• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Research on Performance Prediction for Centrifugal Pumps

    2010-03-01 01:46:54TANMinggaoYUANShouqiLIUHoulinWANGYongandWANGKai

    TAN Minggao, YUAN Shouqi, LIU Houlin, WANG Yong, and WANG Kai

    Technology and Research Center of Fluid Machinery Engineering, Jiangsu University, Zhenjiang 212013, China

    1 Introduction

    Pump performance is decided by inner flow characteristics and inner flow analysis is undoubtedly the best method to improve performance of pump. Therefore,in order to predict performance of pumps exactly on theory,flow field in pump must be obtained correctly[1]. Over the past few years, with the rapid development of the computer technology and computational fluid dynamics(CFD),numerical simulation, like academic analysis and experimental research, has become an important tool to study flow field in pumps and predict pump performance home and abroad. An unsteady simulation of a low specific speed centrifugal pump was done by JOSé, et al[2–3]based on FLUENT to predict the dynamic characteristic between impeller and volute and the pump performance, and the research was validated by the experiment data. Using commercial code FINE/Turbo, BYSKOV, et al[4], did a large eddy simulation of a centrifugal pump at design flow rate and off design flow rates to predict the pump characteristics, and the predicted results agreed well with the data measured by particle image velocimetry(PIV) and laser Doppler velocimetry(LDV)[5]. In China, to forecast performance, ZHAO, et al[6], did a coupled impeller-volute simulation of flow in a centrifugal pump using moving reference frame and FUENT, and CHEN, et al[7], simulated the unsteady flow in a single channel pump, both results above were consistent with pump test data.

    The previously mentioned achievements on performance prediction of centrifugal pumps by numerical simulation methods are quite encouraging and these methods are becoming more widely used in hydraulic design of pumps.However, most of the researches were only concerned with one pump and there was no characteristic prediction model in the former study. The more key problems are how to dispose the gap between impeller and volute and how to consider the effect of grid number. So the former research results are not representational and universal. The objective of this paper is to evaluate the precision of numerical prediction method in detail. Hence, six typical centrifugal pumps were chosen as research models and FLUENT was used to do the pumps simulation at the conditions of design,small and large flow rate. The standard k-ε turbulence model and SIMPLEC algorithm were chosen in FLUENT.The simulation was steady and moving reference frame was used to consider rotor-stator interaction. Head and efficiency curves of the models were obtained according to the simulation, and were compared with the experiment data. Also, the flow field was analyzed.

    2 Research Models and Prediction Algorithm

    Specific speed of the models varies from 34 to 260 and experiment and geometry parameters at design flow rate are shown in Table. The 3D models of impeller, volute and suction were produced by professional software Pro/E and the gap between impeller and volute was appended to impeller (as shown in Fig. 1). The impeller inlet and volute outlet were extended properly to reduce the effect of boundary conditions on inner flow. GAMBIT, the preprocessor of FLUENT, was used to generate grid ofmodels and grid quality was checked. Since the geometry of the pump is very complex, tetrahedron mesh was used for the generation and “EquiAngle Skew” and “EquiSize Skew” of the grid were all less than 0.87, so the grid quality was good. Relativity examination of grid number was done for each model. When the effect of grid number on pump characteristics was less than 2%, the effect is ignored.Convergence precision of residuals was 10–5.

    Table. Experiment and geometry parameters of research models

    Fig. 1. Computational zones of pump No. 4

    2.1 Experiments of research model

    All the model pumps were tested in Jiangsu University.The experiments were conducted in an open loop, which consists of a reservoir open to air, a suction valve, a test pump, a discharge pipe and a discharge valve. Each model pump has a single axial suction and a volute casing. In the circuit, water was pumped from and returned to a huge reservoir. The flow rate was regulated by the discharge valve and was measured by electromagnetic flow meter.The rotation speed was detected by plus signals.

    Flow rate uncertainties are found to be always less than 0.5%. The head and efficiency uncertainties are kept under 1% and 1.5%, respectively. The experiment data are shown in Table.

    2.2 Boundary conditions

    Inlet boundary condition: assume that inlet velocity vinis uniform at axis direction and its value equals to ratio of flow rate and inlet area:

    where q is the flow rate, Dinis the pump inlet diameter.

