• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical and Experimental Investigation of High-efficiency Axial-flow Pump

    2010-03-01 01:46:58SHIWeidongZHANGDeshengGUANXingfanandLENGHongfei

    SHI Weidong, ZHANG Desheng, GUAN Xingfan, and LENG Hongfei

    Technology and Research Center of Fluid Machinery Engineering, Jiangsu University, Zhenjiang 212013, China

    1 Introduction

    The flow in axial-flow pump is greatly influenced by the effects of turbulence and viscosity. Much of the physical phenomena and laws involved in this complex flow field can’t be fully determined. FARRELL[1]discussed the end-wall vortex cavitation in high Reynolds axial-flow pump. ALPAN, et al[2], analyzed the suction reverse flow in an axial flow pump by experiments. ZIERKE, et al[3–4],introduced the experimental technology and discussed the flow characteristics of high Reynolds pump and tip clearance flow. DUPONT, et al[5], investigated the unsteady effects associated with rotor stator interactions in a vaned-diffuser radial-flow pump. SITARAM, et al[6], used the probe to measure the relative flow in a turbo machinery rotor blade passage. LI, et al[7]and WANG, et al[8],simulated the axial-flow pump with inducer, and discussed unsteady turbulence numerical simulation in axial-flow pump. HUANG, et al[9–10], compared numerical streamlines to the particle image velocimetry(PIV) measurement results.Axial-flow pump research group of Jiangsu University,China, has investigated axial-flow pump models with high-efficiency in the past decade[11–14]. All the research work above focuses on the normal performance and flow field of axial flow pump. The efficiency of axial-flow pump is becoming one of the most important performance indicators in the large pumping stations, and the flow structure in axial-flow pump is associated to its efficiency.

    In this paper, in order to analyze the flow structure in the adjustable axial-flow pump model, a high efficiency model with specific speed 800 is simulated by FLUENT code at various conditions, and a five-hole probe was used to measure the flow field of inlet, blade exit and guide-vane outlet. The results of simulation and experiment enable us to improve our understanding of the flow characteristics in high efficiency axial-flow pump.

    2 Numerical Simulation of Inner Flow Field

    2.1 Axial-flow pump model

    Fig. 1 shows 3D geometric of axial-flow pump model with specific speed ns=800 and impeller diameter 300,which is used to simulate and measure its entire flow field.

    Fig. 1. 3D geometric of axial-flow pump model

    2.2 Governing equations

    The three-dimensional Reynolds-average Navier-Stokes equations are solved by FLUENT code in strong conservation form. The transport equations are discredited by using a conservative finite volume method. These simulations were achieved with a second order accurate skew upwind differencing and scheme and physical advection correction. The turbulence effects were modeled by the RNG k–ε turbulence model. The RNG model provides a way to account for the effects of swirl or rotation by modifying the turbulent viscosity appropriately.SIMPLEC arithmetic is applied to solve the pressure and velocity coupling, and standard wall functions are used to model the viscous sublayer.

    2.3 Computational domain and boundary conditions

    The whole hydraulic passage of the axial-flow pump is taken as the computational domain, and assumed to be steady. The inlet of the solution domain is located approximately at the upstream of the axial-flow blade leading edge with a four impeller diameter distance. A constant axial velocity based on the mass-flow rate is specified at the inlet for each computation. All physical surfaces of the pump are set to be no-slip wall. At the outlet,which is roughly five impeller diameter downstream of the vane trailing edge, the gradients of the velocity components are assumed to be zero. The flow zone is divided into 3 sub-domains. The first is the region defined from the pump inlet to the inlet of rotor. The equations for this region are solved in a stationary framework. The second is the impeller region. This region is attached to the rotating frame, and is solved in a rotating framework by the multiple reference frame(MRF) method. The third is the other region, and is also a stationary zone. The interfaces between the rotating region and stationary regions are shown in Fig. 2.

    Fig. 2. Computational grids and interfaces

    A hybrid meshing scheme is used, with hexahedral cells in the near blade region and tetrahedral and pyramid cells in the rest of the domain. Relatively fine grids are used near the hub, shroud, and blade surfaces, as well as near the leading, trailing edges and tip clearance.

    2.4 Simulation results and discussion

    2.4.1 Performance prediction

    The performance of the pump at blade angle 0°,predicted from the computational fluid dynamics(CFD)model, was compared with the experimental results. As shown in Fig. 3 and Fig. 4. Here Q is flow rate; Qoptis flow rate at design condition.

    Fig. 3. Experimental and predicted results of head

    Fig. 4. Experimental and predicted results of efficiency

    The prediction data (CFD) shows agreement with the experimental head and efficiency (EXP). The difference between the simulation and experiment may be due to our neglect of the unsteady feature of flow between impeller and guide-vane. Furthermore, the current rid size,turbulence model and wall functions used in this study is not the best selection and further careful investigations are needed in the future. The simulation method in the paper could be used in hydraulic optimization and flow filed analysis of the axial-flow pump.

