• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Research on Performance Prediction for Centrifugal Pumps

    2010-03-01 01:46:54TANMinggaoYUANShouqiLIUHoulinWANGYongandWANGKai

    TAN Minggao, YUAN Shouqi, LIU Houlin, WANG Yong, and WANG Kai

    Technology and Research Center of Fluid Machinery Engineering, Jiangsu University, Zhenjiang 212013, China

    1 Introduction

    Pump performance is decided by inner flow characteristics and inner flow analysis is undoubtedly the best method to improve performance of pump. Therefore,in order to predict performance of pumps exactly on theory,flow field in pump must be obtained correctly[1]. Over the past few years, with the rapid development of the computer technology and computational fluid dynamics(CFD),numerical simulation, like academic analysis and experimental research, has become an important tool to study flow field in pumps and predict pump performance home and abroad. An unsteady simulation of a low specific speed centrifugal pump was done by JOSé, et al[2–3]based on FLUENT to predict the dynamic characteristic between impeller and volute and the pump performance, and the research was validated by the experiment data. Using commercial code FINE/Turbo, BYSKOV, et al[4], did a large eddy simulation of a centrifugal pump at design flow rate and off design flow rates to predict the pump characteristics, and the predicted results agreed well with the data measured by particle image velocimetry(PIV) and laser Doppler velocimetry(LDV)[5]. In China, to forecast performance, ZHAO, et al[6], did a coupled impeller-volute simulation of flow in a centrifugal pump using moving reference frame and FUENT, and CHEN, et al[7], simulated the unsteady flow in a single channel pump, both results above were consistent with pump test data.

    The previously mentioned achievements on performance prediction of centrifugal pumps by numerical simulation methods are quite encouraging and these methods are becoming more widely used in hydraulic design of pumps.However, most of the researches were only concerned with one pump and there was no characteristic prediction model in the former study. The more key problems are how to dispose the gap between impeller and volute and how to consider the effect of grid number. So the former research results are not representational and universal. The objective of this paper is to evaluate the precision of numerical prediction method in detail. Hence, six typical centrifugal pumps were chosen as research models and FLUENT was used to do the pumps simulation at the conditions of design,small and large flow rate. The standard k-ε turbulence model and SIMPLEC algorithm were chosen in FLUENT.The simulation was steady and moving reference frame was used to consider rotor-stator interaction. Head and efficiency curves of the models were obtained according to the simulation, and were compared with the experiment data. Also, the flow field was analyzed.

    2 Research Models and Prediction Algorithm

    Specific speed of the models varies from 34 to 260 and experiment and geometry parameters at design flow rate are shown in Table. The 3D models of impeller, volute and suction were produced by professional software Pro/E and the gap between impeller and volute was appended to impeller (as shown in Fig. 1). The impeller inlet and volute outlet were extended properly to reduce the effect of boundary conditions on inner flow. GAMBIT, the preprocessor of FLUENT, was used to generate grid ofmodels and grid quality was checked. Since the geometry of the pump is very complex, tetrahedron mesh was used for the generation and “EquiAngle Skew” and “EquiSize Skew” of the grid were all less than 0.87, so the grid quality was good. Relativity examination of grid number was done for each model. When the effect of grid number on pump characteristics was less than 2%, the effect is ignored.Convergence precision of residuals was 10–5.

    Table. Experiment and geometry parameters of research models

    Fig. 1. Computational zones of pump No. 4

    2.1 Experiments of research model

    All the model pumps were tested in Jiangsu University.The experiments were conducted in an open loop, which consists of a reservoir open to air, a suction valve, a test pump, a discharge pipe and a discharge valve. Each model pump has a single axial suction and a volute casing. In the circuit, water was pumped from and returned to a huge reservoir. The flow rate was regulated by the discharge valve and was measured by electromagnetic flow meter.The rotation speed was detected by plus signals.

    Flow rate uncertainties are found to be always less than 0.5%. The head and efficiency uncertainties are kept under 1% and 1.5%, respectively. The experiment data are shown in Table.