    Turbulent kinetic energy kinand turbulent dissipation rate εinat inlet can be estimated by the following formula:

    where l is the turbulent length scale and l=0.07Din,Cμ=0.09.

    Outlet boundary condition: “outflow” is implemented on pump outlet and flow rate weighting is set to be 1.

    Wall boundary condition: no slip condition is enforced on wall surface and standard wall function is applied to adjacent region.

    2.3 Prediction algorithm

    Head H is calculated by the following formula:

    where poutis the total pressure at volute outlet, pinis the total pressure at impeller inlet, ρ is the density of liquid, g is the gravity acceleration.

    Hydraulic efficiency ηhis calculated as

    where M is the impeller torque, ω is the angle velocity.

    Volume efficiency ηvis calculated as[8]

    Total efficiency η is calculated as

    where Peis the water power and Pe=ρgqH, ?Pdis the disk friction loss and its calculation method is in Ref. [9].

    3 Prediction Results and Analysis

    Fig. 2 shows prediction and experiment performance curves, including flow rate–head curve and flow rate–efficiency curve. According to the data in Fig. 2,prediction discrepancy can be computed as follows:

    where ?H is the head discrepancy, ?η is the efficiency discrepancy, Hpis the prediction head, Heis experiment head, ηpis prediction total efficiency, ηeis the experiment total efficiency.

    Discrepancy calculation results: for all flow rate points of every model, maximum discrepancy of prediction head is 4.81%, minimum discrepancy is 0.24%, average discrepancy is 2.49% and maximum discrepancy of prediction total efficiency is 4.52%, minimum discrepancy is 0.08%, average discrepancy is 2.02%. At design flow rate, maximum discrepancy of prediction head is 4.81%,minimum discrepancy is 0.65% and average discrepancy is 2.02% and maximum discrepancy of prediction total efficiency is 4.42%, minimum discrepancy is 0.54%,average discrepancy is 2.4%. The calculation indicates that all discrepancies are within 5%.

    More information can be obtained from discrepancy computation. Prediction head and prediction efficiency do not show same trends, which means that the former is bigger than experiment data while the latter may be smaller,and so are prediction head discrepancy and prediction efficiency discrepancy. The analysis still shows that precision of performance prediction at design flow rate is not the highest.

    4 Analysis of Inner Flow Field at Different Flow Points

    4.1 Static pressure distribution

    As shown in Fig. 3, at different flow rates, static pressure gradually increases from impeller inlet to outlet, and the static pressure on pressure side is evidently larger than that on suction side at the same impeller radius. According to the density of isobar, it is found that the static pressure increases slowly with the augment of flow rate. At small flow rate, there is an obvious low pressure area at the suction side of blade inlet, especially in flow passages 1, 2 and 3, where cavitations are easy to take place. When the flow increases, the area gets close to the middle of blade suction side, also especially in flow passages 1, 2 and 3.The static pressure on diffusion section of volute outlet increases markedly at small and design flow rates while the static pressure on the same place decreases clearly at big flow rate because of cut-water limitation. As a result of larger offset to design flow rate, the static pressure distribution in the impeller and volute becomes apparently disordered and uniform, particularly near the tongue of volute.

    4.2 Relative velocity distribution

    As shown in Fig. 4, relative velocity distribution in different flow passages is evidently dissimilar at any flow rate, which indicates that the volute has an important effect on inner flow in the impeller. For different flow rates, the relative velocity distribution in the impeller is obviously different, especially in flow passages 1, 2 and 3. At small flow rate, on blade pressure side, there is a big “dead water” zone where relative velocity is lesser. As the pump flow rate increases, the zone gets smaller gradually,especially in flow passage 2. Meanwhile, from the inlet amplificatory distribution, it is found that the direction of velocity at blade inlet changes obviously at off-design flow rates, which leads to a big impact on the blade. The incident angle at big flow rate is negative and positive at small flow rate, which agrees well with theory analysis[8].