    2.4.2 Static pressure distribution

    In Fig. 5, Lxis string length at x direction, Ltis total airfoil string length, R is radius, and Lx/Ltis string span.The results show that the static pressure on pressure side of blades increases slightly at circumferential direction, and keeps almost constant at the same radial, while it increases gradually from inlet to exit along the flow direction on suction side. At leading edges of the blades, local impact results in an increase of pressure.

    Fig. 5. Static pressure distributions on different profiles

    The static pressure distributions at inlet, impeller outlet and vane outlet at design conditions were simulated. We define location factor r=(Rm–rh)/(rt–rh), where Rmis the radius of measurement point, rtis the radius of tip, rhis the radius of hub. The static pressure at the inlet and vane outlets at radial locations is constant, as shown in Fig. 6.Furthermore, it decreases near hub leakage, and shows agreement with the measurement data.

    Fig. 6. Static pressure distributions in pump

    2.4.3 Velocity distribution

    In the design cycle, the blades of the impeller were designed by using the uniform pattern of meridional velocity. However, this distribution has not been found in the numerical results. Fig. 7 shows the meridional velocity distribution at impeller outlet plane. It can be seen that the meridional velocity changes periodically along the circumferential direction and the change frequency is identical with the vane blade number, which is also influenced by the impeller numbers. In general, axial velocity increases from hub to tip, and it is affected by the tip clearance and hub leakage which lead to decrease of meridional velocity and efficiency.

    Fig. 7. Meridional velocity distribution (m/s)

    3 Experimental Investigation

    3.1 Experimental apparatus

    The experiment was performed in fluid machinery laboratory of Jiangsu University, China. Fig. 8 shows the main experimental apparatus.

    Fig. 8. Experimental apparatus

    Three components of velocity at circumferential direction of the inlet, impeller outlet and guide-vane outlet at different conditions were measured by a calibrated five-hole pressure probe. Semi-measurement method was used to calculate the velocity vector in the experiments[15],and the five-hole probe structure is shown in Fig. 9.

    Fig. 9. Five-hole probe structure

    The static pressure and total pressure at the same locations were also measured at the same time. The flow field at blade angle Φ= 0° was measured. Fig. 10 shows the measurement locations.

    Fig. 10. Probe measurement locations

    DUPONT, et al[5], listed sources of errors in conventional probe measurements of flow in turbine machinery. They also estimated the magnitude of these errors. They agreed that wall proximity effects were negligible if the distance between the measurement position and the wall was two times longer than the probe diameter.The first and the last measurement locations shown here fulfilled this condition. The interval between measurement points except the first measurement and last one is 10 mm.The Reynolds number is the same for calibration in air and experiments in water, thus the effects of Reynolds number are almost non-existent. The presence of the probe may perturb the flow but the size of the probe is 10 times smaller than the blade passage, so the effects of the probe blockage are negligible.

    3.2 Experimental results

    3.2.1 Performance characteristics

    The pump was manufactured according to the 3D model,and tested over the operational range at five blade angles(–4°, –2°, 0°, +2°, +4°). The overall performance curves of the model pump with rotor diameter D2=300 mm and rotation speed n=1 450 r/min are shown in Fig. 11, and optimal efficiency points at five blade angles can be seen in Table. The efficiency at blade angle Φ=+4° reaches 86.05%,which is the best efficiency in public in China, so we define it as a high-efficiency axial-flow pump.

    Fig. 11. Overall performance curves of the model pump

    Table. Optimum parameters at five blade angles

    3.2.2 Inlet flow

    Due to the size of the probe and the vicinity of the hub,the first measurement is located at r=0.07 and the last one at r=0.92 as shown in Fig. 12. The data were collected using a field point measurement method. In this procedure,the measurement volume remains stationary, and the flow in the pump is assumed to be steady. A five-hole probe resolves the three components of velocity at blade inlet.Fig. 12(a) shows that the absolute flow angle α (α=arctan(vu1/vm1)) is almost equal to 0 at various flow rates, as expected, which means the inlet flow is almost axial and the prerotation at blade inlet is very small. The meridional velocity vm1(Fig. 12(b)) at impeller inlet all increases slightly from tip to hub at 0.8Qopt, 1.0Qoptand 1.2Qoptconditions which may be relevant to the sharp of front hub.The distribution of the static pressure at inlet is almost consistent at design condition, which is the expression of steady flow field. At off-design conditions, the unsteady flow in rotor induces the static pressure change at different radial locations, but the change range is small, which can be observed in Fig. 12(c). Fig. 12(d) shows that the total pressure increases linearly from tip to hub at various flow rates associates in correspondence with the axial velocity changes.

