• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical and Experimental Investigation of High-efficiency Axial-flow Pump

    2010-03-01 01:46:58SHIWeidongZHANGDeshengGUANXingfanandLENGHongfei

    SHI Weidong, ZHANG Desheng, GUAN Xingfan, and LENG Hongfei

    Technology and Research Center of Fluid Machinery Engineering, Jiangsu University, Zhenjiang 212013, China

    1 Introduction

    The flow in axial-flow pump is greatly influenced by the effects of turbulence and viscosity. Much of the physical phenomena and laws involved in this complex flow field can’t be fully determined. FARRELL[1]discussed the end-wall vortex cavitation in high Reynolds axial-flow pump. ALPAN, et al[2], analyzed the suction reverse flow in an axial flow pump by experiments. ZIERKE, et al[3–4],introduced the experimental technology and discussed the flow characteristics of high Reynolds pump and tip clearance flow. DUPONT, et al[5], investigated the unsteady effects associated with rotor stator interactions in a vaned-diffuser radial-flow pump. SITARAM, et al[6], used the probe to measure the relative flow in a turbo machinery rotor blade passage. LI, et al[7]and WANG, et al[8],simulated the axial-flow pump with inducer, and discussed unsteady turbulence numerical simulation in axial-flow pump. HUANG, et al[9–10], compared numerical streamlines to the particle image velocimetry(PIV) measurement results.Axial-flow pump research group of Jiangsu University,China, has investigated axial-flow pump models with high-efficiency in the past decade[11–14]. All the research work above focuses on the normal performance and flow field of axial flow pump. The efficiency of axial-flow pump is becoming one of the most important performance indicators in the large pumping stations, and the flow structure in axial-flow pump is associated to its efficiency.

    In this paper, in order to analyze the flow structure in the adjustable axial-flow pump model, a high efficiency model with specific speed 800 is simulated by FLUENT code at various conditions, and a five-hole probe was used to measure the flow field of inlet, blade exit and guide-vane outlet. The results of simulation and experiment enable us to improve our understanding of the flow characteristics in high efficiency axial-flow pump.

    2 Numerical Simulation of Inner Flow Field

    2.1 Axial-flow pump model

    Fig. 1 shows 3D geometric of axial-flow pump model with specific speed ns=800 and impeller diameter 300,which is used to simulate and measure its entire flow field.

    Fig. 1. 3D geometric of axial-flow pump model

    2.2 Governing equations

    The three-dimensional Reynolds-average Navier-Stokes equations are solved by FLUENT code in strong conservation form. The transport equations are discredited by using a conservative finite volume method. These simulations were achieved with a second order accurate skew upwind differencing and scheme and physical advection correction. The turbulence effects were modeled by the RNG k–ε turbulence model. The RNG model provides a way to account for the effects of swirl or rotation by modifying the turbulent viscosity appropriately.SIMPLEC arithmetic is applied to solve the pressure and velocity coupling, and standard wall functions are used to model the viscous sublayer.

    2.3 Computational domain and boundary conditions

    The whole hydraulic passage of the axial-flow pump is taken as the computational domain, and assumed to be steady. The inlet of the solution domain is located approximately at the upstream of the axial-flow blade leading edge with a four impeller diameter distance. A constant axial velocity based on the mass-flow rate is specified at the inlet for each computation. All physical surfaces of the pump are set to be no-slip wall. At the outlet,which is roughly five impeller diameter downstream of the vane trailing edge, the gradients of the velocity components are assumed to be zero. The flow zone is divided into 3 sub-domains. The first is the region defined from the pump inlet to the inlet of rotor. The equations for this region are solved in a stationary framework. The second is the impeller region. This region is attached to the rotating frame, and is solved in a rotating framework by the multiple reference frame(MRF) method. The third is the other region, and is also a stationary zone. The interfaces between the rotating region and stationary regions are shown in Fig. 2.

    Fig. 2. Computational grids and interfaces

    A hybrid meshing scheme is used, with hexahedral cells in the near blade region and tetrahedral and pyramid cells in the rest of the domain. Relatively fine grids are used near the hub, shroud, and blade surfaces, as well as near the leading, trailing edges and tip clearance.

    2.4 Simulation results and discussion

    2.4.1 Performance prediction

    The performance of the pump at blade angle 0°,predicted from the computational fluid dynamics(CFD)model, was compared with the experimental results. As shown in Fig. 3 and Fig. 4. Here Q is flow rate; Qoptis flow rate at design condition.

    Fig. 3. Experimental and predicted results of head

    Fig. 4. Experimental and predicted results of efficiency

    The prediction data (CFD) shows agreement with the experimental head and efficiency (EXP). The difference between the simulation and experiment may be due to our neglect of the unsteady feature of flow between impeller and guide-vane. Furthermore, the current rid size,turbulence model and wall functions used in this study is not the best selection and further careful investigations are needed in the future. The simulation method in the paper could be used in hydraulic optimization and flow filed analysis of the axial-flow pump.