    5 Conclusions

    With commercial code FLUENT, the coupled simulation of six centrifugal pumps is presented in detail in this paper at different flow rates and characteristic prediction model for centrifugal pumps is established. How to dispose the gap between the impeller and volute is presented and the effect of grid number is considered. The main research conclusions are as below.

    (1) The discrepancies of prediction head and prediction total efficiency are less than 5%. For all flow rate points of every model, average discrepancy of head is 2.49% and average discrepancy of prediction total efficiency is 2.02%.Prediction head and prediction efficiency do not show the same trends and precision of performance prediction at design flow rate is not the highest.

    (2) There is an obvious low pressure area at the suction side of blade inlet at small flow rate, as the flow increases,the area gets close to the middle of blade suction side. The static pressure on diffusion section of volute outlet increases markedly at small and design flow rate while the static pressure on the same place decreases clearly at big flow rate. As the pump flow rate increases, the “dead water” zone gets smaller gradually. The direction of velocity at blade inlet changes obviously at off-design flow rates. The incident angle at big flow rate is negative and it is positive at small flow rate.

    (3) The present study has demonstrated that the proposed numerical method in this paper produces a good prediction of the centrifugal pump performance and can be applied in practice.

    Fig. 2. Prediction results of the models

    Fig. 3. Static pressure distribution on middle face of pump No. 3 (kPa)

    Fig. 4. Relative velocity distribution on impeller middle face of pump No. 3 and its amplificatory distribution at inlet (m/s)

    [1] MAJIDI K. Numerical study of unsteady flow in a centrifugal pump[J]. Journal of Turbomachniery, 2005, 127: 363-371.

    [2] JOSé González, JOAQUìN Fernández, BLANCO E, et al. Numerical simulation of the dynamic effects due to impeller – volute interaction in a centrifugal pump[J]. Transactions of the ASME, 2002, 124:348-354.

    [3] JOSé González, SANTOLARIA C. Unsteady flow structure and global variables in a centrifugal pump[J]. Journal of Fluids Engineering, 2006, 128: 937-946.

    [4] BYSKOV R K, JACOBSEN C B, PADERSEN N. Flow in a centrifugal pump impeller at design and off-design conditions — PartⅡ: large eddy simulations[J]. Journal of Fluids Engineering, 2003,125: 73-83.

    [5] PADERSEN N, LARSEN P S, JACOBSEN C B. Flow in a centrifugal pump impeller at design and off-design conditions — Part I: particle image velocimetry(PIV) and laser Doppler velocimetry(LDV) measurements[J]. Journal of Fluids Engineering,2003, 125: 61-72.

    [6] ZHAO Binjuan, YUAN Shouqi, LIU Houlin, et al. Three-dimensional coupled impeller-volute simulation of flow in centrifugal pump and performance prediction[J]. Chinese Journal of Mechanical Engineering, 2006, 19(1): 59-62.

    [7] CHEN Hongxun, ZOU Xuelian. Unsteady flow characteristic performance within single channel pump[J]. Chinese Journal of Mechanical Engineering, 2005, 41(11): 163-170. (in Chinese).

    [8] GUAN Xingfan. Modern pump technology manual[M]. Beijing:Yuhang Press, 1995. (in Chinese).

    [9] TAN Minggao. Theory and software development on characteristics prediction of centrifugal pumps[D]. Zhenjiang: Jiangsu University,2006. (in Chinese).