    3.2.3 Impeller outlet flow

    The hub leakage of adjustable blades, which influences the flow in the vicinity of hub, is the most important factor that influences the efficiency of axial-flow pump. We sealed it up with wax and tested the performance. With its flow field at 0.8Qopt, 1.0Qoptand 1.2Qoptconditions it was measured to compare with the blades with hub leakage. The performance test results show that hub leakage leads to the decrease of efficiency, and the maximum efficiency can reach 86.85% without hub leakage, so our special attention should be paid to examine the flow field near hub with leakage, which is equally important with tip clearance. The hydrodynamic flow field at blade exit is shown in Fig. 13.In Fig. 13, 1 (hollow symbols) means the results of flow field without hub leakage, and 2 (solid symbols) means the results of flow field with hub leakage. At the design point,the distribution of meridional velocity component vm2is almost uniform, which means that the flow at blade outlet is steady without radial flow. When the flow rate reduces,significant changes occur in the flow field. The new feature is that a reverse flow developed in this region, where vm2increases strongly from hub to mid-radius, and then decreases, but increases again near the tip. The significant difference between the blades with and without hub leakage,which can be seen in Fig. 13(a), is the decrease of vm2near the hub owing to the hub leakage. This phenomenon can be explained as follows: the reverse flow from pressure side to suction side reduces vm2, which is associated with the drop of static pressure p, totol pressure p0, and vu2near the hub leakage.

    Fig. 12. Hydrodynamic flow field at inlet at various locations at different flow rates

    Fig. 13. Hydrodynamic flow field at blade outlet at various locations at different flow rates

    Fig. 13(b) shows the distributions of circumferential velocity component vu2. It is noticeable that vu2decreased gradually from hub to tip at 1.0Qoptand 1.2Qoptconditions in accordance with the consistent Г distributions. At small flow rate conditions, the distribution regularity of vu2is similar to vm2at small flow rate conditions, which is also influenced by the reverse flow.

    The decrease of the total pressure p0and the static pressure p in the tip clearance and hub leakage in Figs.13(c), 13(d) indicates large energy losses in these regions,which should be examined carefully during the axial-flow design process. vm2also decreases slightly near tip.Nevertheless, the decrease is small because of the small tip clearance of 0.15 mm.

    The single profile exit circulation is shown in Fig. 13(e).The distribution of circulation Г at downstream of the impeller blades is the most important factor for efficiency.Compared with two kinds of blades, at design condition and large flow rate conditions, the circulation Г is almost constant but a small decrease near hub, caused by the hub leakage. This phenomenon may be further relevant with the circulation distribution at hub and tip regions in design to make the circulation consistent along the radial locations in practice. The test results (see Fig. 11) show that the maximum efficiency reached 85.29% at Φ=0o, so it could prove that constant circulation flow pattern, which is corrected with the non-linear circulation distributions,could obtain high efficiency. At small flow rate conditions,Г decreases sharply from tip to hub. This is recirculation near hub. Although many experts have studied the flow at small flow rate, the distribution of Г is still hard to control.At small flow rate conditions, the efficiency of pump decreases rapidly.

    3.2.4 Guide-vane outlet flow

    Guide-vane is an important component of the axial-flow pump. The high-speed flow velocity from the blades must be reduced to turn dynamic energy into pressure energy before it enters to the outlet pipe, which means the vane must be carefully designed to avoid flow separation and instability. The flow quality at outlet of vane has a direct impact on the efficiency. Fig. 14(a) displays that circulation can not be eliminated absolutely at downstream of guide vane. vuis almost constant at 1.0Qoptand 1.2Qopt,conditions, while it increases linearly from hub to tip at small flow rate conditions. vmdistribution is also almost constant at different radial locations, but its distribution is non-uniform when the flow is reduced due to the unsteady flow at the blades exit (Fig. 14(b)). The static pressure and total pressure increases quickly at guide-vane outlet as expected, shown in Figs. 14(c), 14(d). Furthermore, the static pressure remains nearly constant even at small flow conditions. With the effects of unsteady velocity, the total pressure fluctuation appears in the hub region.

    Fig. 14. Hydrodynamic flow field at vane outlet at various locations at different flow rates

    4 Conclusions

    (1) The numerical results of the simulation and measurement of inner flow of the high efficiency axial pump show excellent agreement with the experimental results.

    (2) It is found that the static pressure on pressure side of blades increases slightly at circumferential direction, and keeps almost constant at the same radial. On suction side, it increases gradually from inlet to exit along the flow direction.

    (3) Experimental results show that inlet flow is almost axial and the prerotation is very small at various conditions.The meridional velocity and circulation distributions are almost identical at impeller outlet at design conditions.

    (4) Hub leakage in adjustable blades leads to the decrease of the meridional velocity and circulation at impeller outlet near hub leakage region. The comparison test shows that the efficiency could be improved by 1.56%at blade angle Φ=0° without hub leakage.

