• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On-line Measurement for Ohmic Resistance in Direct Methanol Fuel Cell by Current Interruption Method*

    2010-02-14 08:25:56LIUMin劉敏WANGJinhai王金海WANGShubo王樹(shù)博XIEXiaofeng謝曉峰ZHOUTao周濤andMathur
    關(guān)鍵詞:劉敏周濤金海

    LIU Min (劉敏), WANG Jinhai (王金海), WANG Shubo (王樹(shù)博), XIE Xiaofeng (謝曉峰),**,ZHOU Tao (周濤)** and V. K. Mathur

    1 College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China

    2 Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China

    3 Department of Chemical Engineering, University of New Hampshire, NH 03824, USA

    1 INTRODUCTION

    Direct methanol fuel cell (DMFC) is receiving more and more attention due to its advantages of high power density, convenient fuel storage and mild operating conditions. It is becoming an ideal candidate for portable power source such as in personal digital assistant devices, cellular phones and notebook computers [1-3].

    In DMFC, the ohmic resistance is a key factor affecting the cell performance. The three sources of ohmic resistance are: (a) resistance to ion migration in the electrolyte, (b) resistance to electron transport in the cell components (electrodes, gas diffusion layers,and flow field/current collectors), and (c) contact resistances [4]. Among them, the resistance to ion migration in the electrolyte,i.e. the membrane resistance,is the main component of ohmic resistance. Therefore,to some extent the ohmic resistance represents the performance of a proton exchange membrane. Furthermore, the proton exchange membrane is the heart of a fuel cell and the cell performance is greatly affected by the membrane. The study on the ohmic resistance under different operating conditions is of great importance for improving the cell performance and accelerating its commercialization.

    Electrochemical impedance spectroscopy (EIS)has been widely used in fuel cell impedance analysis.An alternating current (AC) perturbation over a broad range of frequencies is imposed to the cell and the resulting variations in the cell voltage and current are monitored. With the equivalent circuit modeling, the parameters including ohmic resistance can be estimated[5-7]. However, the testing time is long, the data analysis is complicated, and errors are produced in the use of equivalent circuits.

    As a time-domain technique, current interruption method can obtain accurate data, which includes the current and voltage before and after each interruption.This method is widely used to evaluate the ohmic resistance of electrochemical systems [8, 9]. In a H2/O2proton exchange membrane fuel cell (PEMFC), the current interruption method has been used [8, 10, 11].However, the study on current interruption method used in DMFC is rather limited. The basic principle of the current interruption method is shown in Fig. 1.The current is interrupted and the voltage transient is observed. The voltage drop caused by ohmic resistance vanishes almost immediately, while the relaxation of electrochemical over-potentials takes place at a considerably slower rate. Therefore, the ohmic loss ΔVcan be measured from the differences between the voltages before and after the current interruption[11, 12]. The ohmic resistance of the cell is the quotient of the ohmic loss ΔVand the cell current densityijust prior to the interruption,RΩ=ΔV/i.

    Figure 1 Idealized voltage waveform during current interruption event [5]

    Figure 2 Detailed structure for direct methanol fuel cell

    In this paper, the current interruption method is employed to investigate the ohmic resistance in a DMFC at different temperatures and current densities[13, 14]. The EIS is also used to measure the ohmic resistance [6, 15, 16] for demonstrating the reliability and effectiveness of current interruption method.

    2 EXPERIMENTAL

    2.1 Preparation of membrane electrode assembly and single cell

    The membrane electrode assembly (MEA) consists of a polymer membrane, cathode and anode catalyst layers and two gas diffusion layers (GDLs). Commercial Nafion 115 (DuPont) was used as the polymer membrane. By a catalyst coated membrane (CCM)technique, the cathode and anode catalysts were coated directly on either side of the membrane. The cathode and anode catalysts were 60% (mass) Pt/C (Johnson Matthey) and PtRu (1∶1 atomic ratio, Johnson Matthey),respectively, and the catalyst loading was 5 mg?cm-2on each side [17]. A hydrophobic carbon paper coated with a mixture of PTFE and carbon powder was used as GDLs. The active area of MEA was 100 cm2. The MEA was sandwiched between graphite polar plates, and then installed into a pair of copper current collectors. The detailed structure for DMFC is shown in Fig. 2.