    王馨瑶露胸无遮挡在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 成人av一区二区三区在线看| 国产xxxxx性猛交| 久久亚洲精品不卡| 亚洲,欧美精品.| 蜜桃在线观看..| 免费女性裸体啪啪无遮挡网站| 最近最新免费中文字幕在线| 一本色道久久久久久精品综合| 怎么达到女性高潮| 亚洲一区中文字幕在线| 亚洲av成人不卡在线观看播放网| 人妻 亚洲 视频| 亚洲av第一区精品v没综合| 在线观看免费午夜福利视频| 精品少妇久久久久久888优播| 久久精品亚洲熟妇少妇任你| 丝袜喷水一区| 99国产综合亚洲精品| tocl精华| 伦理电影免费视频| 亚洲专区字幕在线| 欧美日韩黄片免| 久久久精品免费免费高清| 免费高清在线观看日韩| 后天国语完整版免费观看| 久久久国产一区二区| 在线观看免费高清a一片| 国产视频一区二区在线看| 亚洲专区中文字幕在线| 捣出白浆h1v1| 欧美人与性动交α欧美精品济南到| 亚洲免费av在线视频| 国产99久久九九免费精品| 老司机在亚洲福利影院| 免费看a级黄色片| 岛国毛片在线播放| 桃红色精品国产亚洲av| 免费久久久久久久精品成人欧美视频| 久久精品亚洲熟妇少妇任你| 精品亚洲乱码少妇综合久久| 国产成人精品在线电影| 超色免费av| av网站在线播放免费| 王馨瑶露胸无遮挡在线观看| 99国产极品粉嫩在线观看| 中文字幕人妻丝袜一区二区| 国产精品 国内视频| 日韩大片免费观看网站| 亚洲色图综合在线观看| 亚洲专区国产一区二区| 无遮挡黄片免费观看| 成人免费观看视频高清| 成人手机av| 欧美中文综合在线视频| netflix在线观看网站| 美女视频免费永久观看网站| 国产真人三级小视频在线观看| 99精品欧美一区二区三区四区| 手机成人av网站| 成人永久免费在线观看视频 | 久久人妻福利社区极品人妻图片| 久9热在线精品视频| av天堂久久9| 在线十欧美十亚洲十日本专区| 女人被躁到高潮嗷嗷叫费观| 十八禁网站免费在线| 午夜福利在线观看吧| 最黄视频免费看| 男女高潮啪啪啪动态图| 又黄又粗又硬又大视频| 久久久久久久国产电影| 1024香蕉在线观看| 母亲3免费完整高清在线观看| 亚洲成国产人片在线观看| 亚洲欧美日韩高清在线视频 | 免费在线观看影片大全网站| 一边摸一边抽搐一进一出视频| 熟女少妇亚洲综合色aaa.| 真人做人爱边吃奶动态| 日本黄色视频三级网站网址 | 免费日韩欧美在线观看| 日韩中文字幕欧美一区二区| 一区二区日韩欧美中文字幕| 久久精品国产亚洲av高清一级| 99热网站在线观看| 成人永久免费在线观看视频 | 国产成人欧美在线观看 | 欧美成人午夜精品| av线在线观看网站| 久久精品aⅴ一区二区三区四区| 性色av乱码一区二区三区2| 夜夜夜夜夜久久久久| 亚洲午夜理论影院| 波多野结衣av一区二区av| 久久国产精品大桥未久av| 久久久久久久久久久久大奶| 日韩一卡2卡3卡4卡2021年| 色尼玛亚洲综合影院| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品国产区一区二| a级片在线免费高清观看视频| 亚洲av日韩在线播放| 国产区一区二久久| 色播在线永久视频| 纯流量卡能插随身wifi吗| 亚洲成av片中文字幕在线观看| 18在线观看网站| 法律面前人人平等表现在哪些方面| 啦啦啦中文免费视频观看日本| 日韩中文字幕欧美一区二区| 久久天堂一区二区三区四区| 久久久久久久久久久久大奶| 午夜激情久久久久久久| 夜夜骑夜夜射夜夜干| 极品少妇高潮喷水抽搐| 女性生殖器流出的白浆| 