    [1] FARRELL K J. An investigation of end-wall vortex cavitation in a high Reynolds number axial-flow pump[D]. Pennsylvania:Pennsylvania State University, 1989.

    [2] ALPAN K, PENG W W. Suction reverse flow in an axial-flow pump[J]. Journal of Fluids Engineering, 1991, 113: 90–97.

    [3] ZIERK W C, FARRELL K J, STRAKA W A. Measurements of the tip clearance flow for a high-Reynolds-number axial-flow rotor[J]. Journal of Tubomachinery, 2005, 117: 522–532.

    [4] ZIERKE W C, STRAKA W A, TAYLOR P D. Experimental investigation of the flow through an axial-flow pump[J]. Journal of Fluids Engineering, Transactions of the ASME, 1995, 117(3):485–490.

    [5] DUPONT P, CAIGNAERT G, BOIS G, et al. Rotor-stator interactions in a vaned diffuser radial flow pump[C]//Proceedings of ASME Fluids Engineering Division Summer Meeting, Houston,TX, USA, June 19–23, 2005: 1 087–1 094.

    [6] SITARAM N, LAKSHMINARAYANA B, RAVINDRANATH A.Conventional probes for the relative flow measurement in a turbomachinery rotor blade passage[J]. ASME Journal of Engineering for Power, 1981, 103: 406–414.

    [7] LI Yaojun, WANG Fujun. Numerical investigation of performance of an axial-flow pump with inducer[J]. Journal of Hydrodynamics,2007, 19(6): 705–711.

    [8] WANG Fujun, ZHANG Lin, LI Yaojun, et al. Some key issues of unsteady turbulence numerical simulation in axial-flow pump[J].Chinese Journal of Mechanical Engineering, 2008, 44(8): 73–77.(in Chinese)

    [9] HUANG Huanming, GAO Hong, DU Zhaohui. Numerical simulation and experimental study on flow field in an axial flow pump[J]. Journal of Shanghai Jiaotong University, 2009, 43(1):124–128. (in Chinese)

    [10] HUANG Huanming, GAO Hong, SHEN Feng, et al. Numerical simulation and experimental validation of the flow field in axial flow pump[J]. Transactions of the Chinese Society for Agricultural Machineryy, 2008, 39(8): 66–69. (in Chinese)

    [11] SHI Weidong. Tests on the hydraulic model of low-lift axial flow pump[J]. Journal of Jiangsu University of Science and Technology,1998, 19(1): 31–34. (in Chinese)

    [12] SHI Weidong, GUAN Xingfan. Research on hydraulic model of ZBM-750 axial flow pump[J]. Transactions of the Chinese Society of Agricultural Machinery, 1999, 30(4): 17–22. (in Chinese)

    [13] GUAN Xingfan. Test reports of a new series of axial-flow model pumps[J]. Drainage and Irrigation Machinery, 2005, 23(4): 1–5. (in Chinese)

    [14] GUAN Xingfan, SHANG Minghua, XIE Weidong. Hydraulic model and its pilot-plant unit for rear bulb-type cross-flow pump[J].Drainage and Irrigation Machinery, 2008, 26(1): 25–28. (in Chinese)

    [15] YANG Minguan, WANG Junfeng, LUO Tiqian, et al. Flow measurement technology of fluid machinery[M]. Beijing: China Machine Press, 2006. (in Chinese)