    2.4.2 Static pressure distribution

    In Fig. 5, Lxis string length at x direction, Ltis total airfoil string length, R is radius, and Lx/Ltis string span.The results show that the static pressure on pressure side of blades increases slightly at circumferential direction, and keeps almost constant at the same radial, while it increases gradually from inlet to exit along the flow direction on suction side. At leading edges of the blades, local impact results in an increase of pressure.

    Fig. 5. Static pressure distributions on different profiles

    The static pressure distributions at inlet, impeller outlet and vane outlet at design conditions were simulated. We define location factor r=(Rm–rh)/(rt–rh), where Rmis the radius of measurement point, rtis the radius of tip, rhis the radius of hub. The static pressure at the inlet and vane outlets at radial locations is constant, as shown in Fig. 6.Furthermore, it decreases near hub leakage, and shows agreement with the measurement data.

    Fig. 6. Static pressure distributions in pump

    2.4.3 Velocity distribution

    In the design cycle, the blades of the impeller were designed by using the uniform pattern of meridional velocity. However, this distribution has not been found in the numerical results. Fig. 7 shows the meridional velocity distribution at impeller outlet plane. It can be seen that the meridional velocity changes periodically along the circumferential direction and the change frequency is identical with the vane blade number, which is also influenced by the impeller numbers. In general, axial velocity increases from hub to tip, and it is affected by the tip clearance and hub leakage which lead to decrease of meridional velocity and efficiency.

    Fig. 7. Meridional velocity distribution (m/s)

    3 Experimental Investigation

    3.1 Experimental apparatus

    The experiment was performed in fluid machinery laboratory of Jiangsu University, China. Fig. 8 shows the main experimental apparatus.

    Fig. 8. Experimental apparatus

    Three components of velocity at circumferential direction of the inlet, impeller outlet and guide-vane outlet at different conditions were measured by a calibrated five-hole pressure probe. Semi-measurement method was used to calculate the velocity vector in the experiments[15],and the five-hole probe structure is shown in Fig. 9.

    Fig. 9. Five-hole probe structure

    The static pressure and total pressure at the same locations were also measured at the same time. The flow field at blade angle Φ= 0° was measured. Fig. 10 shows the measurement locations.

    Fig. 10. Probe measurement locations

    DUPONT, et al[5], listed sources of errors in conventional probe measurements of flow in turbine machinery. They also estimated the magnitude of these errors. They agreed that wall proximity effects were negligible if the distance between the measurement position and the wall was two times longer than the probe diameter.The first and the last measurement locations shown here fulfilled this condition. The interval between measurement points except the first measurement and last one is 10 mm.The Reynolds number is the same for calibration in air and experiments in water, thus the effects of Reynolds number are almost non-existent. The presence of the probe may perturb the flow but the size of the probe is 10 times smaller than the blade passage, so the effects of the probe blockage are negligible.

    3.2 Experimental results

    3.2.1 Performance characteristics

    The pump was manufactured according to the 3D model,and tested over the operational range at five blade angles(–4°, –2°, 0°, +2°, +4°). The overall performance curves of the model pump with rotor diameter D2=300 mm and rotation speed n=1 450 r/min are shown in Fig. 11, and optimal efficiency points at five blade angles can be seen in Table. The efficiency at blade angle Φ=+4° reaches 86.05%,which is the best efficiency in public in China, so we define it as a high-efficiency axial-flow pump.

    Fig. 11. Overall performance curves of the model pump

    Table. Optimum parameters at five blade angles

    3.2.2 Inlet flow

    Due to the size of the probe and the vicinity of the hub,the first measurement is located at r=0.07 and the last one at r=0.92 as shown in Fig. 12. The data were collected using a field point measurement method. In this procedure,the measurement volume remains stationary, and the flow in the pump is assumed to be steady. A five-hole probe resolves the three components of velocity at blade inlet.Fig. 12(a) shows that the absolute flow angle α (α=arctan(vu1/vm1)) is almost equal to 0 at various flow rates, as expected, which means the inlet flow is almost axial and the prerotation at blade inlet is very small. The meridional velocity vm1(Fig. 12(b)) at impeller inlet all increases slightly from tip to hub at 0.8Qopt, 1.0Qoptand 1.2Qoptconditions which may be relevant to the sharp of front hub.The distribution of the static pressure at inlet is almost consistent at design condition, which is the expression of steady flow field. At off-design conditions, the unsteady flow in rotor induces the static pressure change at different radial locations, but the change range is small, which can be observed in Fig. 12(c). Fig. 12(d) shows that the total pressure increases linearly from tip to hub at various flow rates associates in correspondence with the axial velocity changes.

