• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modeling and Analytical Solution of Chatter Stability for T-slot Milling

    2010-03-01 01:47:06LIZhongqunandLIUQiang

    LI Zhongqun and LIU Qiang

    1 School of Mechanical Engineering, Hunan University of Technology, Zhuzhou 412008, China

    2 School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China

    1 Introduction

    Modeling and prediction of the stability in cutting process have been a focus area of manufacturing research since the pioneering chatter stability theories of Tlusty and Tobias during 1950’s[1–2]. Recently, the dynamic models of chatter stability in high speed machining(HSM), complex milling process such as plunge milling and different variety of end milling cutters have been developed and evaluated in the laboratory and industrial applications[3–5]. The main efforts of chatter vibration research are focused on the cutting force prediction, dynamic cutting coefficients identification, tool-spindle interfaces dynamics, HSM chatter avoidance, and stability lobes diagram(SLD) for various machining operations. There have been significant achievements on the chatter vibration research and applications during recent decades.

    Chatter is an unstable vibration due to dynamic interactions between the cutting tool and workpiece. Under certain conditions, the amplitude of vibrations grows and the cutting system becomes unstable. TOBIAS[1]began the study of machining chatter with establishment of the basis of the regenerative chatter theory. In the early milling stability analysis, KOENIGSBERGER, et al[2], used the orthogonal chatter model considering an average direction and average number of teeth in cut. SRIDHAR, et al[3],firstly introduced the time-varying directional cutting force coefficients in modeling the chatter stability of milling.MINIS, et al[4], formulated and numerically solved the milling stability using the Nyquist criterion. BUDAK[5]presented and verified an analytical determination of stability limits, which has been applied to the stability of ball-end milling[6–8], and extended to 3D milling[9].

    T-slot milling has found applications in aerospace,automotive and die machining industry. When applying a long and slender T-slot cutter to the milling process, the chatter vibration of the cutting process will lead to the poor surface finish, lower productivity and decreased tool life.However, there has been limited literature for the T-slot milling process[10].

    Generally, a T-slot cutter can be regarded as a special case of inserted cutters. ENGIN, et al[11], presented a generalized mathematical model of inserted cutters for predication of cutting forces, vibrations and stability lobes in milling. Based on the model, CutPro?, developed in Manufacturing Automation Laboratory, can provide stability simulation for the inserted cutters. However,provides the classical SLD on the axial depth of cut, but it cannot provide the SLD on the radial depth of cut,which is more meaningful in T-slot milling operations.

    Therefore, a dynamic model and its analytical solution of T-slot milling are presented in this paper. Originally based on the analytical milling stability model of BUDAK, the geometric features and milling operation of T-slot cutter are considered in modeling and analysis. In addition, the SLD on the radial depth of cut are developed theoretically and verified experimentally.

    The paper is organized as follows. In section 2, the dynamic model of T-slot milling are presented and solved analytically. The stability lobes calculation and simulation on the radial depth of cut are discussed in section 3. The comparisons between theoretical and experimental results are given in section 4, followed by the conclusions.

    2 Dynamics of T-slot Milling

    As shown in Fig. 1, the T-slot cutter is made up of two rows of uniform-spaced inserts with the bottom surface of the cutter as the reference of the lower row inserts, and the top surface of the cutter as the reference of the upper row inserts. The inserts of upper row cut by using the top and side edges with the negative lead angles, and the inserts of lower row cut by using the bottom and side edges with the positive lead angles. The geometry above is the significant features different from other general insert end mill cutter.

    Fig. 1. 3D digital model of a 6-flute T-slot cutter

    2.1 Dynamic cutting forces of T-slot milling

    Using the same principle of dynamic modeling of a flat end mill[5], a T-slot milling process with N-insert cutter can also be reduced to a 2-DOF vibration system in two orthogonal directions. The dynamics of the milling system can be given by the differential equations as follows:

    where m, c, k are the mass, damping ratio and stiffness of the machine tool in the directions of x and y, respectively.Fxj, Fyjare the components of the cutting force applied on the jth tooth of the cutter in the directions of x and y.

    The geometrical model of a T-slot cutter with 6 flutes is shown in Fig. 2. By slicing the cutting edges into M disks along the axial direction, the radial immersion angle at the lth plate on the jth cutting edge can be expressed as

    where φ10is the angular displacement at the bottom of the first tooth, φpis the pitch angle and φp= 2π/N, dz is the height of each disk, Lfis the overall height of the cutting edge, δ1, δ2are the lead angle and axial rake angle of the inserts, respectively, and R is the radius of the cutter.