    2.2 Current interruption measurement

    A KIKUSUI fuel cell test station equipped with KFM2150 FC impedance meter was used to carry out tests. The instruments parameters were set as follows:pulse width: 0.1 ms, pulse depth: 100%, and transition time: 0.01 ms.

    During the tests, methanol solution (1 mol·L-1,30 ml?min-1) was supplied to the anode channel while air (2 L?min-1) was fed to the cathode channel at room temperature.

    2.3 Electrochemical impedance spectrum (EIS)measurement

    The instrument for EIS measurement was the same as which used for current interruption measurement. Equivalent circuit modelL1R1[QR2(L2R3)], shown in Fig. 3, was used to simulate all parts of the cell [3].The tests on the full cell were conducted at constant current density (100 mA?cm-2) with frequency ranging from 20 kHz to 10 mHz. The AC current amplitude was 5% of the DC current. The anode was supplied with methanol solution (1 mol·L-1, 30 ml?min-1) while air (2 L?min-1) was fed to the cathode channel at room temperature.

    Figure 3 Equivalent circuit L1R1[QR2(L2R3)] as the model for simulating the impedance spectrum of DMFC

    3 RESULTS AND DISCUSSION

    3.1 Current interruption

    Figure 1 shows an idealized voltage waveform during current interruption event. The actual voltage waveform is different. Fig. 4 presents the current and voltage waveform during current interruption event under the cell conditions of temperature 40 °C and current 14 A. After current interruption, a voltage overshoot takes place, and then, an oscillation follows.The same effects are also observed in reverse when the current is switched on again. These effects result from the inductance of the cell.

    Figure 4 Current and voltage waveform during current interruption event (40 °C, current 14 A)

    Because of the inductance effects, a delay period is needed before the ohmic voltage drop (ΔV). The delay period determines the ohmic resistance, so the choice of delay period is critical. If the delay time is too short, the ohmic rising voltageV2(Fig. 4) is not stable due to the influence of overshoot and oscillations; if the delay time is too long, the ohmic rising voltage is higher than the true value, as some relaxation of the electrochemical over-potentials has already taken place. Therefore, the rule to choose a proper delay period is: the delay period should be as short as possible to minimize the voltage change associated with discharging of the double-layer capacitance of the electrodes but long enough for the post-interrupt voltage measurement to occur after the inductive ringing decays completely [8]. In this measurement,according to the cell performance and the accuracy of the instrument, we select 40 μs for the delay period.As shown in Fig. 3, after the current interruption for 40 μs, the inductive ringing disappears, and the voltage appears like a horizontal line. The ohmic rising voltageV2(0.4972 V) is obtained by averaging the horizontal voltages. The ohmic voltage drop ΔV(0.1624 V) is the ohmic rising voltageV2(0.4972 V)minus voltageV1before the current interruption(0.3348 V). The ohmic resistance is obtained by formulaRohm=ΔV/i.

    The cell ohmic resistance is affected by operating temperature and current density. Therefore, we measured the ohmic resistance at different temperatures (25,40, 60, and 80 °C) and current densities (30, 60, 100,and 140 mA?cm-2). The test results and errors are listed in Table 1. The formula used for estimating errors in current interruption is ±(0.3%+0.2%/ΔV) [15].The ohmic resistancesvs. current density at various temperatures are also presented in Fig. 5.

    Figure 5 The ohmic resistance measured by current interruption method■ 25 °C; ● 40 °C; ▲ 60 °C; ▼ 80 °C

    At a given current density, the ohmic resistance decreases initially when temperature increases. When the operating temperature increases further, the conduction rate of proton in electrolyte membrane is accelerated, increasing the electrical conductivity of membrane and reducing the internal resistance. The conduction rate of electrons in electrodes, current collectors and other components of DMFC are also increased. As a result, the total ohmic resistance decreases.