    3.2.3 Impeller outlet flow

    The hub leakage of adjustable blades, which influences the flow in the vicinity of hub, is the most important factor that influences the efficiency of axial-flow pump. We sealed it up with wax and tested the performance. With its flow field at 0.8Qopt, 1.0Qoptand 1.2Qoptconditions it was measured to compare with the blades with hub leakage. The performance test results show that hub leakage leads to the decrease of efficiency, and the maximum efficiency can reach 86.85% without hub leakage, so our special attention should be paid to examine the flow field near hub with leakage, which is equally important with tip clearance. The hydrodynamic flow field at blade exit is shown in Fig. 13.In Fig. 13, 1 (hollow symbols) means the results of flow field without hub leakage, and 2 (solid symbols) means the results of flow field with hub leakage. At the design point,the distribution of meridional velocity component vm2is almost uniform, which means that the flow at blade outlet is steady without radial flow. When the flow rate reduces,significant changes occur in the flow field. The new feature is that a reverse flow developed in this region, where vm2increases strongly from hub to mid-radius, and then decreases, but increases again near the tip. The significant difference between the blades with and without hub leakage,which can be seen in Fig. 13(a), is the decrease of vm2near the hub owing to the hub leakage. This phenomenon can be explained as follows: the reverse flow from pressure side to suction side reduces vm2, which is associated with the drop of static pressure p, totol pressure p0, and vu2near the hub leakage.

    Fig. 12. Hydrodynamic flow field at inlet at various locations at different flow rates

    Fig. 13. Hydrodynamic flow field at blade outlet at various locations at different flow rates

    Fig. 13(b) shows the distributions of circumferential velocity component vu2. It is noticeable that vu2decreased gradually from hub to tip at 1.0Qoptand 1.2Qoptconditions in accordance with the consistent Г distributions. At small flow rate conditions, the distribution regularity of vu2is similar to vm2at small flow rate conditions, which is also influenced by the reverse flow.

    The decrease of the total pressure p0and the static pressure p in the tip clearance and hub leakage in Figs.13(c), 13(d) indicates large energy losses in these regions,which should be examined carefully during the axial-flow design process. vm2also decreases slightly near tip.Nevertheless, the decrease is small because of the small tip clearance of 0.15 mm.

    The single profile exit circulation is shown in Fig. 13(e).The distribution of circulation Г at downstream of the impeller blades is the most important factor for efficiency.Compared with two kinds of blades, at design condition and large flow rate conditions, the circulation Г is almost constant but a small decrease near hub, caused by the hub leakage. This phenomenon may be further relevant with the circulation distribution at hub and tip regions in design to make the circulation consistent along the radial locations in practice. The test results (see Fig. 11) show that the maximum efficiency reached 85.29% at Φ=0o, so it could prove that constant circulation flow pattern, which is corrected with the non-linear circulation distributions,could obtain high efficiency. At small flow rate conditions,Г decreases sharply from tip to hub. This is recirculation near hub. Although many experts have studied the flow at small flow rate, the distribution of Г is still hard to control.At small flow rate conditions, the efficiency of pump decreases rapidly.

    3.2.4 Guide-vane outlet flow

    Guide-vane is an important component of the axial-flow pump. The high-speed flow velocity from the blades must be reduced to turn dynamic energy into pressure energy before it enters to the outlet pipe, which means the vane must be carefully designed to avoid flow separation and instability. The flow quality at outlet of vane has a direct impact on the efficiency. Fig. 14(a) displays that circulation can not be eliminated absolutely at downstream of guide vane. vuis almost constant at 1.0Qoptand 1.2Qopt,conditions, while it increases linearly from hub to tip at small flow rate conditions. vmdistribution is also almost constant at different radial locations, but its distribution is non-uniform when the flow is reduced due to the unsteady flow at the blades exit (Fig. 14(b)). The static pressure and total pressure increases quickly at guide-vane outlet as expected, shown in Figs. 14(c), 14(d). Furthermore, the static pressure remains nearly constant even at small flow conditions. With the effects of unsteady velocity, the total pressure fluctuation appears in the hub region.

    Fig. 14. Hydrodynamic flow field at vane outlet at various locations at different flow rates

    4 Conclusions

    (1) The numerical results of the simulation and measurement of inner flow of the high efficiency axial pump show excellent agreement with the experimental results.

    (2) It is found that the static pressure on pressure side of blades increases slightly at circumferential direction, and keeps almost constant at the same radial. On suction side, it increases gradually from inlet to exit along the flow direction.

    (3) Experimental results show that inlet flow is almost axial and the prerotation is very small at various conditions.The meridional velocity and circulation distributions are almost identical at impeller outlet at design conditions.

    (4) Hub leakage in adjustable blades leads to the decrease of the meridional velocity and circulation at impeller outlet near hub leakage region. The comparison test shows that the efficiency could be improved by 1.56%at blade angle Φ=0° without hub leakage.

    [1] FARRELL K J. An investigation of end-wall vortex cavitation in a high Reynolds number axial-flow pump[D]. Pennsylvania:Pennsylvania State University, 1989.

