看高清 | 国产伦一二天堂av在线观看| 国产成人免费无遮挡视频| 亚洲熟女毛片儿| 天天躁狠狠躁夜夜躁狠狠躁| 成人亚洲精品一区在线观看| 黄片大片在线免费观看| 欧美日韩亚洲国产一区二区在线观看| 日日摸夜夜添夜夜添小说| 9191精品国产免费久久| 亚洲免费av在线视频| 国产熟女午夜一区二区三区| 操美女的视频在线观看| www.精华液| 亚洲av片天天在线观看| 亚洲美女黄片视频| 大陆偷拍与自拍| 成人手机av| 久久伊人香网站| 色综合婷婷激情| 日本免费一区二区三区高清不卡 | 少妇的丰满在线观看| 亚洲精品成人av观看孕妇| 村上凉子中文字幕在线| 纯流量卡能插随身wifi吗| 欧美激情极品国产一区二区三区| 一夜夜www| 欧美黄色淫秽网站| 91精品国产国语对白视频| 成人国产一区最新在线观看| 久久人人97超碰香蕉20202| 国产又色又爽无遮挡免费看| 国产精品二区激情视频| 日日干狠狠操夜夜爽| 久久这里只有精品19| 国产精品永久免费网站| 亚洲成国产人片在线观看| 黄色成人免费大全| 欧美老熟妇乱子伦牲交| 欧美激情高清一区二区三区| 日韩一卡2卡3卡4卡2021年| 久久青草综合色| 日本五十路高清| 啪啪无遮挡十八禁网站| 免费在线观看亚洲国产| 看免费av毛片| 老司机靠b影院| 欧美日韩中文字幕国产精品一区二区三区 | 日韩视频一区二区在线观看| 亚洲色图 男人天堂 中文字幕| 91精品国产国语对白视频| 精品国内亚洲2022精品成人| 老司机亚洲免费影院| 女人被躁到高潮嗷嗷叫费观| 国产真人三级小视频在线观看| 国产欧美日韩一区二区三| 欧美激情高清一区二区三区| 成人国语在线视频| 黑人操中国人逼视频| 亚洲国产看品久久| 国产一区二区三区在线臀色熟女 | 亚洲一卡2卡3卡4卡5卡精品中文| 在线播放国产精品三级| 欧美日韩精品网址| 丝袜在线中文字幕| 国产一卡二卡三卡精品| 啪啪无遮挡十八禁网站| 免费不卡黄色视频| 国产精品久久久久成人av| 久久人人精品亚洲av| 美女高潮到喷水免费观看| 欧美日韩视频精品一区| 国产精品一区二区免费欧美| 国产成人欧美| 18禁国产床啪视频网站| 成人手机av| 亚洲精品久久午夜乱码| 91九色精品人成在线观看| 欧美乱色亚洲激情| 侵犯人妻中文字幕一二三四区| 亚洲精品在线美女| 国产欧美日韩精品亚洲av| 国产精品国产高清国产av| 国产无遮挡羞羞视频在线观看| 久久狼人影院| 欧美成人性av电影在线观看| 国产av一区在线观看免费| 在线观看舔阴道视频| 少妇 在线观看| 岛国视频午夜一区免费看| 日本 av在线| 精品免费久久久久久久清纯| 一级毛片精品| 国产不卡一卡二| 一区在线观看完整版| 首页视频小说图片口味搜索| 成人精品一区二区免费| 黄色女人牲交| 日韩视频一区二区在线观看| tocl精华| 国产日韩一区二区三区精品不卡| 国产在线观看jvid| 51午夜福利影视在线观看| 日韩国内少妇激情av| av欧美777| x7x7x7水蜜桃| 国产熟女xx| 欧美av亚洲av综合av国产av| 久久精品人人爽人人爽视色| cao死你这个sao货| 村上凉子中文字幕在线| 亚洲七黄色美女视频| 嫁个100分男人电影在线观看| 级片在线观看| 成人国产一区最新在线观看| 久久人妻熟女aⅴ| 我的亚洲天堂| 乱人伦中国视频| 久久香蕉激情| 国产精品久久久久成人av| 天堂√8在线中文| 国产黄色免费在线视频| 久久青草综合色| 97碰自拍视频| av超薄肉色丝袜交足视频| 国产成人av激情在线播放| 在线观看一区二区三区| 欧美激情高清一区二区三区| 久久精品国产99精品国产亚洲性色 | 夜夜看夜夜爽夜夜摸 | 精品一品国产午夜福利视频| 国产成年人精品一区二区 | 国产精品一区二区免费欧美| 在线视频色国产色| 男女之事视频高清在线观看| 国产av一区在线观看免费| 美女国产高潮福利片在线看| 美女大奶头视频| 亚洲精品中文字幕一二三四区| av超薄肉色丝袜交足视频| 国产极品粉嫩免费观看在线| 欧美人与性动交α欧美精品济南到| 