    2.2 Boundary conditions

    Inlet boundary condition: assume that inlet velocity vinis uniform at axis direction and its value equals to ratio of flow rate and inlet area:

    where q is the flow rate, Dinis the pump inlet diameter.

    Turbulent kinetic energy kinand turbulent dissipation rate εinat inlet can be estimated by the following formula:

    where l is the turbulent length scale and l=0.07Din,Cμ=0.09.

    Outlet boundary condition: “outflow” is implemented on pump outlet and flow rate weighting is set to be 1.

    Wall boundary condition: no slip condition is enforced on wall surface and standard wall function is applied to adjacent region.

    2.3 Prediction algorithm

    Head H is calculated by the following formula:

    where poutis the total pressure at volute outlet, pinis the total pressure at impeller inlet, ρ is the density of liquid, g is the gravity acceleration.

    Hydraulic efficiency ηhis calculated as

    where M is the impeller torque, ω is the angle velocity.

    Volume efficiency ηvis calculated as[8]

    Total efficiency η is calculated as

    where Peis the water power and Pe=ρgqH, ?Pdis the disk friction loss and its calculation method is in Ref. [9].

    3 Prediction Results and Analysis

    Fig. 2 shows prediction and experiment performance curves, including flow rate–head curve and flow rate–efficiency curve. According to the data in Fig. 2,prediction discrepancy can be computed as follows:

    where ?H is the head discrepancy, ?η is the efficiency discrepancy, Hpis the prediction head, Heis experiment head, ηpis prediction total efficiency, ηeis the experiment total efficiency.

    Discrepancy calculation results: for all flow rate points of every model, maximum discrepancy of prediction head is 4.81%, minimum discrepancy is 0.24%, average discrepancy is 2.49% and maximum discrepancy of prediction total efficiency is 4.52%, minimum discrepancy is 0.08%, average discrepancy is 2.02%. At design flow rate, maximum discrepancy of prediction head is 4.81%,minimum discrepancy is 0.65% and average discrepancy is 2.02% and maximum discrepancy of prediction total efficiency is 4.42%, minimum discrepancy is 0.54%,average discrepancy is 2.4%. The calculation indicates that all discrepancies are within 5%.

    More information can be obtained from discrepancy computation. Prediction head and prediction efficiency do not show same trends, which means that the former is bigger than experiment data while the latter may be smaller,and so are prediction head discrepancy and prediction efficiency discrepancy. The analysis still shows that precision of performance prediction at design flow rate is not the highest.

    4 Analysis of Inner Flow Field at Different Flow Points

    4.1 Static pressure distribution

    As shown in Fig. 3, at different flow rates, static pressure gradually increases from impeller inlet to outlet, and the static pressure on pressure side is evidently larger than that on suction side at the same impeller radius. According to the density of isobar, it is found that the static pressure increases slowly with the augment of flow rate. At small flow rate, there is an obvious low pressure area at the suction side of blade inlet, especially in flow passages 1, 2 and 3, where cavitations are easy to take place. When the flow increases, the area gets close to the middle of blade suction side, also especially in flow passages 1, 2 and 3.The static pressure on diffusion section of volute outlet increases markedly at small and design flow rates while the static pressure on the same place decreases clearly at big flow rate because of cut-water limitation. As a result of larger offset to design flow rate, the static pressure distribution in the impeller and volute becomes apparently disordered and uniform, particularly near the tongue of volute.

    4.2 Relative velocity distribution

    As shown in Fig. 4, relative velocity distribution in different flow passages is evidently dissimilar at any flow rate, which indicates that the volute has an important effect on inner flow in the impeller. For different flow rates, the relative velocity distribution in the impeller is obviously different, especially in flow passages 1, 2 and 3. At small flow rate, on blade pressure side, there is a big “dead water” zone where relative velocity is lesser. As the pump flow rate increases, the zone gets smaller gradually,especially in flow passage 2. Meanwhile, from the inlet amplificatory distribution, it is found that the direction of velocity at blade inlet changes obviously at off-design flow rates, which leads to a big impact on the blade. The incident angle at big flow rate is negative and positive at small flow rate, which agrees well with theory analysis[8].