    At a given temperature, when the current densityincreases, the cell ohmic resistance decreases first and then increases. However, in H2/O2proton exchange membrane fuel cell (PEMFC), the ohmic resistance increases steadily with increasing current density [7, 18].This is mainly due to the differences in anode fuels. In DMFC, the anode is supplied with aqueous methanol solution so that the membrane on the anode-side of the cell is never dehydrated. At low current density,enough water is produced at the cathode side of the membrane for hydration. The increase in membrane conductivity leads to a decrease in cell ohmic resistance. Above 60 mA?cm-2, higher current density generates more water at the cell cathode, increasing the contact resistances, so that the ohmic resistance increases. At large current density the cell cathode may even be flooded [19] and CO2bubbles may aggregate on the cell anode [20, 21].

    Table 1 Ohmic resistance measured at different temperatures and current densities with current interruption method

    3.2 Electrochemical impedance spectroscopy (EIS)

    In order to obtain accurate ohmic resistanceRΩ,equivalent circuit modelingL1R1[QR2(L2R3)] (Fig. 3)is adopted to simulate all parts of the cell [4, 22]. Fig. 6 presents the results of EIS test and equivalent circuit simulation of DMFC at 40 °C and current 14 A. The measured and simulated data coincide very well. The parameters of equivalent circuit and simulation errors are list in Table 2. All the simulation errors are within 10%, showing that the equivalent circuit model is appropriate for the cell. The ohmic resistance is given by the parameterR1in the equivalent circuit model.

    Figure 6 Modeling of faradaic impedance○ Z (Msd); ▲ Z (Calc)

    Figure 7 presents the cell ohmic resistances at different temperatures (25, 40, 60, and 80 °C) and currentdensities (30, 60, 100, and 140 mA?cm-2) measured by EIS. Table 3 shows the data including estimated errors by the formula ±(3.5%+fitting error) [8]. At a given current density, the ohmic resistance decreases when the temperature increases. At a given temperature,when the current density increases, the cell ohmic resistance decreases to 6 A and then increases with current. The EIS measurements show the same behavior as seen from the current interruption data.

    Table 2 Parameters and errors of the equivalent circuit

    Figure 7 Ohmic resistance measured by EIS■ 25 °C; ● 40 °C; ▲ 60 °C; ▼ 80 °C

    3.3 Comparison of data with current interruption and EIS

    As shown in Tables 1 and 3, ohmic resistances measured by both methods are in the order of 1 Ω·cm2.The errors are mainly from the instrument. The errors in the ohmic resistance measured by EIS are similar,about 4%. As seen from Table 1, the errors in the ohmic resistance at low current density are large, up to 6.379%; as current density increases, the error decreasesto a minimum of 1.485%. The current interruption method works better at higher current densities.

    Table 3 Ohmic resistance measured at different temperatures and densities with EIS method

    The formula (RiR-REIS)/REIS×100% is used to estimate the difference between the ohmic resistances obtained by current interruption and EIS techniques.The results are presented in Fig. 8. In most cases,RiR>REIS, but the differences between them are small,in the range from -0.848% to 5.337%.

    Figure 8 Normalized difference in DMFC ohmic resistance by current interruption and EIS methods■ 25 °C; ● 40 °C; ▲ 60 °C; ▼ 80 °C

    4 CONCLUSIONS

    The current interruption method was used to study the ohmic resistance of a DMFC. It was found that the value ofRΩdecreased with increasing temperature, andRΩdecreased and then increased with the increasing of current density. The errors inRΩmeasurements using the current interruption method were lower than those measured by the EIS technique at higher current densities. The advantages of current interruption method are short of testing time and ease of obtaining a single value without the use of an elaborate equivalent circuitry.