    [2] ALPAN K, PENG W W. Suction reverse flow in an axial-flow pump[J]. Journal of Fluids Engineering, 1991, 113: 90–97.

    [3] ZIERK W C, FARRELL K J, STRAKA W A. Measurements of the tip clearance flow for a high-Reynolds-number axial-flow rotor[J]. Journal of Tubomachinery, 2005, 117: 522–532.

    [4] ZIERKE W C, STRAKA W A, TAYLOR P D. Experimental investigation of the flow through an axial-flow pump[J]. Journal of Fluids Engineering, Transactions of the ASME, 1995, 117(3):485–490.

    [5] DUPONT P, CAIGNAERT G, BOIS G, et al. Rotor-stator interactions in a vaned diffuser radial flow pump[C]//Proceedings of ASME Fluids Engineering Division Summer Meeting, Houston,TX, USA, June 19–23, 2005: 1 087–1 094.

    [6] SITARAM N, LAKSHMINARAYANA B, RAVINDRANATH A.Conventional probes for the relative flow measurement in a turbomachinery rotor blade passage[J]. ASME Journal of Engineering for Power, 1981, 103: 406–414.

    [7] LI Yaojun, WANG Fujun. Numerical investigation of performance of an axial-flow pump with inducer[J]. Journal of Hydrodynamics,2007, 19(6): 705–711.

    [8] WANG Fujun, ZHANG Lin, LI Yaojun, et al. Some key issues of unsteady turbulence numerical simulation in axial-flow pump[J].Chinese Journal of Mechanical Engineering, 2008, 44(8): 73–77.(in Chinese)

    [9] HUANG Huanming, GAO Hong, DU Zhaohui. Numerical simulation and experimental study on flow field in an axial flow pump[J]. Journal of Shanghai Jiaotong University, 2009, 43(1):124–128. (in Chinese)

    [10] HUANG Huanming, GAO Hong, SHEN Feng, et al. Numerical simulation and experimental validation of the flow field in axial flow pump[J]. Transactions of the Chinese Society for Agricultural Machineryy, 2008, 39(8): 66–69. (in Chinese)

    [11] SHI Weidong. Tests on the hydraulic model of low-lift axial flow pump[J]. Journal of Jiangsu University of Science and Technology,1998, 19(1): 31–34. (in Chinese)

    [12] SHI Weidong, GUAN Xingfan. Research on hydraulic model of ZBM-750 axial flow pump[J]. Transactions of the Chinese Society of Agricultural Machinery, 1999, 30(4): 17–22. (in Chinese)

    [13] GUAN Xingfan. Test reports of a new series of axial-flow model pumps[J]. Drainage and Irrigation Machinery, 2005, 23(4): 1–5. (in Chinese)

    [14] GUAN Xingfan, SHANG Minghua, XIE Weidong. Hydraulic model and its pilot-plant unit for rear bulb-type cross-flow pump[J].Drainage and Irrigation Machinery, 2008, 26(1): 25–28. (in Chinese)

    [15] YANG Minguan, WANG Junfeng, LUO Tiqian, et al. Flow measurement technology of fluid machinery[M]. Beijing: China Machine Press, 2006. (in Chinese)