    18禁黄网站禁片午夜丰满| 99久久综合免费| 丝袜脚勾引网站| 美女视频免费永久观看网站| 日韩欧美一区视频在线观看| 色网站视频免费| 国产黄频视频在线观看| 国产精品人妻久久久影院| 久久99热这里只频精品6学生| 真人做人爱边吃奶动态| 啦啦啦啦在线视频资源| av欧美777| 免费观看av网站的网址| 制服诱惑二区| 亚洲欧洲日产国产| 国产免费视频播放在线视频| 国产高清视频在线播放一区 | 老鸭窝网址在线观看| 一级毛片 在线播放| 日日爽夜夜爽网站| 黄色 视频免费看| 亚洲精品一二三| a级毛片在线看网站| 又粗又硬又长又爽又黄的视频| 久久国产亚洲av麻豆专区| 精品国产超薄肉色丝袜足j| 国产午夜精品一二区理论片| 久久免费观看电影| 2018国产大陆天天弄谢| 中文乱码字字幕精品一区二区三区| av在线app专区| 五月开心婷婷网| 免费观看a级毛片全部| 欧美大码av| 一级毛片 在线播放| 亚洲免费av在线视频| 免费在线观看日本一区| 国产一级毛片在线| 亚洲成av片中文字幕在线观看| 久久天躁狠狠躁夜夜2o2o | 国产主播在线观看一区二区 | 一级毛片 在线播放| 国产精品一区二区免费欧美 | 亚洲av男天堂| 亚洲av电影在线观看一区二区三区| 精品卡一卡二卡四卡免费| 亚洲精品日本国产第一区| 欧美av亚洲av综合av国产av| 亚洲男人天堂网一区| 波野结衣二区三区在线| 男女边摸边吃奶| 一区二区av电影网| svipshipincom国产片| 热re99久久国产66热| 老司机在亚洲福利影院| 狠狠精品人妻久久久久久综合| 日韩精品免费视频一区二区三区| 黄色一级大片看看| 99re6热这里在线精品视频| 啦啦啦 在线观看视频| 国产成人精品无人区| 高清av免费在线| 久久青草综合色| 美女国产高潮福利片在线看| 99久久人妻综合| 一本一本久久a久久精品综合妖精| 黄频高清免费视频| 亚洲人成电影免费在线| 久久国产精品人妻蜜桃| 午夜激情av网站| 欧美+亚洲+日韩+国产| 一区二区日韩欧美中文字幕| 久久中文字幕一级| 麻豆国产av国片精品| 2018国产大陆天天弄谢| 9色porny在线观看| 老司机在亚洲福利影院| 黄片小视频在线播放| 熟女少妇亚洲综合色aaa.| 人人澡人人妻人| 高清欧美精品videossex| 国产精品久久久久久精品电影小说| 亚洲图色成人| 一本一本久久a久久精品综合妖精| 色94色欧美一区二区| 精品国产一区二区久久| av国产精品久久久久影院| 美女国产高潮福利片在线看| 97在线人人人人妻| 欧美老熟妇乱子伦牲交| 天堂中文最新版在线下载| 精品熟女少妇八av免费久了| 青春草亚洲视频在线观看| 精品卡一卡二卡四卡免费| 欧美日韩精品网址| 国产欧美日韩一区二区三区在线| 久久av网站| 久久中文字幕一级| 日本一区二区免费在线视频| 国产成人欧美在线观看 | 国产日韩欧美视频二区| 天天影视国产精品| 国产av精品麻豆| 中文欧美无线码| 国产一区二区在线观看av| 男女边吃奶边做爰视频| 久久精品久久精品一区二区三区| 一级黄色大片毛片| 久久国产精品男人的天堂亚洲| 纵有疾风起免费观看全集完整版| 国产精品亚洲av一区麻豆| 精品久久蜜臀av无| 中文字幕色久视频| 99国产精品99久久久久| 老汉色∧v一级毛片| 国产一区有黄有色的免费视频| 男女床上黄色一级片免费看| 亚洲色图 男人天堂 中文字幕| 国产男女内射视频| 99国产精品99久久久久| 午夜激情av网站| 熟女av电影| 久久精品国产亚洲av高清一级| 亚洲人成电影免费在线| 脱女人内裤的视频| 成年人午夜在线观看视频| 亚洲 国产 在线| 18禁国产床啪视频网站| 久久精品成人免费网站| 丰满迷人的少妇在线观看| 手机成人av网站| 少妇精品久久久久久久| 久久人妻福利社区极品人妻图片 | 色播在线永久视频| 国产精品一二三区在线看| 少妇被粗大的猛进出69影院| 天天操日日干夜夜撸| 久久ye,这里只有精品| 丰满少妇做爰视频| 老司机亚洲免费影院| 午夜免费成人在线视频| 欧美精品一区二区大全| 亚洲欧洲国产日韩| 青青草视频在线视频观看| 国产精品国产三级国产专区5o| 青春草视频在线免费观看| 狠狠婷婷综合久久久久久88av| av网站在线播放免费| 国产成人a∨麻豆精品| 蜜桃国产av成人99| 免费在线观看完整版高清| 日韩av不卡免费在线播放| xxx大片免费视频| 欧美乱码精品一区二区三区| 