    1 Xie, X.F., Fan, X.H., Fuel Cell Technology, Chemical Industry Press,Beijing, 1-5 (2004). (in Chinese).

    2 Yi, B.L., Fuel Cells-Principle, Technology and Application, Chemical Industry Press, Beijing, 1-8 (2003). (in Chinese)

    3 Rashidi, R., Dincer, I., Naterer, G.F., Berg, P., “Performance evaluation of direct methanol fuel cells for portable applications”,J.Power Sources, 187, 509-516 (2009).

    4 Li, J.C., Xie, X.F., Guo, J.W., “Research of AC impedance of dynamic behavior of direct methanol fuel cell”,Chem.J.Chinese Universities, 29 (3), 564-568 (2008). (in Chinese)

    5 Carmelo, B., Antonino, M., Giuseppe, T., “PEM fuel cell testing by electrochemical impedance spectroscopy”,Electric Power Systems Research, 79, 17-26 (2009).

    6 Min, K.J., Jung, Y.W., Kwang, S., “Performance degradation study of a direct methanol fuel cell by electrochemical impedance spectroscopy”,Electrochimica Acta, 53, 447-452 (2007).

    7 Lai, C.M., Lin, J.C., Hsueh, K.L., “On the electrochemical impedance spectroscopy of direct methanol fuel cell”,International Journal of Hydrogen Energy, 32, 4381-4388 (2007).

    8 Cooper, K.R., Smith, M., “Electrical test methods for on-line fuel cell ohmic resistance measurement”,J.Power Sources, 160,1088-1095 (2006).

    9 Buchi, F.N., Marek, A., Scherer, G.G., “In situmembrane resistance measurements in polymer electrolyte fuel cells by fast auxiliary current pulses”,J.Electrochem.Soc., 142 (6), 1895-1901 (1995).

    10 Abe, T., Shima, H., Watanabe, K., “Study of PEFCs by AC impedance, current interrupt, and dew point measurements (I) Effect of humidity in oxygen gas”,J.Electrochem.Soc., 151 (1), A101-A105(2004).

    11 Mennola, T., Mikkola, M., Noponen, M., Hottinen, T., Lund, P.,“Measurement of ohmic voltage losses in individual cells of a PEMFC stack”,J.PowerSources, 112, 261-272 (2002).

    12 James, L., Fuel Cell Systems Explained, Science Press, Beijing,50-53 (2006). (in Chinese)

    13 Renganathan, S., Guo, Q., Sethuraman, V.A., “Polymer electrolyte membrane resistance model”,J.Power Sources, 160, 386-397(2006).

    14 Das, S.K., Berry, K.J., “Two-cell theory to measure membrane resistance based on proton flow: Theory development and experimental validation”,J.Power Sources, 173 (2), 909-916 (2007).

    15 Mueller, J.T., Urban, P.M., “Characterization of direct methanol fuel cells by ac impedance spectroscopy”,J.PowerSources, 75, 139-143(1998).

    16 Sugimoto, W., Aoyama, K., Kawaguchi, T., Murakami, Y., Takasu, Y.,“Kinetics of CH3OH oxidation on PtRu/C studied by impedance and CO stripping voltammetry”,J.Electroanalytical Chemistry, 576,215-221 (2005).

    17 Liu, Y., Xie, X.F., Shang, Y.M., “Power characteristics and fluid transfer in 40 W direct methanol fuel cell stack”,J.PowerSources,164, 322-327 (2007).

    18 Zhong, Z.Z., Chen, J.X., Peng, R.G., “Design and performance analysis of micro proton exchange membrane fuel cells”,Chin.J.Chem.Eng., 17 (2) 298-303 (2009).

    19 Jung, G.B., Su, A., Tu, C.H., Lin, Y.T., Weng, F.B., Chan, S.H., “Effects of cathode flow fields on direct methanol fuel cell-simulation study”,J.Power Sources, 171, 212-217 (2007).

    20 Liao, Q., Zhu, X., Zheng, X.Y., Ding, Y.D., “Visualization study on the dynamics of CO2bubbles in anode channels and performance of a DMFC”,J.Power Sources, 171, 644-651 (2007).