    av播播在线观看一区| 岛国在线免费视频观看| 韩国av在线不卡| 一级爰片在线观看| 插逼视频在线观看| 看非洲黑人一级黄片| 国产黄a三级三级三级人| 日日摸夜夜添夜夜爱| 中文字幕精品亚洲无线码一区| 亚洲国产精品国产精品| .国产精品久久| 国产极品天堂在线| 一级毛片电影观看 | 久久久久久久亚洲中文字幕| 全区人妻精品视频| 婷婷六月久久综合丁香| 国产精品久久久久久av不卡| 亚洲精品乱码久久久v下载方式| 天堂av国产一区二区熟女人妻| 国产高清不卡午夜福利| 久久久久精品久久久久真实原创| 免费观看性生交大片5| 久久精品国产亚洲网站| 亚洲国产日韩欧美精品在线观看| 两个人的视频大全免费| 精品午夜福利在线看| 97热精品久久久久久| 国产精品蜜桃在线观看| 不卡视频在线观看欧美| eeuss影院久久| 一级二级三级毛片免费看| 简卡轻食公司| kizo精华| 国产精品国产三级专区第一集| 亚洲精品色激情综合| 六月丁香七月| 精品人妻一区二区三区麻豆| 精品不卡国产一区二区三区| 国产不卡一卡二| 日本免费a在线| 日韩 亚洲 欧美在线| 日韩视频在线欧美| 精品人妻偷拍中文字幕| 亚洲最大成人av| 亚洲欧美中文字幕日韩二区| 可以在线观看毛片的网站| 色网站视频免费| 亚洲av成人精品一二三区| 两个人视频免费观看高清| 久久人人爽人人片av| 一级毛片aaaaaa免费看小| 国产一级毛片七仙女欲春2| 我的女老师完整版在线观看| 18禁裸乳无遮挡免费网站照片| 久久草成人影院| 人人妻人人看人人澡| 精品熟女少妇av免费看| 亚洲国产欧美在线一区| 51国产日韩欧美| 美女被艹到高潮喷水动态| 亚洲av日韩在线播放| 97超视频在线观看视频| 久久久国产成人免费| 国产成人精品一,二区| 全区人妻精品视频| 久久精品综合一区二区三区| 韩国高清视频一区二区三区| 高清视频免费观看一区二区 | 天堂√8在线中文| 一边摸一边抽搐一进一小说| 真实男女啪啪啪动态图| 欧美精品一区二区大全| 中国国产av一级| 麻豆乱淫一区二区| 少妇熟女aⅴ在线视频| 人人妻人人澡欧美一区二区| 激情 狠狠 欧美| 51国产日韩欧美| 免费av观看视频| 2022亚洲国产成人精品| 噜噜噜噜噜久久久久久91| 亚洲欧美一区二区三区国产| 久久久久免费精品人妻一区二区| 亚洲成人精品中文字幕电影| 一级毛片久久久久久久久女| 99热这里只有精品一区| 亚洲电影在线观看av| 色吧在线观看| .国产精品久久| 日韩精品有码人妻一区| 国模一区二区三区四区视频| 国产成人a区在线观看| 亚洲欧美精品自产自拍| АⅤ资源中文在线天堂| 欧美xxxx性猛交bbbb| 国产在线男女| 久久久午夜欧美精品| 久久久精品欧美日韩精品| 久久久国产成人免费| 午夜视频国产福利| 亚洲成人中文字幕在线播放| 最后的刺客免费高清国语| 亚洲人成网站高清观看| 欧美精品一区二区大全| 嫩草影院新地址| 中文字幕亚洲精品专区| 精品一区二区三区人妻视频| 国国产精品蜜臀av免费| 51国产日韩欧美| 国产午夜精品论理片| 黄片无遮挡物在线观看| videossex国产| 国产综合懂色| 久久久久久九九精品二区国产| 国产一区亚洲一区在线观看| 少妇熟女欧美另类| 人妻制服诱惑在线中文字幕| 精品久久久久久久久亚洲| 欧美zozozo另类| 在线免费观看不下载黄p国产| 热99re8久久精品国产| 国产精品国产三级国产av玫瑰| 国产一区亚洲一区在线观看| 亚洲精品国产av成人精品| 最近的中文字幕免费完整| 99久久人妻综合| 成年av动漫网址| 国产毛片a区久久久久| 国产爱豆传媒在线观看| 3wmmmm亚洲av在线观看| 色综合站精品国产| 美女xxoo啪啪120秒动态图| 插阴视频在线观看视频| 亚洲av电影不卡..