    5 Conclusions

    With commercial code FLUENT, the coupled simulation of six centrifugal pumps is presented in detail in this paper at different flow rates and characteristic prediction model for centrifugal pumps is established. How to dispose the gap between the impeller and volute is presented and the effect of grid number is considered. The main research conclusions are as below.

    (1) The discrepancies of prediction head and prediction total efficiency are less than 5%. For all flow rate points of every model, average discrepancy of head is 2.49% and average discrepancy of prediction total efficiency is 2.02%.Prediction head and prediction efficiency do not show the same trends and precision of performance prediction at design flow rate is not the highest.

    (2) There is an obvious low pressure area at the suction side of blade inlet at small flow rate, as the flow increases,the area gets close to the middle of blade suction side. The static pressure on diffusion section of volute outlet increases markedly at small and design flow rate while the static pressure on the same place decreases clearly at big flow rate. As the pump flow rate increases, the “dead water” zone gets smaller gradually. The direction of velocity at blade inlet changes obviously at off-design flow rates. The incident angle at big flow rate is negative and it is positive at small flow rate.

    (3) The present study has demonstrated that the proposed numerical method in this paper produces a good prediction of the centrifugal pump performance and can be applied in practice.

    Fig. 2. Prediction results of the models

    Fig. 3. Static pressure distribution on middle face of pump No. 3 (kPa)

    Fig. 4. Relative velocity distribution on impeller middle face of pump No. 3 and its amplificatory distribution at inlet (m/s)

    [1] MAJIDI K. Numerical study of unsteady flow in a centrifugal pump[J]. Journal of Turbomachniery, 2005, 127: 363-371.

    [2] JOSé González, JOAQUìN Fernández, BLANCO E, et al. Numerical simulation of the dynamic effects due to impeller – volute interaction in a centrifugal pump[J]. Transactions of the ASME, 2002, 124:348-354.

    [3] JOSé González, SANTOLARIA C. Unsteady flow structure and global variables in a centrifugal pump[J]. Journal of Fluids Engineering, 2006, 128: 937-946.

    [4] BYSKOV R K, JACOBSEN C B, PADERSEN N. Flow in a centrifugal pump impeller at design and off-design conditions — PartⅡ: large eddy simulations[J]. Journal of Fluids Engineering, 2003,125: 73-83.

    [5] PADERSEN N, LARSEN P S, JACOBSEN C B. Flow in a centrifugal pump impeller at design and off-design conditions — Part I: particle image velocimetry(PIV) and laser Doppler velocimetry(LDV) measurements[J]. Journal of Fluids Engineering,2003, 125: 61-72.

    [6] ZHAO Binjuan, YUAN Shouqi, LIU Houlin, et al. Three-dimensional coupled impeller-volute simulation of flow in centrifugal pump and performance prediction[J]. Chinese Journal of Mechanical Engineering, 2006, 19(1): 59-62.

    [7] CHEN Hongxun, ZOU Xuelian. Unsteady flow characteristic performance within single channel pump[J]. Chinese Journal of Mechanical Engineering, 2005, 41(11): 163-170. (in Chinese).

    [8] GUAN Xingfan. Modern pump technology manual[M]. Beijing:Yuhang Press, 1995. (in Chinese).

    [9] TAN Minggao. Theory and software development on characteristics prediction of centrifugal pumps[D]. Zhenjiang: Jiangsu University,2006. (in Chinese).