    Fig. 2. Geometry of an insert of 6-flute T-slot cutter

    By applying the linear-edge model[5]to each disk,through coordinate transformation, numerical integration along the axial direction and summation for the differential cutting forces of all the teeth, the overall instantaneous cutting forces acting on the whole cutter in the feed and normal directions can be expressed as follows:

    where g(φjl) is a unit step function used to define whether the differential cutting edge is in or out of cut. Ktcand Krcare the tangential and radial cutting force coefficients,respectively. Δx, Δy are the dynamic displacement variation of the cutter and workpiece between the current and the previous tooth passes in the x and y directions, respectively.In matrix form, the above equations can be rewritten as follows:

    where apis the axial depth of cut. Suppose Fr= Krc/ Ktc, the directional cutting force coefficients are given as follows:

    The directional coefficients depend on the angular position of the cutter makes Eq. (4) time-varying as follows:

    where A(t) is periodic at the tooth passing frequency ω=Nn/60, and n is the spindle speed. In general, Fourier series expansion of the periodic term is used for solution of the periodic systems. However, in chatter stability analysis,the inclusion of the higher harmonics in the solution may not be required for most cases as the response at the chatter limit is usually dominated with a single chatter frequency.Starting from this idea, Refs. [5–7] confirm that the higher harmonics do not affect the accuracy of the predictions unless the radial depth of cut is extremely small compared to the diameter of the cutting tool. Thus, it is sufficient to include only the average term in the Fourier series expansion of A(t), and the average directional cutting force coefficients take the following form:

    where O is the discretized points number within a tool revolution. Substituting Eq. (7) into Eq. (6), we can obtain

    2.2 Analytical solution of chatter stability for T-slot milling

    In Eq. (8), A0does not vary with the time anymore and depends only on the immersion angle. The vibrations Δ(iω)are expressed in terms of the dynamic cutting forces F(iω)and the transfer function of the tool-workpiece engagement G(iω) as

    The transfer function G(iω) can be given as

    The dynamic cutting forces at chatter frequency ωcare obtained by substituting Eq. (9) into Eq. (8):

    The stability turns into an eigenvalue problem, and it has a nontrivial solution only if its determinant is zero[5]as follows:

    where G0=A0G is the oriented transfer function matrix, and the eigenvalue of the characteristic equation is

    If the cross transfer functions are neglected, the analytical solution of the eigen-value can be obtained as

    where a0=Gxx(iωc)Gyy(iωc)(αxxαyy?αxyαyx), a1=αxxGxx(iωc)?αyyGyy(iωc). By scanning the chatter frequency ωc, the critical depth of cut alimand the spindle speed n can be derived from the real and imaginary parts of the eigenvalues ΛI(xiàn), ΛRas follows:

    where k is an integer corresponding to the number of vibration wave during a tooth period.

    Therefore, for the given geometry of a T-slot cutter, the tool/part specific cutting forces, the transfer functions of the milling system and the chatter frequency ωc, ΛRand ΛI(xiàn)can be obtained by Eq. (14), and can be used in Eq. (15) to determine the stability limits aplimand the spindle speed n.When these procedures are repeated for the range of chatter frequency and vibration wave k, the stability lobes diagram of a T-slot milling system can be obtained.

    3 Calculation of SLD on Radial Depth of Cut

    The above-mentioned SLD on the axial depth of cut is useful in determining the chatter-free cutting conditions of an ordinary end mill. However, for a T-slot cutter, as the full length of its cutting edges has to be used in cutting process in some occasions, the SLD on the radial depth of cut should also be derived. The schematic diagram of obtaining this kind of SLD is shown in Fig. 3 and the procedures are as follows.

    (1) To set the initial radial depth of cut ae= ae0and its increment Δae.

    (2) To obtain the data of stability lobes under the given radial depth of cut ae. The data is represented by a two-dimensional array. It has two columns, the first one is the spindle speed, and the second one is the corresponding critical axial depth of cut.

    (3) To let ae= ae+ Δaeand if ae≤2R, go back to (2).

    (4) To interpolate with the simulated data to obtain the critical radial depth of cut for each axial depth of cut under the specified spindle speed.

    (5) To increase the spindle speed and repeat (4) until it reaches the upper limit of the simulation spindle speed.

    (6) To draw a figure with the spindle speed n as independent variable and the critical radial depth of cut aplimas dependent variable to obtain the SLD under the specified axial depth of cut.

    Fig. 3. Schematic diagram of obtaining SLD on the radial depth of cut for T-slot milling

    Using the analytical solution of chatter stability for T-slot milling, a Matlab-based simulation model was developed,which gathers the input data of cutting conditions, machine tool characteristics, workpiece material, tool geometry, and other related parameters in T-slot milling. The simulation interface is developed using the GUIDE of Matlab, and shown in Fig. 4.