在线播放国产精品三级| 人人妻人人添人人爽欧美一区卜| 免费在线观看影片大全网站| 十八禁网站免费在线| 午夜福利在线观看吧| 纯流量卡能插随身wifi吗| 一区二区日韩欧美中文字幕| 两性夫妻黄色片| 热re99久久国产66热| 亚洲精品一区av在线观看| 久久99一区二区三区| 热re99久久国产66热| 日韩成人在线观看一区二区三区| 又大又爽又粗| 日日爽夜夜爽网站| 丁香欧美五月| 亚洲aⅴ乱码一区二区在线播放 | 国产在线精品亚洲第一网站| 亚洲专区国产一区二区| 俄罗斯特黄特色一大片| 夫妻午夜视频| 午夜两性在线视频| 成人免费观看视频高清| 精品久久蜜臀av无| 久久婷婷成人综合色麻豆| 亚洲性夜色夜夜综合| 一级毛片女人18水好多| 午夜影院日韩av| 69av精品久久久久久| 久久久久久久久中文| 一区福利在线观看| 成人国语在线视频| 男人舔女人的私密视频| x7x7x7水蜜桃| 真人做人爱边吃奶动态| 露出奶头的视频| 我的亚洲天堂| 宅男免费午夜| 国产极品粉嫩免费观看在线| 久久婷婷成人综合色麻豆| 免费观看人在逋| 国产精品久久电影中文字幕| 精品国产超薄肉色丝袜足j| 色综合站精品国产| 精品欧美一区二区三区在线| 色老头精品视频在线观看| 欧美黑人欧美精品刺激| 亚洲国产欧美一区二区综合| 超碰成人久久| 午夜福利,免费看| 在线观看日韩欧美| 久久 成人 亚洲| 另类亚洲欧美激情| 欧美日韩一级在线毛片| 成年版毛片免费区| 亚洲精品美女久久久久99蜜臀| 亚洲五月婷婷丁香| 首页视频小说图片口味搜索| 好男人电影高清在线观看| 国产成人精品无人区| 精品国产乱子伦一区二区三区| 久久久国产欧美日韩av| 国产色视频综合| 在线观看免费高清a一片| 他把我摸到了高潮在线观看| 丝袜美腿诱惑在线| 两个人看的免费小视频| 久久久久亚洲av毛片大全| 夜夜爽天天搞| 热re99久久国产66热| 天天影视国产精品| 国产成人影院久久av| 日日爽夜夜爽网站| 精品人妻在线不人妻| 亚洲专区国产一区二区| 成人免费观看视频高清| 老司机午夜十八禁免费视频| 欧美国产精品va在线观看不卡| 国产一区二区三区综合在线观看| 少妇的丰满在线观看| 女人被躁到高潮嗷嗷叫费观| 51午夜福利影视在线观看| 久久影院123| 色在线成人网| 欧美色视频一区免费| 欧美日韩瑟瑟在线播放| 男女下面进入的视频免费午夜 | 久久青草综合色| 美女大奶头视频| 日韩av在线大香蕉| 亚洲avbb在线观看| 亚洲精品在线美女| 日本免费a在线| 一级毛片女人18水好多| 午夜福利欧美成人| 啪啪无遮挡十八禁网站| 一级毛片女人18水好多| 在线观看免费视频网站a站| 午夜免费激情av| 9191精品国产免费久久| 亚洲激情在线av| 女人被狂操c到高潮| 欧美日韩国产mv在线观看视频| 他把我摸到了高潮在线观看| 操美女的视频在线观看| 999精品在线视频| 色综合站精品国产| 欧美一级毛片孕妇| 美女国产高潮福利片在线看| 中文字幕另类日韩欧美亚洲嫩草| bbb黄色大片| 久久久久久久久中文| 亚洲精品一二三| 久久中文字幕一级| 国产成人av激情在线播放| 亚洲精品中文字幕在线视频| 99在线人妻在线中文字幕| www.熟女人妻精品国产| 99国产极品粉嫩在线观看| 欧美在线一区亚洲| 国产成人av激情在线播放| 精品一品国产午夜福利视频| 成人国语在线视频| 黄色 视频免费看| 午夜免费激情av| 97超级碰碰碰精品色视频在线观看| 天堂俺去俺来也www色官网| 神马国产精品三级电影在线观看 | 国产av又大| 国产精品国产高清国产av| 在线观看午夜福利视频| 欧美精品亚洲一区二区| 亚洲五月天丁香| www日本在线高清视频| 欧美在线一区亚洲| 国产免费男女视频| 高清黄色对白视频在线免费看| 黑人欧美特级aaaaaa片| 老汉色∧v一级毛片| 欧美成狂野欧美在线观看| 亚洲精品在线美女| 成人黄色视频免费在线看| 亚洲专区国产一区二区| 高清毛片免费观看视频网站 | 国产成人影院久久av|