久久久久久久国产电影| www.av在线官网国产| 99热国产这里只有精品6| 色视频在线一区二区三区| 丰满饥渴人妻一区二区三| 午夜福利视频在线观看免费| 欧美日韩综合久久久久久| 人人妻人人澡人人看| 9色porny在线观看| 亚洲精品在线美女| 久久人妻福利社区极品人妻图片 | 天堂俺去俺来也www色官网| 日韩视频在线欧美| 在线看a的网站| 久久久久视频综合| 在现免费观看毛片| 日韩电影二区| 亚洲国产精品一区二区三区在线| 中文精品一卡2卡3卡4更新| 2021少妇久久久久久久久久久| 黑人巨大精品欧美一区二区蜜桃| 久久久欧美国产精品| 母亲3免费完整高清在线观看| 中文字幕色久视频| 日本欧美国产在线视频| 免费少妇av软件| 久久国产精品大桥未久av| 欧美在线一区亚洲| 国产视频首页在线观看| 亚洲图色成人| 人体艺术视频欧美日本| 久久性视频一级片| 我的亚洲天堂| 飞空精品影院首页| 视频区欧美日本亚洲| 99香蕉大伊视频| 国语对白做爰xxxⅹ性视频网站| 亚洲精品一区蜜桃| 国产在线视频一区二区| 欧美精品一区二区免费开放| 国产99久久九九免费精品| 99久久人妻综合| 肉色欧美久久久久久久蜜桃| 成人三级做爰电影| 亚洲精品中文字幕在线视频| 黑丝袜美女国产一区| 99久久精品国产亚洲精品| netflix在线观看网站| 久久亚洲精品不卡| 最新的欧美精品一区二区| 最新在线观看一区二区三区 | 热99久久久久精品小说推荐| 永久免费av网站大全| 色视频在线一区二区三区| 少妇粗大呻吟视频| 90打野战视频偷拍视频| 精品一区在线观看国产| 飞空精品影院首页| 伊人亚洲综合成人网| av一本久久久久| 国产日韩欧美视频二区| 久久人妻福利社区极品人妻图片 | 巨乳人妻的诱惑在线观看| 在线看a的网站| √禁漫天堂资源中文www| 久久久久网色| 一二三四社区在线视频社区8| 两性夫妻黄色片| 久久久久久久精品精品| 久久人人97超碰香蕉20202| 亚洲国产欧美一区二区综合| 国产精品一区二区免费欧美 | 国产日韩欧美在线精品| 亚洲中文av在线| 男人操女人黄网站| 国产免费一区二区三区四区乱码| 在线观看一区二区三区激情| 视频在线观看一区二区三区| 咕卡用的链子| 久久亚洲精品不卡| 国产精品国产三级专区第一集| 色播在线永久视频| 青春草视频在线免费观看| 久久久久久久久久久久大奶| 一本久久精品| 国产欧美日韩一区二区三 | 国产黄频视频在线观看| 免费一级毛片在线播放高清视频 | 亚洲,欧美,日韩| 两性夫妻黄色片| 亚洲精品av麻豆狂野| 久久精品熟女亚洲av麻豆精品| 欧美精品一区二区大全| 脱女人内裤的视频| 人人妻,人人澡人人爽秒播 | 国产精品三级大全| 亚洲精品国产区一区二| 交换朋友夫妻互换小说| 久久99热这里只频精品6学生| 男人舔女人的私密视频| 免费女性裸体啪啪无遮挡网站| 人人妻人人添人人爽欧美一区卜| 国产在线一区二区三区精| 免费观看人在逋| 日韩av免费高清视频| 国产精品99久久99久久久不卡| 亚洲伊人色综图| 免费观看人在逋| www.精华液| 韩国高清视频一区二区三区| 久久久国产精品麻豆| av福利片在线| 我要看黄色一级片免费的| 99re6热这里在线精品视频| 亚洲人成电影免费在线| 一本综合久久免费| 精品一区二区三卡| 亚洲五月婷婷丁香| 你懂的网址亚洲精品在线观看| 久久久久国产一级毛片高清牌| 999精品在线视频| 美女脱内裤让男人舔精品视频| 爱豆传媒免费全集在线观看| 97精品久久久久久久久久精品| 久久亚洲精品不卡| 国产成人一区二区三区免费视频网站 | 高清av免费在线| 九色亚洲精品在线播放| 丝瓜视频免费看黄片| 只有这里有精品99| 精品国产国语对白av| 国产又爽黄色视频| 国产精品国产三级专区第一集| 高清不卡的av网站| tube8黄色片| 久久久久久久久久久久大奶| 国产成人a∨麻豆精品| 国产成人系列免费观看| 亚洲人成电影免费在线| 91九色精品人成在线观看| 亚洲成人免费av在线播放| 电影成人av| 超碰成人久久| 亚洲精品美女久久久久99蜜臀 | 丝袜在线中文字幕| 香蕉丝袜av| 久久久精品94久久精品| 久久久国产欧美日韩av| 国产精品一国产av| netflix在线观看网站| 国产又爽黄色视频| 精品久久蜜臀av无| 婷婷色av中文字幕| 你懂的网址亚洲精品在线观看| 男女高潮啪啪啪动态图| 999久久久国产精品视频| 