在线观看| 国产在线男女| 国产免费一级a男人的天堂| 日韩中字成人| 嫩草影院精品99| 99九九线精品视频在线观看视频| 毛片女人毛片| 成年av动漫网址| 国产伦理片在线播放av一区| 两个人的视频大全免费| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 午夜免费激情av| 秋霞在线观看毛片| 夜夜爽夜夜爽视频| 欧美最新免费一区二区三区| 国产真实伦视频高清在线观看| 国产一区亚洲一区在线观看| 欧美成人一区二区免费高清观看| 狂野欧美白嫩少妇大欣赏| 亚洲在线自拍视频| 成人高潮视频无遮挡免费网站| 两个人的视频大全免费| 亚洲av免费在线观看| 欧美zozozo另类| 国产精品国产三级国产专区5o | 久久精品影院6| 好男人视频免费观看在线| 干丝袜人妻中文字幕| 成人午夜精彩视频在线观看| 国产午夜福利久久久久久| eeuss影院久久| 日本免费a在线| 狂野欧美白嫩少妇大欣赏| 青春草视频在线免费观看| 国产老妇女一区| 日韩精品有码人妻一区| 亚洲欧美日韩卡通动漫| 国产黄色视频一区二区在线观看 | www日本黄色视频网| 久久久久久久午夜电影| 亚洲精品国产av成人精品| 国产在视频线在精品| 一级二级三级毛片免费看| 亚洲婷婷狠狠爱综合网| 中文字幕精品亚洲无线码一区| 99久久成人亚洲精品观看| 特级一级黄色大片| 日产精品乱码卡一卡2卡三| 狂野欧美激情性xxxx在线观看| 又爽又黄无遮挡网站| 小说图片视频综合网站| 欧美一区二区亚洲| 十八禁国产超污无遮挡网站| 亚洲av中文av极速乱| 亚洲欧美日韩卡通动漫| 天堂av国产一区二区熟女人妻| 蜜臀久久99精品久久宅男| 免费搜索国产男女视频| 午夜精品一区二区三区免费看| 日本免费一区二区三区高清不卡| 欧美激情在线99| 99热这里只有是精品50| 欧美bdsm另类| 老司机影院成人| 国产激情偷乱视频一区二区| 欧美三级亚洲精品| 99热全是精品| 女的被弄到高潮叫床怎么办| 91狼人影院| 日本免费一区二区三区高清不卡| 在线免费观看的www视频| 欧美性猛交黑人性爽| 亚洲va在线va天堂va国产| 欧美成人免费av一区二区三区| 久久久久久久久中文| 两个人的视频大全免费| 菩萨蛮人人尽说江南好唐韦庄 | 日产精品乱码卡一卡2卡三| 国产国拍精品亚洲av在线观看| 狠狠狠狠99中文字幕| 国产黄色小视频在线观看| 精品人妻偷拍中文字幕| av又黄又爽大尺度在线免费看 | 少妇熟女欧美另类| 小蜜桃在线观看免费完整版高清| 大香蕉久久网| 婷婷色综合大香蕉| 国产视频首页在线观看| 老司机影院成人| 欧美另类亚洲清纯唯美| 欧美+日韩+精品| 欧美日韩在线观看h| 18禁在线播放成人免费| 三级毛片av免费| 国产色婷婷99| 你懂的网址亚洲精品在线观看 | 成人性生交大片免费视频hd| 精品久久久噜噜| 亚洲电影在线观看av| 成人三级黄色视频| 五月玫瑰六月丁香| 日韩av在线大香蕉| 免费在线观看成人毛片| 99热精品在线国产| 寂寞人妻少妇视频99o| 97超视频在线观看视频| 亚洲va在线va天堂va国产| av在线老鸭窝| 国产免费男女视频| 人妻夜夜爽99麻豆av| 少妇的逼好多水| 午夜老司机福利剧场| 欧美极品一区二区三区四区| 麻豆一二三区av精品| 亚洲中文字幕日韩| 亚洲av成人精品一二三区| 狠狠狠狠99中文字幕| 亚洲av电影不卡..在线观看| 搞女人的毛片| 中文天堂在线官网| 国产黄a三级三级三级人| 精品一区二区三区视频在线| 亚洲丝袜综合中文字幕| 亚洲成人av在线免费| 成人国产麻豆网| 日韩欧美精品免费久久| 级片在线观看| 国产精品.久久久| 爱豆传媒免费全集在线观看| 在线播放国产精品三级| 五月伊人婷婷丁香| 久久人人爽人人片av| 日本黄色视频三级网站网址| 69人妻影院| 可以在线观看毛片的网站| 最新中文字幕久久久久| 99热全是精品| 91午夜精品亚洲一区二区三区| 丝袜美腿在线中文| 亚洲,欧美,日韩| 久久人人爽人人爽人人片va| 天堂影院成人在线观看| 少妇人妻一区二区三区视频| 非洲黑人性xxxx精品又粗又长| 一级黄色大片毛片| 性插视频无遮挡在线免费观看| 99久久精品一区二区三区| 久久婷婷人人爽人人干人人爱| 在线免费观看不下载黄p国产| 亚洲成人av在线免费| 搡老妇女老女人老熟妇| 看片在线看免费视频| 婷婷六月久久综合丁香| 建设人人有责人人尽责人人享有的 | 亚洲av电影不卡..