    Fig. 4. Interface of chatter stability simulation of T-slot milling

    4 Experimental Verification and Discussion

    Verification tests were conducted on a 5-axis vertical machining center JO’MACH143. The maximal spindle speed of the machine is 6 000 r/min. The cutting tool used is a 6-flute carbide solid T-slot cutter, the geometrical parameters of which are shown in Table 1. The material of the workpiece is Al7075/T6, the cutting force coefficients obtained by identification tests are Ktc=796.0 N/mm2,Krc=168.0 N/mm2.

    Table 1. T-slot cutter used in the verification tests

    The test system includes a Kistler 9722A500 impact hammer, sensitivity 10 mV/N, 500 N and a frequency range of 1–8 kHz; a Kistler 8775A50 accelerator, low impedance,sensitivity 100 mV/g, 50 g and a frequency range of 1–7 kHz; a National Instruments USB 9233 24-bit combined DAQ-Signal Conditioning unit; a Shure microphone; a tap testing software module CutPro? MALTF, a dynamic simulation Module for milling CutPro? Advanced Milling.

    Hammer tests were conducted in both the feed (x) and the normal direction (y) to get the frequency response functions in these two directions. The obtained FRFs are shown in Fig. 5. The modal parameters of the milling system obtained by the Modal Analysis Module ofare listed in Table 2.

    Fig. 5. Measured FRFs of the cutter

    Table 2. Modal parameters of the machining system

    To validate the presented analytical solution of stability limits for T-slot milling, the simulation result from this model was compared to that from CutPro?. As the SLD on the radial depth of cut cannot be obtained in CutPro?, only the SLD on the axial depth of cut was compared, which is shown in Fig. 6. The figure shows that the SLD from these two models are in good agreement in general, and the small discrepancy may be attributed to the different algorithms applied.

    Fig. 6. SLD from T-slot milling model with that from CutPro?

    The SLD on the radial depth of cut under full axial depth of cut (ap=20.0 mm) is predicated with the abovementioned program model and shown in Fig. 7. The experimental SLD was plotted in spindle speed increment of 400 r/min from 2 500 r/min to 5 700 r/min. Chatter was recorded using a Shure microphone and identified using fast Fourier transform(FFT). Results of chatter tests are also plotted in the same figure, which are in good agreement with the predictions.

    Fig. 7. Experimental and predicated SLD

    To reveal the time-domain properties of different points on the chatter stability lobes diagram, according to the method presented by author’s previous work[12], the dynamic simulations in the time-domain were conducted under cutting conditions corresponding to points A and B in Fig. 7. Point A is located in the chatter region, the spindle speed is 3 600 r/min, and the radial depth of cut is 1.5 mm.Point B is located in the stable region, the spindle speed is 4 450 r/min, and the radial depth of cut is 1.7 mm. In both cases, the feedrate is set as 2 000 mm/min. The tool’s vibration in x direction and its FFT are shown in Fig. 8 and Fig. 9, respectively.

    Fig. 8. Tool vibrations in x direction

    Fig. 9. FFT of tool vibrations in x direction between A and B

    The vibration of the cutter in x direction shows that the milling process corresponding to point B is stable but that corresponding to point A is unstable. FFT of the simulated vibration of cutter in x direction shows that when milling under the cutting conditions corresponding to point B, the energy is almost concentrated at the tooth passing frequency (435 Hz) and its harmonics. However, when milling under the cutting conditions corresponding to point A, the energy is not all concentrated at the harmonics of the tooth passing frequency (360 Hz). The chatter is occurred at the frequency of 1 200 Hz which is around the natural frequency of the milling system.

    5 Conclusions

    (1) Based on the geometrical model of a T-slot cutter, the dynamic cutting force is modeled, in which a numerical method is employed to calculate the average directional cutting force coefficients which lead to an analytical solution of the chatter stability for T-slot milling.

    (2) In order to determine the cutting conditions of T-slot milling, the stability lobes diagram is derived not only on the axial depth of cut but also on the radial depth of cut.

    (3) The agreement of simulation result from T-slot model with that from CutPro?, as well as the agreement of predicated SLD with the experimental one has verified the proposed T-slot milling model.

    (4) High efficient and chatter-free T-slot milling can be achieved with the cutting conditions determined by the SLD from the simulation model of T-slot milling.

    Reference

    [1] TOBIAS S A. Machine tool vibration[M]. London: Blackie and Sons, 1965.

    [2] KOENIGSBERGER F, TLUSTY J. Machine tool structures[M].Oxford: Pergamon Press, 1967.