成人黄色视频免费在线看| 国产精品一区二区在线不卡| cao死你这个sao货| 美女扒开内裤让男人捅视频| 99国产精品一区二区三区| tube8黄色片| 天天添夜夜摸| 日本wwww免费看| 搡老熟女国产l中国老女人| 精品亚洲乱码少妇综合久久| 免费观看人在逋| 中文字幕色久视频| 亚洲精品av麻豆狂野| 黄网站色视频无遮挡免费观看| 久久久久精品人妻al黑| 精品国产乱码久久久久久小说| 日本av手机在线免费观看| 国产高清视频在线播放一区| 欧美日本中文国产一区发布| 一区在线观看完整版| 淫妇啪啪啪对白视频| 激情视频va一区二区三区| kizo精华| 黄片大片在线免费观看| 国产在线精品亚洲第一网站| 九色亚洲精品在线播放| 久热爱精品视频在线9| 久久久精品国产亚洲av高清涩受| 十八禁人妻一区二区| 欧美日韩视频精品一区| 国产熟女午夜一区二区三区| 亚洲精品乱久久久久久| 男女高潮啪啪啪动态图| 亚洲午夜理论影院| 少妇 在线观看| 乱人伦中国视频| 亚洲精品久久成人aⅴ小说| 成年人免费黄色播放视频| 久久中文字幕一级| a在线观看视频网站| 国产麻豆69| 亚洲国产中文字幕在线视频| 国产av国产精品国产| netflix在线观看网站| 一个人免费看片子| 天堂中文最新版在线下载| 亚洲国产欧美在线一区| 曰老女人黄片| 久久精品aⅴ一区二区三区四区| 久久亚洲真实| www.精华液| 建设人人有责人人尽责人人享有的| 少妇被粗大的猛进出69影院| 久久精品成人免费网站| 久久人人爽av亚洲精品天堂| 国产一区二区三区视频了| 亚洲熟妇熟女久久| 一区在线观看完整版| 黄色毛片三级朝国网站| av线在线观看网站| 男女之事视频高清在线观看| 大码成人一级视频| 欧美精品啪啪一区二区三区| 黄片小视频在线播放| 后天国语完整版免费观看| 91精品国产国语对白视频| 亚洲成人免费av在线播放| 精品人妻在线不人妻| 麻豆av在线久日| 精品熟女少妇八av免费久了| 啦啦啦中文免费视频观看日本| videos熟女内射| 国产精品av久久久久免费| 18禁裸乳无遮挡动漫免费视频| 不卡av一区二区三区| 久热这里只有精品99| 亚洲精华国产精华精| 9色porny在线观看| 热re99久久精品国产66热6| 精品国产乱码久久久久久男人| 一级片'在线观看视频| 国产精品1区2区在线观看. | 国产精品久久久av美女十八| 久久久久久久久久久久大奶| 国产一区二区 视频在线| 午夜精品国产一区二区电影| 肉色欧美久久久久久久蜜桃| 一级片'在线观看视频| 黄网站色视频无遮挡免费观看| 99国产精品免费福利视频| 美女主播在线视频| 美国免费a级毛片| 日本欧美视频一区| 18在线观看网站| 欧美一级毛片孕妇| 精品福利观看| 久久中文看片网| 制服诱惑二区| 精品卡一卡二卡四卡免费| 国产野战对白在线观看| 18禁美女被吸乳视频| 亚洲国产欧美在线一区| 亚洲欧美精品综合一区二区三区| 亚洲成人国产一区在线观看| 香蕉国产在线看| 亚洲午夜理论影院| 国产精品香港三级国产av潘金莲| 色精品久久人妻99蜜桃| 50天的宝宝边吃奶边哭怎么回事| 亚洲欧美日韩另类电影网站| 亚洲人成77777在线视频| 99精品久久久久人妻精品| 久久 成人 亚洲| 午夜免费成人在线视频| 老鸭窝网址在线观看| 国产精品 欧美亚洲| 12—13女人毛片做爰片一| 精品久久久久久久毛片微露脸| 熟女少妇亚洲综合色aaa.