在线观看| 亚洲国产精品合色在线| 亚洲美女视频黄频| 晚上一个人看的免费电影| 22中文网久久字幕| 精品一区二区三区视频在线| 欧美区成人在线视频| 欧美一区二区亚洲| 欧美潮喷喷水| 久久久久久伊人网av| 51国产日韩欧美| 天堂中文最新版在线下载 | 精品欧美国产一区二区三| 欧美另类亚洲清纯唯美| 亚洲在久久综合| 哪个播放器可以免费观看大片| 久久久久久大精品| 亚洲人与动物交配视频| 欧美高清成人免费视频www| 午夜福利在线在线| 亚洲精品国产成人久久av| 亚洲国产精品国产精品| 亚洲欧洲国产日韩| 久久精品国产99精品国产亚洲性色| 一级黄色大片毛片| 欧美zozozo另类| 久久精品熟女亚洲av麻豆精品 | 免费无遮挡裸体视频| 亚洲国产欧洲综合997久久,| 高清在线视频一区二区三区 | 日日干狠狠操夜夜爽| 国产 一区 欧美 日韩| 人人妻人人澡欧美一区二区| 在现免费观看毛片| av福利片在线观看| 欧美激情在线99| 看片在线看免费视频| 国产精品av视频在线免费观看| 日本欧美国产在线视频| 一个人看的www免费观看视频| 九色成人免费人妻av| 亚洲美女搞黄在线观看| 深夜a级毛片| 国产美女午夜福利| 国产免费一级a男人的天堂| 亚洲婷婷狠狠爱综合网| 精品久久久久久久人妻蜜臀av| 亚洲真实伦在线观看| 乱人视频在线观看| 欧美丝袜亚洲另类| 久久久久久久久久成人| 亚洲欧美精品专区久久| 校园人妻丝袜中文字幕| 免费黄网站久久成人精品| 亚洲电影在线观看av| 爱豆传媒免费全集在线观看| 国产老妇伦熟女老妇高清| 中文字幕制服av| 免费观看精品视频网站| 精品国产露脸久久av麻豆 | 亚洲国产精品久久男人天堂| 久久久久久久久久久免费av| 国产一区亚洲一区在线观看| 最近2019中文字幕mv第一页| 亚洲第一区二区三区不卡| 毛片一级片免费看久久久久| 黄色配什么色好看| 我要搜黄色片| 少妇的逼水好多| 美女国产视频在线观看| 亚洲美女搞黄在线观看| 久久国产乱子免费精品| 免费在线观看成人毛片| 一区二区三区高清视频在线| 日本一二三区视频观看| 国产老妇女一区| 丝袜美腿在线中文| 亚洲最大成人中文| 九九热线精品视视频播放| 国产色爽女视频免费观看| 欧美日韩精品成人综合77777| 欧美xxxx性猛交bbbb| 国产免费福利视频在线观看| 好男人在线观看高清免费视频| 欧美最新免费一区二区三区| av卡一久久| 国产精品.久久久| 99久久无色码亚洲精品果冻| 看黄色毛片网站| 搡女人真爽免费视频火全软件| 99久国产av精品国产电影| 亚洲欧美日韩东京热| www.色视频.com| 精品人妻熟女av久视频| 一个人看视频在线观看www免费| 国内揄拍国产精品人妻在线| 狂野欧美白嫩少妇大欣赏| 欧美最新免费一区二区三区| 噜噜噜噜噜久久久久久91| 亚洲图色成人| 日本免费一区二区三区高清不卡| 亚洲av电影在线观看一区二区三区 | 成人午夜精彩视频在线观看| 亚洲怡红院男人天堂| 中文字幕精品亚洲无线码一区| 看免费成人av毛片| 国产探花在线观看一区二区| 97人妻精品一区二区三区麻豆| 一二三四中文在线观看免费高清| 久久久久久久久久久丰满| 91午夜精品亚洲一区二区三区| 性插视频无遮挡在线免费观看| 国产欧美日韩精品一区二区| 亚洲精品日韩av片在线观看| 国产精华一区二区三区| 国产成人午夜福利电影在线观看| 久久婷婷人人爽人人干人人爱| 麻豆乱淫一区二区| 永久免费av网站大全| 搡老妇女老女人老熟妇| 可以在线观看毛片的网站| 亚洲真实伦在线观看| av在线天堂中文字幕| 国产一级毛片在线| 日韩一本色道免费dvd| 亚洲婷婷狠狠爱综合网| 亚洲,欧美,日韩| 亚洲国产欧美人成| 久久久a久久爽久久v久久| 国产精品一及| 可以在线观看毛片的网站| 麻豆国产97在线/欧美| 国产欧美日韩精品一区二区| 色哟哟·www| 久久久a久久爽久久v久久| 长腿黑丝高跟| 免费黄网站久久成人精品| 搡女人真爽免费视频火全软件| 日韩一区二区三区影片| 91av网一区二区| 亚洲精品乱码久久久v下载方式| av免费观看日本| 国产精品蜜桃在线观看| 久久久久久久久大av| 精品久久久噜噜| 色综合站精品国产| 国产午夜精品论理片| 亚洲欧美日韩卡通动漫| 国产精品久久久久久久电影| 日韩 亚洲 欧美在线| 亚洲乱码一区二区免费版| 极品教师在线视频| 色吧在线观看| 少妇的逼水好多| 日本免费a在线| 看免费成人av毛片| 一本久久精品| 久久精品人妻少妇| 久久精品国产亚洲网站| 少妇丰满av| 亚洲国产精品国产精品| 国产黄a三级三级三级人| 麻豆一二三区av精品| 亚洲最大成人av| 久久久久国产网址| 最后的刺客免费高清国语| 成人毛片60女人毛片免费| 国产熟女欧美一区二区| 啦啦啦观看免费观看视频高清| 欧美三级亚洲精品| 听说在线观看完整版免费高清| 超碰97精品在线观看| 国产午夜福利久久久久久| 国产亚洲最大av| 久久久久久久亚洲中文字幕| 色综合亚洲欧美另类图片| 免费大片18禁| 久久6这里有精品| 欧美高清成人免费视频www| 精品久久久久久久久av| 一级爰片在线观看| 亚洲一级一片aⅴ在线观看| 欧美xxxx性猛交bbbb| 小说图片视频综合网站| 少妇裸体淫交视频免费看高清| 51国产日韩欧美| av.