    [3] SRIDHAR R, HOHN R E, LONG G W. General formulation of the milling process equation[J]. Transactions of ASME, Journal of Engineering for Industry, 1968, 90: 317–324.

    [4] MINIS I, YANUSHEVSKY R, TEMBO A. Analysis of linear and nonlinear chatter in milling[J]. Annals of the CIRP, 1990, 39(1):459–462.

    [5] BUDAK E. The mechanics and dynamics of milling thin-walled structures[D]. Vancouver: University of British Columbia, 1994.

    [6] ALTINTAS Y, BUDAK E. Analytical prediction of stability lobes in milling[J]. Annals of the CIRP, 1995, 44(1): 357–362.

    [7] BUDAK E, Altintas Y. Analytical prediction of chatter stability in milling—part I: general formulation; part II: application to common milling systems[J]. Transactions of ASME, Journal of Dynamic Systems, Measurement, and Control, 1998, 120: 22–36.

    [8] ALTINTAS Y, SHAMOTO E, LEE P, et al. Analytical prediction of stability lobes in ball-end-milling[J]. Transactions of ASME,Journal of Manufacturing Science and Engineering, 1999, 121:586–592.

    [9] ALTINTAS Y. Analytical prediction of three dimensional chatter stability in milling[J]. Japan Society of Mechanical Engineers,International Journal Series: Mechanical Systems, Machine Elements and Manufacturing, 2001, 44(3): 717–723.

    [10] LI Zhongqun, ZHANG Shangxian. Cutting force modeling and simulation of tee slot milling[C]//Proceedings of the 2009 IEEE International Conference on Mechatronics and Automation,Changchun, China, August 9–12, 2009: 1 438–1 443.

    [11] ENGIN S, ALTINTAS Y. Mechanics and dynamics of general milling cutters. Part II: inserted cutters[J]. International Journal of Machine Tools & Manufacture, 2001, 41: 2 213–2 231.

    [12] LI Zhongqun, LIU Qiang. Solution and analysis of chatter stability for end milling in the time-domain[J]. Chinese Journal of Aeronautics, 2008, 21: 169–178.

    [13] LI Zhongqun. Dynamic simulation and cutting conditions optimization of Tee slot milling based on CutPro software[J]. Key Engineering Materials, 2009, 407–408: 589–593.