    久久亚洲国产成人精品v| 欧美极品一区二区三区四区| 亚洲性久久影院| 少妇熟女欧美另类| 99热全是精品| 嫩草影院入口| 国产私拍福利视频在线观看| 日本免费在线观看一区| 男女那种视频在线观看| 国产黄色视频一区二区在线观看 | 中文字幕亚洲精品专区| 嫩草影院入口| 床上黄色一级片| av在线观看视频网站免费| 亚洲欧美日韩东京热| 中文在线观看免费www的网站| 国产淫片久久久久久久久| 中文字幕熟女人妻在线| 黄片wwwwww| 亚洲电影在线观看av| 免费人成在线观看视频色| 国产乱来视频区| 18禁在线播放成人免费| www日本黄色视频网| 人妻制服诱惑在线中文字幕| 直男gayav资源| 国产淫片久久久久久久久| 精品人妻熟女av久视频| videossex国产| 日本爱情动作片www.在线观看| 床上黄色一级片| 高清av免费在线| 少妇的逼好多水| 麻豆国产97在线/欧美| 九九久久精品国产亚洲av麻豆| 只有这里有精品99| 国产黄片美女视频| 99久久精品一区二区三区| 女的被弄到高潮叫床怎么办| 久久国内精品自在自线图片| 国产精品精品国产色婷婷| www.色视频.com| 亚洲中文字幕日韩| 在线播放无遮挡| 成年av动漫网址| 能在线免费观看的黄片| 美女xxoo啪啪120秒动态图| 亚洲av男天堂| 日韩av不卡免费在线播放| 九草在线视频观看| 黄色欧美视频在线观看| 国产精品蜜桃在线观看| 精品欧美国产一区二区三| 日本爱情动作片www.在线观看| 国产亚洲91精品色在线| 精品久久久久久久久亚洲| 三级国产精品欧美在线观看| 久久精品国产亚洲av涩爱| videos熟女内射| 亚洲一区高清亚洲精品| 禁无遮挡网站| 成人午夜高清在线视频| 国产人妻一区二区三区在| a级毛色黄片| 建设人人有责人人尽责人人享有的 | 日韩大片免费观看网站 | 男人狂女人下面高潮的视频| 亚洲在线观看片| 日韩,欧美,国产一区二区三区 | 国产精品美女特级片免费视频播放器| 欧美另类亚洲清纯唯美| 中文字幕久久专区| 国产精品.久久久| 久久精品人妻少妇| 久久久久久伊人网av| 久久久精品欧美日韩精品| 禁无遮挡网站| 亚洲久久久久久中文字幕| 免费av观看视频| 人体艺术视频欧美日本| 国产精品无大码| 长腿黑丝高跟| av卡一久久| 久久99热6这里只有精品| 久久精品国产鲁丝片午夜精品| 国产伦理片在线播放av一区| 三级国产精品欧美在线观看| 九九久久精品国产亚洲av麻豆| 偷拍熟女少妇极品色| 国产真实乱freesex| 又爽又黄a免费视频| 日韩成人伦理影院| 国内精品美女久久久久久| 国内揄拍国产精品人妻在线| 青春草亚洲视频在线观看| 99久久精品热视频| 国产爱豆传媒在线观看| 久久婷婷人人爽人人干人人爱| 中文字幕熟女人妻在线| 国产老妇伦熟女老妇高清| 亚洲国产精品久久男人天堂| 国产精品不卡视频一区二区| 精品熟女少妇av免费看| eeuss影院久久| 亚洲精品国产成人久久av| 国产精华一区二区三区| 亚洲久久久久久中文字幕| 欧美日韩国产亚洲二区| 久久热精品热| 亚洲18禁久久av| 亚洲婷婷狠狠爱综合网| 国产精品伦人一区二区| 成人午夜精彩视频在线观看| av.