在线天堂| 91精品伊人久久大香线蕉| 久久这里有精品视频免费| 精品国产露脸久久av麻豆 | av卡一久久| 中文字幕久久专区| 成人三级黄色视频| 成人av在线播放网站| 免费观看在线日韩| 午夜亚洲福利在线播放| 十八禁国产超污无遮挡网站| 亚洲乱码一区二区免费版| 2021少妇久久久久久久久久久| 久久久久免费精品人妻一区二区| av又黄又爽大尺度在线免费看 | 日韩欧美在线乱码| 亚洲精品乱久久久久久| 非洲黑人性xxxx精品又粗又长| 丰满少妇做爰视频| 日韩一区二区视频免费看| 精品一区二区免费观看| 亚洲精品456在线播放app| 亚洲乱码一区二区免费版| 51国产日韩欧美| 一区二区三区高清视频在线| 精品免费久久久久久久清纯| 真实男女啪啪啪动态图| 最近最新中文字幕免费大全7| 成年免费大片在线观看| 国产免费福利视频在线观看| 午夜福利在线观看吧| 特级一级黄色大片| 国产精品爽爽va在线观看网站| 久久久久久久久久久丰满| 亚洲精品自拍成人| 欧美xxxx黑人xx丫x性爽| 99久国产av精品| 国产毛片a区久久久久| 久久久精品欧美日韩精品| 99热这里只有精品一区| 深夜a级毛片| 99热6这里只有精品| 亚洲欧美精品自产自拍| 久久国内精品自在自线图片| 亚洲精品aⅴ在线观看| 国产精品一区www在线观看| 国产精品久久久久久久电影| 插阴视频在线观看视频| 夜夜看夜夜爽夜夜摸| 日日摸夜夜添夜夜爱| 成年版毛片免费区| 一区二区三区免费毛片| 黄色一级大片看看| 亚洲av电影在线观看一区二区三区 | 内射极品少妇av片p| 听说在线观看完整版免费高清| 小蜜桃在线观看免费完整版高清| 一边亲一边摸免费视频| 亚洲在线观看片| 国产精品av视频在线免费观看| 婷婷色av中文字幕| 久久精品久久久久久噜噜老黄 | 五月伊人婷婷丁香| 欧美成人午夜免费资源| 国产成人91sexporn| 十八禁国产超污无遮挡网站| 欧美精品国产亚洲| 欧美变态另类bdsm刘玥| 听说在线观看完整版免费高清| 亚洲人成网站在线观看播放| 一级二级三级毛片免费看| 免费观看精品视频网站| 国产伦精品一区二区三区视频9| 午夜激情福利司机影院| 1000部很黄的大片| 热99re8久久精品国产| 国产午夜精品久久久久久一区二区三区| 国产成人aa在线观看| 久久久亚洲精品成人影院| 国产美女午夜福利| 国产av在哪里看| 亚洲成人久久爱视频| 91午夜精品亚洲一区二区三区| 熟女人妻精品中文字幕| 久久久久久九九精品二区国产| 国模一区二区三区四区视频| 亚洲国产高清在线一区二区三| av国产久精品久网站免费入址| 国产白丝娇喘喷水9色精品| av在线播放精品| 男的添女的下面高潮视频| 亚洲美女搞黄在线观看| 久久久精品欧美日韩精品| 黄色日韩在线| 国产精品一二三区在线看| 亚洲av免费在线观看| 成人高潮视频无遮挡免费网站| 亚洲av免费高清在线观看| www日本黄色视频网| 国产又黄又爽又无遮挡在线| 激情 狠狠 欧美| 亚洲国产高清在线一区二区三| 日韩一区二区三区影片| 国产一区亚洲一区在线观看| 黄色一级大片看看| 热99re8久久精品国产| av免费在线看不卡| 麻豆成人av视频| av女优亚洲男人天堂| 男人舔女人下体高潮全视频| 夜夜爽夜夜爽视频| 国产精品久久久久久av不卡| av在线观看视频网站免费| 国产成人精品一,二区| 亚洲aⅴ乱码一区二区在线播放| 美女脱内裤让男人舔精品视频| 三级国产精品片| 最近最新中文字幕免费大全7| 尾随美女入室| 中文乱码字字幕精品一区二区三区 | 日本午夜av视频| 精品久久久久久久人妻蜜臀av| 性插视频无遮挡在线免费观看| 国产三级中文精品| 亚洲人成网站高清观看| 日韩成人av中文字幕在线观看| 身体一侧抽搐| 久久草成人影院| 国产国拍精品亚洲av在线观看| 国产精品国产高清国产av| 乱系列少妇在线播放| 久久这里只有精品中国| 高清视频免费观看一区二区 | 观看免费一级毛片| 我要看日韩黄色一级片| 精品一区二区三区人妻视频| 国产91av在线免费观看| 听说在线观看完整版免费高清| 色网站视频免费| 特大巨黑吊av在线直播| 亚洲最大成人av| 我的老师免费观看完整版|