    高清午夜精品一区二区三区| 国产麻豆成人av免费视频| 亚洲av男天堂| 亚洲精品成人久久久久久| 国产精品一区二区在线观看99 | 最近手机中文字幕大全| 久久精品久久精品一区二区三区| 亚洲国产欧美人成| www.色视频.com| 亚洲精品亚洲一区二区| 免费无遮挡裸体视频| 91狼人影院| 国产日韩欧美在线精品| 国产精品麻豆人妻色哟哟久久 | 在线免费观看不下载黄p国产| 欧美性猛交黑人性爽| 色吧在线观看| 久久亚洲精品不卡| 欧美日韩精品成人综合77777| 亚洲精品日韩在线中文字幕| 国产爱豆传媒在线观看| 日本-黄色视频高清免费观看| 夜夜看夜夜爽夜夜摸| 国产高清不卡午夜福利| 特级一级黄色大片| 91狼人影院| 天堂av国产一区二区熟女人妻| 亚洲国产精品久久男人天堂| 免费黄网站久久成人精品| 色视频www国产| a级毛色黄片| 如何舔出高潮| 男人狂女人下面高潮的视频| 女人被狂操c到高潮| 久久久国产成人精品二区| 麻豆av噜噜一区二区三区| 极品教师在线视频| 亚洲国产最新在线播放| 成人午夜高清在线视频| 免费不卡的大黄色大毛片视频在线观看 | 精品久久久久久成人av| 欧美高清成人免费视频www| 国产成人aa在线观看| 免费在线观看成人毛片| av女优亚洲男人天堂| 免费黄色在线免费观看| 精品无人区乱码1区二区| 欧美xxxx性猛交bbbb| 久久人人爽人人片av| 热99re8久久精品国产| 三级国产精品片| 久久精品久久久久久久性| 国产精品久久久久久久久免| 一级黄片播放器| 晚上一个人看的免费电影| 国产av一区在线观看免费| 十八禁国产超污无遮挡网站| 国产淫语在线视频| 日韩欧美在线乱码| 久久久久免费精品人妻一区二区| 免费av观看视频| 午夜激情欧美在线| 国产精品久久久久久精品电影小说 | 午夜福利网站1000一区二区三区| 一区二区三区高清视频在线| 久久热精品热| 国产精品国产三级专区第一集| 国产三级在线视频| www日本黄色视频网| av免费在线看不卡| 长腿黑丝高跟| 中文字幕熟女人妻在线| 色视频www国产| 国产黄色小视频在线观看| 男女视频在线观看网站免费| 欧美成人a在线观看| 亚洲欧美日韩高清专用| 大香蕉97超碰在线| 亚洲最大成人手机在线| 三级毛片av免费| 精品无人区乱码1区二区| 非洲黑人性xxxx精品又粗又长| 色视频www国产| 亚洲久久久久久中文字幕| 天堂影院成人在线观看| 啦啦啦观看免费观看视频高清| 美女被艹到高潮喷水动态| 日韩成人伦理影院| 国产精品国产高清国产av| 国产精品一区二区在线观看99 | 久久精品国产亚洲av天美| 国产 一区 欧美 日韩| 啦啦啦韩国在线观看视频| 一级毛片aaaaaa免费看小| 国产在线男女| 国产伦在线观看视频一区| 黄色日韩在线| 国产女主播在线喷水免费视频网站 | 欧美3d第一页| 亚洲不卡免费看| 国产免费又黄又爽又色| 国产午夜精品一二区理论片| 久久这里有精品视频免费| 国产亚洲精品av在线| 欧美日本视频| 亚洲最大成人中文| 九九在线视频观看精品| 国产极品精品免费视频能看的| 一区二区三区高清视频在线| 久久99精品国语久久久| 久久久成人免费电影| 亚洲国产欧美人成| 欧美zozozo另类| 一区二区三区乱码不卡18| 在线免费十八禁| 国产精品国产三级国产专区5o | 波多野结衣高清无吗| 午夜a级毛片| 欧美精品国产亚洲| 国产国拍精品亚洲av在线观看| 欧美性猛交黑人性爽| 美女内射精品一级片tv| 熟女人妻精品中文字幕| 嘟嘟电影网在线观看| 老女人水多毛片| 亚洲欧美成人精品一区二区| 一级黄色大片毛片| 纵有疾风起免费观看全集完整版 | 熟妇人妻久久中文字幕3abv| 波野结衣二区三区在线| 中文字幕av成人在线电影| av播播在线观看一区| av免费在线看不卡| 色综合站精品国产| 久久6这里有精品| 欧美色视频一区免费| 嘟嘟电影网在线观看| 啦啦啦观看免费观看视频高清| 国产伦在线观看视频一区| 九九在线视频观看精品| av在线观看视频网站免费| 亚洲综合色惰| 日本一二三区视频观看| 亚洲精品影视一区二区三区av| 久久午夜福利片| 亚洲欧美清纯卡通| 韩国av在线不卡| 欧美高清性xxxxhd video| 99热精品在线国产| 日本熟妇午夜| 一区二区三区高清视频在线| 色噜噜av男人的天堂激情| 国产一区二区在线av高清观看| 国产高清有码在线观看视频| 精品欧美国产一区二区三| 