美女高潮到喷水免费观看| 成人国语在线视频| 女人高潮潮喷娇喘18禁视频| 精品福利永久在线观看| 搡老乐熟女国产| 中文字幕制服av| 久久人妻熟女aⅴ| 久久久精品94久久精品| 精品人妻1区二区| 国产精品 国内视频| 国产片内射在线| 黄色 视频免费看| 嫁个100分男人电影在线观看 | 欧美日本中文国产一区发布| 久久久久久亚洲精品国产蜜桃av| 天堂俺去俺来也www色官网| 久久女婷五月综合色啪小说| av在线播放精品| 巨乳人妻的诱惑在线观看| 国产精品成人在线| 我要看黄色一级片免费的| 国产成人一区二区在线| 美女主播在线视频| 亚洲欧美日韩另类电影网站| 国产男女超爽视频在线观看| 国产高清国产精品国产三级| 精品少妇久久久久久888优播| 久久精品国产a三级三级三级| 国产一区二区激情短视频 | 精品国产一区二区久久| 九色亚洲精品在线播放| 99精国产麻豆久久婷婷| 9色porny在线观看| 日韩视频在线欧美| 欧美日韩一级在线毛片| 欧美精品亚洲一区二区| 捣出白浆h1v1| 中文字幕色久视频| 亚洲av综合色区一区| 午夜福利在线免费观看网站| 在线观看国产h片| 久久精品aⅴ一区二区三区四区| 亚洲色图 男人天堂 中文字幕| 色婷婷久久久亚洲欧美| 久久久国产精品麻豆| √禁漫天堂资源中文www| av线在线观看网站| 精品国产乱码久久久久久小说| 97人妻天天添夜夜摸| 国产一区二区三区综合在线观看| 高潮久久久久久久久久久不卡| 免费少妇av软件| 国产精品一国产av| 亚洲精品国产av蜜桃| 1024视频免费在线观看| 秋霞在线观看毛片| 在线看a的网站| 老司机深夜福利视频在线观看 | 免费女性裸体啪啪无遮挡网站| 两个人看的免费小视频| 新久久久久国产一级毛片| 汤姆久久久久久久影院中文字幕| 欧美日韩视频高清一区二区三区二| 男人添女人高潮全过程视频| 99久久精品国产亚洲精品| 精品人妻1区二区| 欧美日韩成人在线一区二区| 下体分泌物呈黄色| 国产精品九九99| svipshipincom国产片| tube8黄色片| 免费观看a级毛片全部| 国产精品久久久久久精品古装| 美女高潮到喷水免费观看| 别揉我奶头~嗯~啊~动态视频 | 老司机影院成人| 欧美人与善性xxx| 亚洲伊人久久精品综合| 人人妻,人人澡人人爽秒播 | 日日夜夜操网爽| 亚洲,欧美,日韩| av网站在线播放免费| 国产爽快片一区二区三区| 亚洲av成人精品一二三区| 久久国产精品影院| 国产免费福利视频在线观看| 亚洲欧美中文字幕日韩二区| 欧美激情高清一区二区三区| 黄色怎么调成土黄色| 久久鲁丝午夜福利片| 2018国产大陆天天弄谢| 免费黄频网站在线观看国产| 亚洲av男天堂| 王馨瑶露胸无遮挡在线观看| 日韩 欧美 亚洲 中文字幕| 国产精品三级大全| 日本欧美视频一区| 免费高清在线观看日韩| 欧美国产精品一级二级三级| 精品人妻一区二区三区麻豆| 嫁个100分男人电影在线观看 | 91精品三级在线观看| 人人妻人人澡人人看| 乱人伦中国视频| 国产精品偷伦视频观看了| 在线观看国产h片| 欧美黑人欧美精品刺激| 午夜久久久在线观看| 亚洲视频免费观看视频| 国产精品欧美亚洲77777| www.自偷自拍.com| 国产成人av教育| 欧美日韩亚洲高清精品| 精品国产乱码久久久久久小说| 又黄又粗又硬又大视频| 久久国产精品影院| 亚洲黑人精品在线| 在线观看www视频免费| 欧美人与性动交α欧美精品济南到| 国产精品一二三区在线看| 国产一区二区三区av在线| 国产精品国产三级国产专区5o| 免费女性裸体啪啪无遮挡网站| 亚洲国产精品成人久久小说| 99国产综合亚洲精品| 亚洲av电影在线观看一区二区三区| videos熟女内射| 欧美xxⅹ黑人| av国产久精品久网站免费入址| 国产av一区二区精品久久| 在线av久久热| 国产亚洲精品第一综合不卡| 亚洲免费av在线视频| 手机成人av网站| 欧美日韩成人在线一区二区| 免费一级毛片在线播放高清视频 | 男的添女的下面高潮视频| 久久 成人 亚洲| 精品久久久久久久毛片微露脸 | 亚洲av电影在线观看一区二区三区| 国产xxxxx性猛交| 欧美黄色淫秽网站| 国产野战对白在线观看| av又黄又爽大尺度在线免费看| 成人国产一区最新在线观看 | 极品少妇高潮喷水抽搐| 欧美日韩成人在线一区二区| 日韩制服骚丝袜av| 悠悠久久av| 老鸭窝网址在线观看| 婷婷色综合www| 国产男女超爽视频在线观看| 