在线天堂| 日韩精品有码人妻一区| 少妇裸体淫交视频免费看高清| av女优亚洲男人天堂| 国产在线一区二区三区精 | 搡女人真爽免费视频火全软件| 偷拍熟女少妇极品色| 51国产日韩欧美| 精品久久久噜噜| 免费av不卡在线播放| 国产 一区精品| 亚洲精品国产成人久久av| 午夜精品在线福利| 亚洲久久久久久中文字幕| 内射极品少妇av片p| 久久欧美精品欧美久久欧美| 国产男人的电影天堂91| 性色avwww在线观看| 亚洲久久久久久中文字幕| 欧美人与善性xxx| av播播在线观看一区| 激情 狠狠 欧美| 干丝袜人妻中文字幕| 欧美日韩国产亚洲二区| 国产精品无大码| 久久综合国产亚洲精品| 桃色一区二区三区在线观看| 国产精品电影一区二区三区| 久久这里有精品视频免费| 欧美一区二区精品小视频在线| 成人国产麻豆网| 欧美成人a在线观看| 国产精品久久电影中文字幕| 国内精品一区二区在线观看| 久久久久精品久久久久真实原创| 一区二区三区四区激情视频| 美女高潮的动态| kizo精华| 国产av在哪里看| 3wmmmm亚洲av在线观看| 少妇的逼好多水| 国产麻豆成人av免费视频| 国产高清三级在线| 国内精品美女久久久久久| 精品午夜福利在线看| 久久国内精品自在自线图片| 欧美一级a爱片免费观看看| av.在线天堂| 久久99蜜桃精品久久| 日韩强制内射视频| 久久精品夜色国产| 国产大屁股一区二区在线视频| 伦精品一区二区三区| 日产精品乱码卡一卡2卡三| 亚洲av男天堂| 天美传媒精品一区二区| 亚洲精品456在线播放app| 久久亚洲国产成人精品v| 亚洲精品日韩在线中文字幕| 高清日韩中文字幕在线| 97热精品久久久久久| 成人亚洲精品av一区二区| 日韩国内少妇激情av| 97人妻精品一区二区三区麻豆| 色哟哟·www| 欧美成人一区二区免费高清观看| 又爽又黄a免费视频| 三级经典国产精品| 看非洲黑人一级黄片| 日本免费a在线| 久久久国产成人精品二区| 中国美白少妇内射xxxbb| 日韩精品青青久久久久久| 亚洲内射少妇av| av国产久精品久网站免费入址| 成年av动漫网址| 欧美区成人在线视频| 国产高清视频在线观看网站| 国产在视频线精品| 蜜桃久久精品国产亚洲av| 大香蕉久久网| 欧美日本亚洲视频在线播放| 一边亲一边摸免费视频| videossex国产| 国产视频内射| 最近最新中文字幕大全电影3| 成人高潮视频无遮挡免费网站| www.色视频.com| 亚洲欧洲日产国产| 美女cb高潮喷水在线观看| 日本三级黄在线观看| 日韩欧美在线乱码| 高清午夜精品一区二区三区| 国产精品无大码| 欧美一区二区国产精品久久精品| 久久久久九九精品影院| 国产高清三级在线| 亚洲自拍偷在线| 国产亚洲av嫩草精品影院| 久久久久免费精品人妻一区二区| 天堂√8在线中文| 亚洲av不卡在线观看| 身体一侧抽搐| 成人无遮挡网站| 成人午夜精彩视频在线观看| 日韩三级伦理在线观看| 日本三级黄在线观看| 午夜日本视频在线| 中文乱码字字幕精品一区二区三区 | 男人狂女人下面高潮的视频| 国产精品一区二区性色av| 两个人视频免费观看高清| 国产色爽女视频免费观看| 2021天堂中文幕一二区在线观| 春色校园在线视频观看| 久久久久久久久久久免费av| 综合色丁香网| 午夜免费男女啪啪视频观看| 欧美精品国产亚洲| 中文字幕制服av| 亚洲精品aⅴ在线观看| 欧美激情在线99| 美女被艹到高潮喷水动态| 日韩中字成人| 欧美丝袜亚洲另类| 永久免费av网站大全| 亚洲aⅴ乱码一区二区在线播放| 秋霞伦理黄片| www.