成人鲁丝片一二三区免费| 久久久久久久亚洲中文字幕| 亚洲,欧美,日韩| 国产成人精品久久久久久| 91av网一区二区| 色哟哟·www| av卡一久久| 在线免费观看不下载黄p国产| 欧美成人午夜免费资源| 国产激情偷乱视频一区二区| 不卡视频在线观看欧美| 一个人看视频在线观看www免费| 夜夜看夜夜爽夜夜摸| 国产精品无大码| 国产一区二区亚洲精品在线观看| av国产久精品久网站免费入址| 国产69精品久久久久777片| 亚洲在线自拍视频| 看十八女毛片水多多多| 国产精品福利在线免费观看| av又黄又爽大尺度在线免费看 | 亚洲国产成人一精品久久久| 秋霞伦理黄片| 一级黄色大片毛片| 欧美日韩精品成人综合77777| 成人特级av手机在线观看| 久久韩国三级中文字幕| 日本黄色片子视频| 国产日韩欧美在线精品| 精品酒店卫生间| 亚洲真实伦在线观看| 精品久久久久久久久av| 一区二区三区免费毛片| 三级国产精品片| av专区在线播放| 欧美区成人在线视频| 哪个播放器可以免费观看大片| 男女边吃奶边做爰视频| 日本一二三区视频观看| 午夜精品国产一区二区电影 | av.在线天堂| 午夜a级毛片| 成人漫画全彩无遮挡| 国产真实乱freesex| 中文在线观看免费www的网站| 看免费成人av毛片| 日产精品乱码卡一卡2卡三| АⅤ资源中文在线天堂| 亚洲五月天丁香| 久久草成人影院| 人人妻人人看人人澡| 国产午夜福利久久久久久| 国产不卡一卡二| 亚洲最大成人av| 水蜜桃什么品种好| 午夜精品一区二区三区免费看| 黄色一级大片看看| ponron亚洲| 精品午夜福利在线看| 男人的好看免费观看在线视频| 精品99又大又爽又粗少妇毛片| 欧美潮喷喷水| 日本免费在线观看一区| 免费播放大片免费观看视频在线观看 | 热99在线观看视频| 少妇裸体淫交视频免费看高清| 在现免费观看毛片| 高清毛片免费看| 久久久久久久久久成人| 久久久亚洲精品成人影院| 亚洲国产欧美人成| 春色校园在线视频观看| 蜜桃久久精品国产亚洲av| 久久久久免费精品人妻一区二区| 亚洲精品亚洲一区二区| 久久久成人免费电影| 91在线精品国自产拍蜜月| 精品无人区乱码1区二区| 精品久久久噜噜| 美女脱内裤让男人舔精品视频| 国产一区二区在线观看日韩| 一级毛片电影观看 | 国产成人精品一,二区| 亚洲av二区三区四区| 欧美bdsm另类| 一个人免费在线观看电影| 免费黄色在线免费观看| 黄色欧美视频在线观看| 亚洲中文字幕日韩| 国产成人免费观看mmmm| 日日摸夜夜添夜夜爱| 国产一级毛片在线| 尾随美女入室| 日本免费一区二区三区高清不卡| 亚洲一级一片aⅴ在线观看| 亚洲高清免费不卡视频| 久久草成人影院| 亚洲精华国产精华液的使用体验| 午夜福利在线观看免费完整高清在| 草草在线视频免费看| 亚洲欧美日韩卡通动漫| 欧美成人免费av一区二区三区| 麻豆成人av视频| 国产成人免费观看mmmm| 观看美女的网站| 国产单亲对白刺激| 免费av观看视频| 欧美又色又爽又黄视频| 国产成人福利小说| 亚洲欧美日韩高清专用| 久久久久久久亚洲中文字幕| 国产av码专区亚洲av| 日韩精品有码人妻一区| 成人午夜高清在线视频| 久久人人爽人人片av| av专区在线播放| 午夜福利在线观看免费完整高清在| 亚洲综合色惰| 好男人视频免费观看在线| 国产91av在线免费观看| 内射极品少妇av片p| 黄片无遮挡物在线观看| 国产高清国产精品国产三级 | 亚洲四区av| 国产成人a区在线观看| 日本-黄色视频高清免费观看| 黑人高潮一二区| 亚洲欧美中文字幕日韩二区| 亚洲av中文字字幕乱码综合| 亚洲激情五月婷婷啪啪| 欧美性猛交╳xxx乱大交人| 久久精品久久久久久久性| 久久久久久久久久成人| 91av网一区二区| 99国产精品一区二区蜜桃av| 久久草成人影院| 日韩,欧美,国产一区二区三区 | 嘟嘟电影网在线观看| 女人久久www免费人成看片 | 亚洲国产精品国产精品| 在线a可以看的网站| 免费电影在线观看免费观看| 国产精品嫩草影院av在线观看| 成人综合一区亚洲| 国产爱豆传媒在线观看| 我要看日韩黄色一级片| 麻豆精品久久久久久蜜桃| 免费看光身美女| 成人国产麻豆网| 成人无遮挡网站| 欧美97在线视频| 日韩av在线免费看完整版不卡| 久久久久久国产a免费观看| 久久人人爽人人片av| 亚洲欧美成人精品一区二区| 婷婷色综合大香蕉| 国产高清有码在线观看视频| 99久久人妻综合| 