| 亚洲中文字幕日韩| 亚洲精品美女久久av网站| 久久久久国产一级毛片高清牌| 女同久久另类99精品国产91| 欧美日本中文国产一区发布| 桃花免费在线播放| 成年版毛片免费区| 国产亚洲av高清不卡| 亚洲美女黄片视频| 亚洲成av片中文字幕在线观看| 日韩人妻精品一区2区三区| 99热国产这里只有精品6| 亚洲欧洲日产国产| 少妇猛男粗大的猛烈进出视频| 91成人精品电影| 精品欧美一区二区三区在线| 国产成+人综合+亚洲专区| 国产一区有黄有色的免费视频| 国产在线免费精品| 亚洲欧美激情在线| 久久久久网色| 女人高潮潮喷娇喘18禁视频| 精品人妻在线不人妻| 18禁美女被吸乳视频| bbb黄色大片| 日韩大片免费观看网站| 免费一级毛片在线播放高清视频 | 成人18禁高潮啪啪吃奶动态图| 岛国在线观看网站| 涩涩av久久男人的天堂| 亚洲精品国产精品久久久不卡| 欧美日韩成人在线一区二区| 国产精品久久电影中文字幕 | 一本色道久久久久久精品综合| 美女国产高潮福利片在线看| 久久av网站| 桃花免费在线播放| 久热爱精品视频在线9| 男女之事视频高清在线观看| 久久久久久久久免费视频了| 91成人精品电影| 桃红色精品国产亚洲av| 激情在线观看视频在线高清 | 亚洲人成77777在线视频| 国产一区二区在线观看av| 热re99久久精品国产66热6| 亚洲七黄色美女视频| 国产99久久九九免费精品| 国产av一区二区精品久久| 日本一区二区免费在线视频| 日韩中文字幕欧美一区二区| 叶爱在线成人免费视频播放| 国产99久久九九免费精品| 国产主播在线观看一区二区| 一进一出抽搐动态| 天堂俺去俺来也www色官网| 老司机影院毛片| 看免费av毛片| 国产成人系列免费观看| 免费在线观看黄色视频的| 老熟妇乱子伦视频在线观看| 18禁国产床啪视频网站| 国产激情久久老熟女| 黑人巨大精品欧美一区二区蜜桃| 免费观看人在逋| 国产1区2区3区精品| 国产男靠女视频免费网站| 亚洲黑人精品在线| 精品高清国产在线一区| 80岁老熟妇乱子伦牲交| 国产麻豆69| 在线观看免费视频日本深夜| 国产一区二区三区在线臀色熟女 | 午夜福利在线免费观看网站| 免费av中文字幕在线| 777久久人妻少妇嫩草av网站| 中文字幕人妻丝袜一区二区| 久久ye,这里只有精品| 日本五十路高清| 免费观看a级毛片全部| 老司机亚洲免费影院| 久久久水蜜桃国产精品网| 高清av免费在线| 在线亚洲精品国产二区图片欧美| 国产精品 国内视频| 欧美日韩国产mv在线观看视频| 免费少妇av软件| 亚洲av第一区精品v没综合| 怎么达到女性高潮| 日韩欧美一区视频在线观看| 美女主播在线视频| 高清欧美精品videossex| 亚洲av美国av| 国产亚洲欧美精品永久| 91字幕亚洲| 亚洲人成电影观看| 国产成人精品久久二区二区免费| 极品少妇高潮喷水抽搐| 成人黄色视频免费在线看| 老熟妇乱子伦视频在线观看| 午夜福利免费观看在线| 久久久久久亚洲精品国产蜜桃av| 国产精品98久久久久久宅男小说| 亚洲精品一二三| 一本—道久久a久久精品蜜桃钙片| 黑人巨大精品欧美一区二区mp4| 久久中文字幕人妻熟女| 黄色a级毛片大全视频| 波多野结衣av一区二区av| 制服诱惑二区| 黄色视频在线播放观看不卡| 精品国产乱码久久久久久男人| 免费在线观看日本一区| 欧美在线黄色| 久久午夜亚洲精品久久| 成人永久免费在线观看视频 | 国产99久久九九免费精品| 在线观看免费视频网站a站| 精品一区二区三区四区五区乱码| 日本黄色视频三级网站网址 | 丝袜人妻中文字幕| av免费在线观看网站| 天天添夜夜摸| 9191精品国产免费久久| 人妻一区二区av| 亚洲精品国产一区二区精华液| 日韩制服丝袜自拍偷拍| 久久午夜亚洲精品久久| 黄色成人免费大全| 欧美激情高清一区二区三区| 国产亚洲午夜精品一区二区久久| 老熟女久久久| 欧美乱妇无乱码| 色婷婷久久久亚洲欧美| 国产男女超爽视频在线观看| 天堂8中文在线网| 一区二区日韩欧美中文字幕| 十分钟在线观看高清视频www| 精品国产亚洲在线| 国产精品久久久久久人妻精品电影 | 嫁个100分男人电影在线观看| 九色亚洲精品在线播放| 免费观看人在逋| 我要看黄色一级片免费的| 国产精品.