色视频.com| 国产中年淑女户外野战色| 九草在线视频观看| 亚洲av电影在线观看一区二区三区 | videossex国产| 尾随美女入室| 国产精品日韩av在线免费观看| 国产精品永久免费网站| 精品久久久久久久久亚洲| 亚洲成人久久爱视频| 国语自产精品视频在线第100页| 一级毛片电影观看 | 五月伊人婷婷丁香| 国产69精品久久久久777片| av天堂中文字幕网| 国产免费视频播放在线视频 | 亚洲精品久久久久久婷婷小说 | 欧美不卡视频在线免费观看| 乱人视频在线观看| 久久这里有精品视频免费| www.色视频.com| 久久久国产成人精品二区| 纵有疾风起免费观看全集完整版 | 能在线免费观看的黄片| 寂寞人妻少妇视频99o| 日韩av在线大香蕉| 少妇熟女aⅴ在线视频| 丰满乱子伦码专区| 国产探花在线观看一区二区| 美女国产视频在线观看| 成年av动漫网址| 免费看a级黄色片| 国产精品嫩草影院av在线观看| 精品酒店卫生间| 91久久精品国产一区二区三区| videos熟女内射| 亚洲国产精品sss在线观看| 水蜜桃什么品种好| 大话2 男鬼变身卡| 97热精品久久久久久| 不卡视频在线观看欧美| 在线观看美女被高潮喷水网站| 欧美一级a爱片免费观看看| 亚洲欧洲国产日韩| 一卡2卡三卡四卡精品乱码亚洲| 久久欧美精品欧美久久欧美| 久久久国产成人免费| 免费av不卡在线播放| 校园人妻丝袜中文字幕| 免费av观看视频| 天堂√8在线中文| 级片在线观看| 免费av毛片视频| 国产精品蜜桃在线观看| av免费观看日本| 最近的中文字幕免费完整| 寂寞人妻少妇视频99o| 精品久久久久久久末码| 大香蕉久久网| 精品免费久久久久久久清纯| 人人妻人人看人人澡| 亚洲国产欧洲综合997久久,| 国产高清三级在线| 免费不卡的大黄色大毛片视频在线观看 | 老师上课跳d突然被开到最大视频| 亚洲成人中文字幕在线播放| 91精品国产九色| 日日啪夜夜撸| 秋霞在线观看毛片| 久久久亚洲精品成人影院| 国产精华一区二区三区| 亚洲电影在线观看av| 精品久久久久久久末码| 在线观看66精品国产| 国产高清有码在线观看视频| 看免费成人av毛片| 两个人视频免费观看高清| 91狼人影院| 97在线视频观看| 乱码一卡2卡4卡精品| 午夜a级毛片| 干丝袜人妻中文字幕| 午夜福利在线在线| 麻豆乱淫一区二区| 日产精品乱码卡一卡2卡三| 亚洲成人久久爱视频| 麻豆久久精品国产亚洲av| 亚洲va在线va天堂va国产| .国产精品久久| 国产免费视频播放在线视频 | 少妇丰满av| 亚洲一区高清亚洲精品| 少妇人妻一区二区三区视频| 一级av片app| 日本五十路高清| 少妇人妻精品综合一区二区| 男人舔奶头视频| 日韩 亚洲 欧美在线| 日本黄大片高清| 亚洲欧美清纯卡通| 小说图片视频综合网站| 国语对白做爰xxxⅹ性视频网站| 一个人看的www免费观看视频| 亚洲欧美日韩卡通动漫| 欧美不卡视频在线免费观看| av卡一久久| 看十八女毛片水多多多| 一区二区三区免费毛片| 国产av码专区亚洲av| 国产精品久久视频播放| 一级黄色大片毛片| 午夜免费激情av| 色网站视频免费| 嫩草影院入口| 精品国产露脸久久av麻豆 | 在线免费观看不下载黄p国产| 欧美一区二区精品小视频在线| 老司机影院成人| 精品一区二区三区人妻视频| 能在线免费观看的黄片| 日日啪夜夜撸| 久久久国产成人精品二区| 村上凉子中文字幕在线| 国产精品久久久久久久久免| 在线观看一区二区三区| 亚洲精品一区蜜桃| 亚洲一级一片aⅴ在线观看| videos熟女内射| av免费在线看不卡| 久久人妻av系列| 色吧在线观看| 青春草视频在线免费观看| 