    21 Yang, H., Zhao, T.S., Ye, Q., “In situvisualization study of CO2gas bubble behavior in DMFC anode flow fields”,J.Power Sources, 139,79-90 (2005).

    22 Jin, B.D., Guo, J.W., Xie, X.F., “Effect of operating condition on cathodic EIS parameters in a DMFC”,Chem.J.Chinese Universities,29 (11), 2258-2261 (2008). (in Chinese)

    猜你喜歡
    劉敏周濤金海
    鄭金海:金聲玉振傳四海
    青島金海種苗有限公司
    故紙情懷
    血型也會(huì)改變
    抗癌之窗(2021年3期)2021-02-12 08:59:08
    五月禮贊
    金海
    《三角形全等的判定》測(cè)試題
    GENERAL SPLIT FEASIBILITY PROBLEMS FOR TWO FAMILIES OF NONEXPANSIVE MAPPINGS IN HILBERT SPACES?
    都是愛(ài)
    詩(shī)選刊(2015年4期)2015-10-26 08:45:21
    周濤小小說(shuō)欣賞
    亚洲精品中文字幕在线视频| 亚洲精品第二区| 国产片内射在线| 丰满人妻熟妇乱又伦精品不卡| 又大又黄又爽视频免费| 满18在线观看网站| www.av在线官网国产| 亚洲精品国产区一区二| 又黄又粗又硬又大视频| 久久国产亚洲av麻豆专区| 一区二区三区四区激情视频| 交换朋友夫妻互换小说| 巨乳人妻的诱惑在线观看| 夜夜骑夜夜射夜夜干| 黄色视频不卡| 亚洲欧美一区二区三区国产| 亚洲欧美日韩高清在线视频 | 亚洲激情五月婷婷啪啪| 免费高清在线观看视频在线观看| 成年人黄色毛片网站| 日韩伦理黄色片| 亚洲国产av新网站| 日韩av免费高清视频| 亚洲av成人精品一二三区| 国产极品粉嫩免费观看在线| 又大又爽又粗| 日韩av不卡免费在线播放| 看十八女毛片水多多多| 久久久久久久国产电影| 亚洲精品中文字幕在线视频| 又紧又爽又黄一区二区| 水蜜桃什么品种好| 不卡av一区二区三区| 久热爱精品视频在线9| 精品少妇一区二区三区视频日本电影| 老汉色∧v一级毛片| 超碰97精品在线观看| 精品少妇一区二区三区视频日本电影| 午夜激情av网站| 一级a爱视频在线免费观看| 青青草视频在线视频观看| www.熟女人妻精品国产| 亚洲av男天堂| 欧美黄色淫秽网站| 色婷婷av一区二区三区视频| 满18在线观看网站| 国产精品一区二区在线观看99| 国产欧美亚洲国产| 久久天堂一区二区三区四区| 国产免费又黄又爽又色| 日韩制服丝袜自拍偷拍| 亚洲精品中文字幕在线视频| 欧美成人午夜精品| 亚洲欧美精品综合一区二区三区| 亚洲国产欧美网| 搡老乐熟女国产| 免费av中文字幕在线| www.999成人在线观看| 精品视频人人做人人爽| 亚洲精品日本国产第一区| 菩萨蛮人人尽说江南好唐韦庄| 一本一本久久a久久精品综合妖精| 成人午夜精彩视频在线观看| 不卡av一区二区三区| 99国产精品99久久久久| 国产片内射在线| 国产精品一区二区在线不卡| 国产亚洲午夜精品一区二区久久| 