久久久| 欧美久久黑人一区二区| h视频一区二区三区| 亚洲国产av影院在线观看| 不卡一级毛片| 在线亚洲精品国产二区图片欧美| 波多野结衣一区麻豆| 水蜜桃什么品种好| cao死你这个sao货| 亚洲一区中文字幕在线| 老司机影院毛片| 亚洲欧美日韩另类电影网站| 1024视频免费在线观看| 国产精品99久久99久久久不卡| 天天操日日干夜夜撸| 国产麻豆69| 老熟女久久久| 99热国产这里只有精品6| www.自偷自拍.com| 国产熟女午夜一区二区三区| 热re99久久精品国产66热6| 国产黄频视频在线观看| 国产日韩欧美视频二区| 亚洲国产欧美一区二区综合| 国产精品电影一区二区三区 | 免费看a级黄色片| 国产黄色免费在线视频| 精品少妇一区二区三区视频日本电影| 天天操日日干夜夜撸| 又黄又粗又硬又大视频| videosex国产| 欧美日韩国产mv在线观看视频| 国产精品一区二区在线观看99| 欧美另类亚洲清纯唯美| 精品国产一区二区三区四区第35| 一本—道久久a久久精品蜜桃钙片| 黑人巨大精品欧美一区二区蜜桃| 久久香蕉激情| 久久久久久免费高清国产稀缺| 欧美精品人与动牲交sv欧美| 欧美精品啪啪一区二区三区| 性色av乱码一区二区三区2| 国产免费视频播放在线视频| 亚洲男人天堂网一区| 夫妻午夜视频| 国产精品国产av在线观看| 欧美另类亚洲清纯唯美| 久久狼人影院| 中文字幕色久视频| 午夜福利视频在线观看免费| 最新在线观看一区二区三区| 国产深夜福利视频在线观看| 少妇的丰满在线观看| 涩涩av久久男人的天堂| 国产成人免费观看mmmm| 十八禁高潮呻吟视频| 18禁裸乳无遮挡动漫免费视频| 亚洲专区字幕在线| videosex国产| 亚洲成人手机| kizo精华| 女警被强在线播放| 纯流量卡能插随身wifi吗| 大香蕉久久成人网| 麻豆乱淫一区二区| 欧美亚洲 丝袜 人妻 在线| 一本久久精品| 老鸭窝网址在线观看| 一本—道久久a久久精品蜜桃钙片| 少妇粗大呻吟视频| 亚洲成a人片在线一区二区| 999久久久精品免费观看国产| 亚洲七黄色美女视频| 麻豆成人av在线观看| 母亲3免费完整高清在线观看| 国产精品久久久久久精品电影小说| 中亚洲国语对白在线视频| 日本黄色视频三级网站网址 | 69精品国产乱码久久久| 国产高清视频在线播放一区| 性少妇av在线| 人人妻,人人澡人人爽秒播| 久久久精品国产亚洲av高清涩受| 日本五十路高清| 99久久国产精品久久久| 国产亚洲av高清不卡| 亚洲九九香蕉| 大片免费播放器 马上看| 日韩三级视频一区二区三区| 亚洲精品久久午夜乱码| 亚洲九九香蕉| 国产精品免费视频内射| 久久性视频一级片| 日本五十路高清| 免费久久久久久久精品成人欧美视频| 深夜精品福利| 99久久99久久久精品蜜桃| 男女下面插进去视频免费观看| 一级黄色大片毛片| 国产精品美女特级片免费视频播放器 | 久久久国产一区二区| av在线播放免费不卡| 亚洲欧洲日产国产| 亚洲视频免费观看视频| 多毛熟女@视频| 在线天堂中文资源库| 日日爽夜夜爽网站| 叶爱在线成人免费视频播放| 亚洲精品成人av观看孕妇| 日韩有码中文字幕| 亚洲国产看品久久| 人人妻人人添人人爽欧美一区卜| 