亚洲国产欧美在线一区| 可以在线观看毛片的网站| 少妇的逼好多水| 免费人成在线观看视频色| 变态另类丝袜制服| 国产精品人妻久久久久久| 噜噜噜噜噜久久久久久91| 国产精品人妻久久久久久| 国产高清国产精品国产三级 | 日韩欧美精品免费久久| 你懂的网址亚洲精品在线观看 | 国产精品国产三级专区第一集| 午夜激情欧美在线| 亚洲自拍偷在线| 国产精品伦人一区二区| 久久精品夜夜夜夜夜久久蜜豆| 免费黄网站久久成人精品| 搡女人真爽免费视频火全软件| 18+在线观看网站| 青春草亚洲视频在线观看| 色5月婷婷丁香| 午夜亚洲福利在线播放| 九草在线视频观看| 亚洲国产最新在线播放| 日本-黄色视频高清免费观看| 国产精品嫩草影院av在线观看| 我的老师免费观看完整版| 精品一区二区三区视频在线| 久久欧美精品欧美久久欧美| 免费看日本二区| 久久精品国产自在天天线| 蜜桃久久精品国产亚洲av| 久久99热这里只有精品18| 老师上课跳d突然被开到最大视频| 亚洲av免费在线观看| 欧美97在线视频| АⅤ资源中文在线天堂| 看黄色毛片网站| 青春草亚洲视频在线观看| 高清视频免费观看一区二区 | 99热这里只有精品一区| 亚洲国产精品专区欧美| 欧美一级a爱片免费观看看| 日本猛色少妇xxxxx猛交久久| 久久久久久久久中文| 久久综合国产亚洲精品| 国产白丝娇喘喷水9色精品| 午夜福利在线观看吧| av.在线天堂| 国产真实乱freesex| 午夜日本视频在线| 亚洲欧美精品综合久久99| 国产精品av视频在线免费观看| videos熟女内射| 国产亚洲91精品色在线| 亚洲成av人片在线播放无| 永久免费av网站大全| 久久久久九九精品影院| 精品人妻偷拍中文字幕| 成人鲁丝片一二三区免费| 亚洲成人中文字幕在线播放| 亚洲精品乱码久久久v下载方式| 亚洲伊人久久精品综合 | 免费播放大片免费观看视频在线观看 | 成年版毛片免费区| 18禁裸乳无遮挡免费网站照片| 大话2 男鬼变身卡| 麻豆精品久久久久久蜜桃| 成人三级黄色视频| 国产在视频线在精品| 亚洲18禁久久av| 久久久久久久久中文| 观看美女的网站| 色综合色国产| 18禁裸乳无遮挡免费网站照片| 国产精品一区二区性色av| 99热6这里只有精品| 亚洲国产精品sss在线观看| 亚洲国产精品久久男人天堂| 美女国产视频在线观看| av线在线观看网站| av国产免费在线观看| 亚洲怡红院男人天堂| 看免费成人av毛片| 床上黄色一级片| 日本三级黄在线观看| 久久久午夜欧美精品| 99在线视频只有这里精品首页| 九九在线视频观看精品| 国产免费视频播放在线视频 | 晚上一个人看的免费电影| 中文天堂在线官网| 日韩av在线大香蕉| 亚洲,欧美,日韩| 国产av不卡久久| 中文在线观看免费www的网站| 2021天堂中文幕一二区在线观| 亚洲国产色片| 精品国产一区二区三区久久久樱花 | 久久久久久九九精品二区国产| 亚洲综合精品二区| 免费av不卡在线播放| 日日摸夜夜添夜夜爱| 伊人久久精品亚洲午夜| 激情 狠狠 欧美| 看黄色毛片网站| 丰满乱子伦码专区| 可以在线观看毛片的网站| av又黄又爽大尺度在线免费看 | 九草在线视频观看| 欧美一区二区国产精品久久精品| 亚洲人成网站在线播| 日韩人妻高清精品专区| 性色avwww在线观看| 一个人看的www免费观看视频| 免费观看人在逋| 国产精品人妻久久久久久| 成年女人永久免费观看视频| 十八禁国产超污无遮挡网站| 在线观看一区二区三区| 