欧美日韩av久久| 久久精品国产亚洲av高清一级| 午夜91福利影院| 久久久国产精品麻豆| 国产亚洲欧美精品永久| 欧美黄色片欧美黄色片| 久久久久精品国产欧美久久久 | 亚洲自偷自拍图片 自拍| www.av在线官网国产| 亚洲精品国产av成人精品| 国产一区二区激情短视频 | 亚洲七黄色美女视频| 人人妻人人添人人爽欧美一区卜| 熟女av电影| svipshipincom国产片| 亚洲国产成人一精品久久久| 人人妻人人澡人人看| 国产精品久久久久久精品古装| 欧美精品人与动牲交sv欧美| 一级毛片女人18水好多 | 五月开心婷婷网| 色综合欧美亚洲国产小说| 女人被躁到高潮嗷嗷叫费观| 一级片免费观看大全| 黄色 视频免费看| 亚洲色图 男人天堂 中文字幕| 国产日韩欧美视频二区| 丝袜人妻中文字幕| 高清黄色对白视频在线免费看| 亚洲自偷自拍图片 自拍| 99精国产麻豆久久婷婷| 国精品久久久久久国模美| 五月开心婷婷网| 久久国产亚洲av麻豆专区| 亚洲,欧美精品.| 交换朋友夫妻互换小说| 在线观看免费高清a一片| 99re6热这里在线精品视频| 欧美中文综合在线视频| 国产真人三级小视频在线观看| 两个人看的免费小视频| 1024香蕉在线观看| 一级片'在线观看视频| 深夜精品福利| 欧美黄色淫秽网站| 搡老岳熟女国产| 日本wwww免费看| 一级黄片播放器| 中文字幕人妻丝袜制服| 2018国产大陆天天弄谢| 性色av一级| 十八禁人妻一区二区| 国产在视频线精品| 人妻一区二区av| 中国国产av一级| 在线精品无人区一区二区三| 欧美大码av| 两个人免费观看高清视频| 亚洲欧美日韩高清在线视频 | 久久精品人人爽人人爽视色| 丰满迷人的少妇在线观看| 欧美人与善性xxx| 婷婷色综合www| 久久精品国产亚洲av高清一级| 一本综合久久免费| 黑丝袜美女国产一区| 一级黄色大片毛片| 18禁国产床啪视频网站| 国产精品一区二区在线不卡| 国产一级毛片在线| 国产97色在线日韩免费| 在线观看一区二区三区激情| 国产成人免费观看mmmm| 国产91精品成人一区二区三区 | 国产成人欧美| 亚洲激情五月婷婷啪啪| 亚洲欧美一区二区三区国产| 母亲3免费完整高清在线观看| 国产黄色视频一区二区在线观看| 69精品国产乱码久久久| 三上悠亚av全集在线观看| 嫁个100分男人电影在线观看 | 久久久国产欧美日韩av| 爱豆传媒免费全集在线观看| 精品国产一区二区三区四区第35| 女人精品久久久久毛片| 精品一区二区三卡| 高清不卡的av网站| 欧美日韩综合久久久久久| 日韩免费高清中文字幕av| 国产黄色免费在线视频| 精品人妻1区二区| 啦啦啦在线观看免费高清www| 久久亚洲国产成人精品v| 成人影院久久| 久久中文字幕一级| 不卡av一区二区三区| 成人黄色视频免费在线看| 久久久久久人人人人人| 高清av免费在线| 国产欧美日韩一区二区三 | 操美女的视频在线观看| 波多野结衣av一区二区av| 久久国产精品人妻蜜桃| 亚洲,欧美,日韩| 欧美日韩视频精品一区| 天天躁夜夜躁狠狠躁躁| 老司机午夜十八禁免费视频| 国产精品国产av在线观看| 国产人伦9x9x在线观看| 少妇裸体淫交视频免费看高清 | 国产精品久久久av美女十八| 91麻豆av在线| 免费看不卡的av| 久久午夜综合久久蜜桃| 久久人妻福利社区极品人妻图片 | 十八禁人妻一区二区| 手机成人av网站| 麻豆国产av国片精品| 9191精品国产免费久久| 亚洲成av片中文字幕在线观看| 精品熟女少妇八av免费久了| 国产一级毛片在线| 国产极品粉嫩免费观看在线| 成人午夜精彩视频在线观看| 色精品久久人妻99蜜桃| 久久久久视频综合| 国产xxxxx性猛交| 国产亚洲午夜精品一区二区久久| 宅男免费午夜| 91精品伊人久久大香线蕉| 高清黄色对白视频在线免费看| 国产精品一区二区精品视频观看| 纯流量卡能插随身wifi吗| 一区二区av电影网| 精品亚洲成a人片在线观看| 熟女少妇亚洲综合色aaa.| 国产野战对白在线观看| av又黄又爽大尺度在线免费看| 午夜免费男女啪啪视频观看| 亚洲国产欧美在线一区| av视频免费观看在线观看| 青草久久国产| 久久国产精品影院| 亚洲七黄色美女视频| 侵犯人妻中文字幕一二三四区| 久久性视频一级片| 国产免费又黄又爽又色| www.熟女人妻精品国产| 亚洲国产精品999| 久久久国产一区二区| av在线app专区| 国产av国产精品国产|