操美女的视频在线观看| 久久久精品免费免费高清| 亚洲精品国产av蜜桃| 久久精品国产a三级三级三级| 中文字幕亚洲精品专区| 中文字幕亚洲精品专区| 人人妻,人人澡人人爽秒播 | 老汉色av国产亚洲站长工具| 国产不卡av网站在线观看| 精品人妻熟女毛片av久久网站| 亚洲九九香蕉| 久久性视频一级片| 日韩大片免费观看网站| 国产视频首页在线观看| 久久 成人 亚洲| 啦啦啦视频在线资源免费观看| 精品一区在线观看国产| 久久久久久久久免费视频了| 中文字幕av电影在线播放| 美国免费a级毛片| 性色av一级| 少妇 在线观看| 狠狠精品人妻久久久久久综合| 女人被躁到高潮嗷嗷叫费观| 美女视频免费永久观看网站| 中文乱码字字幕精品一区二区三区| 一级毛片我不卡| 日本av手机在线免费观看| 欧美另类一区| 熟女少妇亚洲综合色aaa.| 大片电影免费在线观看免费| www.精华液| 天堂8中文在线网| 国产精品人妻久久久影院| 免费在线观看黄色视频的| 成人三级做爰电影| 91九色精品人成在线观看| 日韩 亚洲 欧美在线| 亚洲国产欧美网| 丁香六月欧美| 成人18禁高潮啪啪吃奶动态图| 欧美日韩亚洲国产一区二区在线观看 | 国产一区二区三区av在线| 国产精品 国内视频| 在线看a的网站| 99国产综合亚洲精品| 亚洲av日韩精品久久久久久密 | 男女边摸边吃奶| 美女大奶头黄色视频| 99国产精品一区二区蜜桃av | 高清av免费在线| 久久久精品94久久精品| 中国国产av一级| 校园人妻丝袜中文字幕| 亚洲中文日韩欧美视频| 老司机深夜福利视频在线观看 | 久久久久久久精品精品| 一级毛片 在线播放| 成人三级做爰电影| 在线观看国产h片| 日日夜夜操网爽| 国语对白做爰xxxⅹ性视频网站| 女性被躁到高潮视频| 老司机靠b影院| 中文字幕亚洲精品专区| 国产精品国产三级国产专区5o| 少妇 在线观看| 不卡av一区二区三区| 欧美国产精品va在线观看不卡| 超碰成人久久| 手机成人av网站| 在现免费观看毛片| 国产精品免费视频内射| 蜜桃国产av成人99| www.自偷自拍.com| 欧美精品高潮呻吟av久久| 久热这里只有精品99| 精品少妇黑人巨大在线播放| 国产一区二区激情短视频 | 成人免费观看视频高清| 亚洲少妇的诱惑av| 男女午夜视频在线观看| 97人妻天天添夜夜摸| xxxhd国产人妻xxx| 9色porny在线观看| 一级毛片 在线播放| 夫妻午夜视频| 国产高清videossex| 国产精品一区二区免费欧美 | 欧美日韩视频高清一区二区三区二| 看免费av毛片| 中文字幕精品免费在线观看视频| 亚洲精品成人av观看孕妇| 久久久久国产精品人妻一区二区| 十八禁高潮呻吟视频| 国产精品99久久99久久久不卡| 精品一区二区三区av网在线观看 | 19禁男女啪啪无遮挡网站| 成人黄色视频免费在线看| 日本av手机在线免费观看| 欧美成人午夜精品| h视频一区二区三区| 久久国产精品大桥未久av| 别揉我奶头~嗯~啊~动态视频 | 老司机深夜福利视频在线观看 | 午夜福利免费观看在线| 少妇人妻久久综合中文| 91精品伊人久久大香线蕉| 中文字幕亚洲精品专区| 亚洲av电影在线进入| 老司机午夜十八禁免费视频| 精品少妇内射三级| 黄色 视频免费看| 国产欧美日韩精品亚洲av| 国产精品国产三级专区第一集| 日韩大片免费观看网站| 久久精品国产亚洲av涩爱| 国产精品九九99| 国产免费福利视频在线观看| bbb黄色大片| 