欧美丝袜亚洲另类| 久久久久久九九精品二区国产| 日本欧美国产在线视频| 国产高清不卡午夜福利| 亚洲高清免费不卡视频| 女人久久www免费人成看片 | 欧美+日韩+精品| 乱人视频在线观看| 日韩欧美在线乱码| 亚洲精品国产成人久久av| 99热精品在线国产| 国产成年人精品一区二区| 99热这里只有是精品在线观看| 三级国产精品欧美在线观看| 亚洲欧美清纯卡通| 欧美区成人在线视频| 一个人免费在线观看电影| 亚洲成av人片在线播放无| 中文字幕熟女人妻在线| 午夜视频国产福利| 亚洲av成人av| 亚洲在线观看片| 亚洲av福利一区| 日韩视频在线欧美| 变态另类丝袜制服| 国产欧美日韩精品一区二区| 久久人人爽人人爽人人片va| 午夜精品一区二区三区免费看| 国产成人精品婷婷| 美女被艹到高潮喷水动态| 欧美一区二区国产精品久久精品| 波多野结衣巨乳人妻| 国产高清国产精品国产三级 | 欧美三级亚洲精品| 欧美色视频一区免费| 欧美精品一区二区大全| 最近2019中文字幕mv第一页| 亚洲精品日韩在线中文字幕| 一级黄片播放器| 汤姆久久久久久久影院中文字幕 | 国产私拍福利视频在线观看| 蜜桃亚洲精品一区二区三区| 男人舔奶头视频| 国产成人aa在线观看| 身体一侧抽搐| 99久久精品国产国产毛片| 日本-黄色视频高清免费观看| 91精品伊人久久大香线蕉| 亚洲国产精品合色在线| 91在线精品国自产拍蜜月| 欧美不卡视频在线免费观看| 久久欧美精品欧美久久欧美| 久久久色成人| 一区二区三区高清视频在线| 水蜜桃什么品种好| 亚洲精品自拍成人| 国产真实乱freesex| 国产熟女欧美一区二区| 欧美xxxx黑人xx丫x性爽| 国产黄片美女视频| 少妇裸体淫交视频免费看高清| 中文字幕av在线有码专区| 欧美性猛交黑人性爽| 亚洲在线观看片| 亚洲av福利一区| 国产亚洲av片在线观看秒播厂 | 国产精品99久久久久久久久| 18禁在线播放成人免费| 亚洲在久久综合| 99久久无色码亚洲精品果冻| 黄色配什么色好看| 能在线免费观看的黄片| 精品一区二区免费观看| 精品久久久久久久人妻蜜臀av| 一区二区三区免费毛片| 亚洲乱码一区二区免费版| 亚洲精品一区蜜桃| 国产精品一区二区三区四区久久| 国产在线男女| 舔av片在线| 国产欧美日韩精品一区二区| 久久久久久大精品| 91精品一卡2卡3卡4卡| 日韩强制内射视频| 亚洲无线观看免费| 亚洲最大成人av| 亚洲国产日韩欧美精品在线观看| 欧美一区二区国产精品久久精品| kizo精华| 久久99热这里只频精品6学生 | 1000部很黄的大片| 最近2019中文字幕mv第一页| 中文字幕av成人在线电影| 美女高潮的动态| 亚洲怡红院男人天堂| 黄色欧美视频在线观看| 噜噜噜噜噜久久久久久91| 国内精品一区二区在线观看| 18禁裸乳无遮挡免费网站照片| 边亲边吃奶的免费视频| 建设人人有责人人尽责人人享有的 | 中文字幕制服av| 在线观看一区二区三区| 亚洲精品一区蜜桃| 久久久久久久久久黄片| 久久精品熟女亚洲av麻豆精品 | 亚洲欧美日韩无卡精品| 久久久久久久国产电影| av又黄又爽大尺度在线免费看 | 三级毛片av免费| 国产一区二区三区av在线| 蜜桃久久精品国产亚洲av| 久久99热这里只有精品18| 国产综合懂色| 亚洲欧洲日产国产| 搞女人的毛片| 好男人视频免费观看在线| 我的老师免费观看完整版| 99热这里只有是精品在线观看| 黄片wwwwww| 夜夜爽夜夜爽视频| 久久综合国产亚洲精品|