美女脱内裤让男人舔精品视频| 搡女人真爽免费视频火全软件| 插阴视频在线观看视频| 亚洲三级黄色毛片| 亚洲精品乱码久久久久久按摩| 深爱激情五月婷婷| 亚洲精品456在线播放app| av福利片在线观看| 黑人高潮一二区| 国产老妇伦熟女老妇高清| 国产午夜精品一二区理论片| 自拍偷自拍亚洲精品老妇| 日韩成人av中文字幕在线观看| 国产精品久久电影中文字幕| 欧美最新免费一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 熟女人妻精品中文字幕| 搞女人的毛片| 日韩精品有码人妻一区| 成人无遮挡网站| 亚洲av成人精品一区久久| 亚洲精品日韩在线中文字幕| 久久精品久久精品一区二区三区| 久久久久久久久久久丰满| 纵有疾风起免费观看全集完整版 | 天天躁夜夜躁狠狠久久av| 国产黄色小视频在线观看| 高清毛片免费看| 人体艺术视频欧美日本| 国产黄a三级三级三级人| 国产精品一二三区在线看| 亚洲欧美日韩东京热| 男人舔奶头视频| 一区二区三区四区激情视频| 久久精品国产亚洲av天美| 三级国产精品欧美在线观看| 日韩强制内射视频| 精品99又大又爽又粗少妇毛片| 国产精品1区2区在线观看.| 亚洲av免费在线观看| 国产亚洲av嫩草精品影院| 人人妻人人看人人澡| 午夜日本视频在线| 日韩成人av中文字幕在线观看| 99久久人妻综合| 国内精品美女久久久久久| 成人特级av手机在线观看| 欧美丝袜亚洲另类| 亚洲欧美日韩东京热| 97超视频在线观看视频| 国产精品嫩草影院av在线观看| 小蜜桃在线观看免费完整版高清| av国产免费在线观看| 性色avwww在线观看| 少妇的逼水好多| 91av网一区二区| 国产精华一区二区三区| 国产精品人妻久久久久久| 日韩中字成人| 毛片女人毛片| 久久久久免费精品人妻一区二区| 亚洲自拍偷在线| 日韩高清综合在线| 国产又色又爽无遮挡免| 午夜a级毛片| 精品一区二区三区视频在线| 亚洲欧美成人精品一区二区| 成人国产麻豆网| 国产片特级美女逼逼视频| 国产免费男女视频| 亚洲国产精品专区欧美| 在线免费十八禁| 国产探花极品一区二区| 久久这里只有精品中国| 亚洲欧美一区二区三区国产| 人妻制服诱惑在线中文字幕| 我的女老师完整版在线观看| 最近2019中文字幕mv第一页| 成人高潮视频无遮挡免费网站| 爱豆传媒免费全集在线观看| 女人被狂操c到高潮| 亚洲怡红院男人天堂| 禁无遮挡网站| 国产成人一区二区在线| 亚洲精品乱久久久久久| 一级黄片播放器| 欧美最新免费一区二区三区| 国产一区二区亚洲精品在线观看| 超碰97精品在线观看| 免费观看在线日韩| 狂野欧美激情性xxxx在线观看| 精品久久久久久成人av| 亚洲精品亚洲一区二区| 国产免费视频播放在线视频 | 日本一本二区三区精品| 午夜福利在线在线| 午夜老司机福利剧场| 国产在线男女| 国内揄拍国产精品人妻在线| 精品欧美国产一区二区三| 熟妇人妻久久中文字幕3abv| 国产成年人精品一区二区| 午夜激情福利司机影院| 老司机影院毛片| 国产男人的电影天堂91| 一级av片app| 成人毛片a级毛片在线播放| 免费观看性生交大片5| 国产淫语在线视频| 久久亚洲精品不卡| 免费在线观看成人毛片| 全区人妻精品视频| 国产黄片视频在线免费观看| 成人美女网站在线观看视频| av免费观看日本| 久久久国产成人免费| 欧美激情久久久久久爽电影| 九色成人免费人妻av| 一卡2卡三卡四卡精品乱码亚洲| 22中文网久久字幕| 国产免费视频播放在线视频 | 黄色欧美视频在线观看| 亚洲精品日韩av片在线观看| 2021少妇久久久久久久久久久| 亚洲欧美日韩东京热| 国产精品三级大全| 亚洲精品一区蜜桃| 国产午夜精品久久久久久一区二区三区| 国产在视频线精品| 国产成人freesex在线| 国产av不卡久久| 国产在视频线在精品| 成人三级黄色视频| 国产精品久久久久久精品电影小说 | 晚上一个人看的免费电影| 国内少妇人妻偷人精品xxx网站| 性色avwww在线观看| 久久鲁丝午夜福利片| 久久久精品欧美日韩精品| 亚洲三级黄色毛片| 婷婷六月久久综合丁香| 亚洲一区高清亚洲精品| www.av在线官网国产| 欧美区成人在线视频| 最近视频中文字幕2019在线8| 极品教师在线视频| av天堂中文字幕网| 亚洲内射少妇av| 99热6这里只有精品| 国产成人午夜福利电影在线观看| 欧美日韩一区二区视频在线观看视频在线 | 