国产一区二区三区在线臀色熟女 | 后天国语完整版免费观看| 中文亚洲av片在线观看爽 | 少妇精品久久久久久久| 成人三级做爰电影| 日韩 欧美 亚洲 中文字幕| 亚洲国产中文字幕在线视频| 国产欧美日韩一区二区三| 在线观看免费午夜福利视频| 久久人人97超碰香蕉20202| 最近最新免费中文字幕在线| 国产精品亚洲一级av第二区| 午夜老司机福利片| 国产淫语在线视频| 一级毛片电影观看| 欧美黄色片欧美黄色片| 国精品久久久久久国模美| 国产三级黄色录像| 久久影院123| 国产主播在线观看一区二区| 国产av国产精品国产| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲成a人片在线一区二区| 亚洲成人免费av在线播放| 亚洲第一欧美日韩一区二区三区 | 亚洲性夜色夜夜综合| 成人永久免费在线观看视频 | 精品第一国产精品| 叶爱在线成人免费视频播放| av免费在线观看网站| a在线观看视频网站| 亚洲精品中文字幕在线视频| 国产国语露脸激情在线看| 涩涩av久久男人的天堂| 91麻豆av在线| 日韩三级视频一区二区三区| 午夜福利影视在线免费观看| 美女扒开内裤让男人捅视频| 国产av一区二区精品久久| 久久ye,这里只有精品| 一二三四社区在线视频社区8| 丁香六月欧美| 久久中文字幕人妻熟女| 水蜜桃什么品种好| 国产成人精品无人区| 女人被躁到高潮嗷嗷叫费观| 亚洲第一欧美日韩一区二区三区 | 女性生殖器流出的白浆| 50天的宝宝边吃奶边哭怎么回事| 午夜福利乱码中文字幕| 国产男女内射视频| 久久精品熟女亚洲av麻豆精品| 亚洲国产中文字幕在线视频| 久久精品熟女亚洲av麻豆精品| 在线av久久热| 亚洲少妇的诱惑av| 免费观看a级毛片全部| 国产1区2区3区精品| 日韩成人在线观看一区二区三区| 这个男人来自地球电影免费观看| av电影中文网址| 极品教师在线免费播放| 免费日韩欧美在线观看| 亚洲人成电影观看| 国产成人欧美| 欧美中文综合在线视频| 91成年电影在线观看| 女人爽到高潮嗷嗷叫在线视频| 18禁美女被吸乳视频| 成人永久免费在线观看视频 | 美女扒开内裤让男人捅视频| 精品人妻熟女毛片av久久网站| 久久精品国产综合久久久| 老鸭窝网址在线观看| 亚洲熟女毛片儿| 国产成人欧美在线观看 | 久久狼人影院| 丰满迷人的少妇在线观看| 国产三级黄色录像| 激情在线观看视频在线高清 | 欧美日本中文国产一区发布| 热re99久久国产66热| 91av网站免费观看| 又紧又爽又黄一区二区| 交换朋友夫妻互换小说| 丰满饥渴人妻一区二区三| 两性夫妻黄色片| 少妇精品久久久久久久| 国产高清国产精品国产三级| 国产亚洲欧美在线一区二区| 色婷婷久久久亚洲欧美| 男女边摸边吃奶| 91字幕亚洲| 精品午夜福利视频在线观看一区 | 久久久精品国产亚洲av高清涩受| 男女午夜视频在线观看| 国产激情久久老熟女| 久久久久精品人妻al黑| 男男h啪啪无遮挡| 亚洲精品中文字幕一二三四区 | 亚洲av欧美aⅴ国产| 亚洲专区国产一区二区| 在线观看免费日韩欧美大片| 国产深夜福利视频在线观看| 欧美另类亚洲清纯唯美| 99re在线观看精品视频| 制服人妻中文乱码| 日本a在线网址| 成人特级黄色片久久久久久久 | 久久热在线av| 亚洲av电影在线进入| 在线十欧美十亚洲十日本专区| 欧美精品人与动牲交sv欧美| av线在线观看网站| 夫妻午夜视频| 19禁男女啪啪无遮挡网站| 色婷婷久久久亚洲欧美| 51午夜福利影视在线观看| 一边摸一边做爽爽视频免费| 欧美一级毛片孕妇| 亚洲男人天堂网一区| 9191精品国产免费久久|