一级毛片电影观看 | 99久久精品一区二区三区| 久久婷婷人人爽人人干人人爱| 国产成人aa在线观看| 国产老妇女一区| 久久韩国三级中文字幕| 亚洲成av人片在线播放无| 亚洲国产欧洲综合997久久,| 九九爱精品视频在线观看| 亚洲乱码一区二区免费版| 热99re8久久精品国产| 你懂的网址亚洲精品在线观看 | 国产成人午夜福利电影在线观看| 99久久中文字幕三级久久日本| 男人狂女人下面高潮的视频| 日韩av不卡免费在线播放| 亚洲综合精品二区| 人妻制服诱惑在线中文字幕| 美女xxoo啪啪120秒动态图| 精品国内亚洲2022精品成人| 七月丁香在线播放| 免费黄网站久久成人精品| av国产免费在线观看| 韩国av在线不卡| 男的添女的下面高潮视频| 国语对白做爰xxxⅹ性视频网站| h日本视频在线播放| 精品免费久久久久久久清纯| 天堂av国产一区二区熟女人妻| 免费不卡的大黄色大毛片视频在线观看 | 精品免费久久久久久久清纯| 免费av观看视频| 精品久久国产蜜桃| 亚洲av成人精品一区久久| 99久久精品热视频| 一卡2卡三卡四卡精品乱码亚洲| 亚洲成人精品中文字幕电影| a级毛色黄片| 又粗又爽又猛毛片免费看| 好男人在线观看高清免费视频| 人体艺术视频欧美日本| 男女视频在线观看网站免费| 国产精品乱码一区二三区的特点| 亚洲av电影在线观看一区二区三区 | 日韩av不卡免费在线播放| 亚洲国产精品成人久久小说| 波多野结衣巨乳人妻| 国产精品一及| 亚洲美女搞黄在线观看| 26uuu在线亚洲综合色| 国产精品伦人一区二区| 久久久午夜欧美精品| 免费黄色在线免费观看| 国产精品综合久久久久久久免费| 1024手机看黄色片| 日本黄大片高清| 国内精品宾馆在线| 欧美区成人在线视频| videossex国产| 人人妻人人澡人人爽人人夜夜 | 免费播放大片免费观看视频在线观看 | 99热6这里只有精品| 日韩一本色道免费dvd| 在线免费十八禁| 成人毛片60女人毛片免费| 国产精品嫩草影院av在线观看| 精品国产露脸久久av麻豆 | 久久精品影院6| 99热这里只有是精品50| 最近最新中文字幕免费大全7| 国产精品永久免费网站| 亚洲欧美成人综合另类久久久 | 成人毛片60女人毛片免费| 丰满少妇做爰视频| 色综合色国产| 欧美性感艳星| 看片在线看免费视频| 中文精品一卡2卡3卡4更新| 级片在线观看| 精品国产三级普通话版| 一卡2卡三卡四卡精品乱码亚洲| 亚洲欧美日韩无卡精品| 少妇熟女欧美另类| 午夜福利网站1000一区二区三区| 2021少妇久久久久久久久久久| 精品国产露脸久久av麻豆 | 老司机影院毛片| 狠狠狠狠99中文字幕| 久久精品国产亚洲av涩爱| 深爱激情五月婷婷| 97超碰精品成人国产| 97在线视频观看| 免费观看精品视频网站| 中文精品一卡2卡3卡4更新| av黄色大香蕉| 久久精品久久久久久噜噜老黄 | 永久网站在线| 丰满少妇做爰视频| 黄色一级大片看看| 丝袜美腿在线中文| 亚洲性久久影院| 免费观看人在逋| 国产伦理片在线播放av一区| 我要看日韩黄色一级片| 欧美+日韩+精品| 精品免费久久久久久久清纯| 亚洲国产精品合色在线| av在线播放精品| 人妻制服诱惑在线中文字幕| 噜噜噜噜噜久久久久久91| 中文字幕av在线有码专区| 一级毛片电影观看 | 国产伦一二天堂av在线观看| 中文字幕熟女人妻在线| 亚洲欧美成人精品一区二区| 国产高清国产精品国产三级 | 日韩 亚洲 欧美在线| 午夜福利高清视频| 国产淫片久久久久久久久| 中文字幕av成人在线电影| 欧美色视频一区免费| 精品一区二区三区人妻视频| 在现免费观看毛片| 永久网站在线| 日本欧美国产在线视频| 亚洲av日韩在线播放| 精品欧美国产一区二区三| 我的老师免费观看完整版| 亚洲国产色片| 国产一级毛片七仙女欲春2| 男插女下体视频免费在线播放| 精品不卡国产一区二区三区| 能在线免费看毛片的网站| 波野结衣二区三区在线| 成人无遮挡网站| 夫妻性生交免费视频一级片| 一区二区三区免费毛片| 美女脱内裤让男人舔精品视频| 一边摸一边抽搐一进一小说| 精品不卡国产一区二区三区| 亚洲综合精品二区| 亚洲国产高清在线一区二区三| 插阴视频在线观看视频| 国产精品1区2区在线观看.| 亚洲高清免费不卡视频| 99视频精品全部免费 在线| 亚洲综合精品二区| 人妻夜夜爽99麻豆av| 亚洲av免费高清在线观看| 麻豆久久精品国产亚洲av| 一本一本综合久久|