亚洲精品国产色婷婷电影| 国产在视频线精品| 麻豆乱淫一区二区| 天天影视国产精品| 国产成人精品在线电影| 精品国产乱码久久久久久小说| 国产男人的电影天堂91| 日本av手机在线免费观看| 久热爱精品视频在线9| 国产日韩欧美亚洲二区| 一区福利在线观看| 中文字幕另类日韩欧美亚洲嫩草| 国产精品一国产av| 久久久久久亚洲精品国产蜜桃av| 日韩大片免费观看网站| svipshipincom国产片| 中国国产av一级| 久久青草综合色| 亚洲欧美一区二区三区久久| 日日爽夜夜爽网站| 色婷婷久久久亚洲欧美| 亚洲国产欧美日韩在线播放| 亚洲精品成人av观看孕妇| 亚洲专区国产一区二区| 老司机靠b影院| 亚洲欧美色中文字幕在线| 国产成人系列免费观看| 午夜免费男女啪啪视频观看| 看免费成人av毛片| 最近最新中文字幕大全免费视频 | 亚洲精品乱久久久久久| 91麻豆av在线| 中国国产av一级| 男男h啪啪无遮挡| 国产精品久久久久成人av| 97精品久久久久久久久久精品| 天堂俺去俺来也www色官网| 精品亚洲成国产av| 老汉色av国产亚洲站长工具| 大陆偷拍与自拍| 18在线观看网站| 久久久久久久久久久久大奶| 在线观看免费日韩欧美大片| 女人精品久久久久毛片| 自拍欧美九色日韩亚洲蝌蚪91| 久久综合国产亚洲精品| 一级毛片我不卡| 日韩一区二区三区影片| 亚洲少妇的诱惑av| 国产精品国产av在线观看| 熟女av电影| 大陆偷拍与自拍| 在线看a的网站| 18在线观看网站| 18禁黄网站禁片午夜丰满| 亚洲综合色网址| 黄色怎么调成土黄色| 一级毛片我不卡| 秋霞在线观看毛片| videos熟女内射| 欧美激情 高清一区二区三区| 久久人妻福利社区极品人妻图片 | 校园人妻丝袜中文字幕| 亚洲欧美中文字幕日韩二区| 国产一级毛片在线| 美女中出高潮动态图| 十八禁网站网址无遮挡| 精品人妻熟女毛片av久久网站| 国产免费又黄又爽又色| 国产日韩欧美在线精品| 两个人免费观看高清视频| 男人添女人高潮全过程视频| 少妇精品久久久久久久| av在线老鸭窝| 国产一区二区三区综合在线观看| 国产av精品麻豆| 亚洲黑人精品在线| 日本一区二区免费在线视频| 一级毛片电影观看| 日韩伦理黄色片| svipshipincom国产片| 欧美国产精品va在线观看不卡| 亚洲成人免费电影在线观看 | 最黄视频免费看| 国产一区二区 视频在线| 五月天丁香电影| 丝袜在线中文字幕| 欧美黑人精品巨大| 性高湖久久久久久久久免费观看| 90打野战视频偷拍视频| 国产精品成人在线| 可以免费在线观看a视频的电影网站| av在线播放精品| 国产精品一区二区精品视频观看| 涩涩av久久男人的天堂| 黄色一级大片看看| 免费高清在线观看视频在线观看| 欧美中文综合在线视频| 最近手机中文字幕大全| 老汉色∧v一级毛片| 亚洲国产精品999| 伊人亚洲综合成人网| e午夜精品久久久久久久| 亚洲 欧美一区二区三区| 啦啦啦啦在线视频资源| 精品国产一区二区三区四区第35| www.av在线官网国产| 中文欧美无线码| 大片电影免费在线观看免费| 日日爽夜夜爽网站| 亚洲熟女毛片儿| 成年动漫av网址| 成人免费观看视频高清| 十八禁人妻一区二区| 黄色片一级片一级黄色片| 精品少妇内射三级| 99久久综合免费| 亚洲伊人久久精品综合| 天天添夜夜摸| 大话2 男鬼变身卡| 人人妻人人澡人人看| 麻豆国产av国片精品| 一级毛片电影观看| 成人18禁高潮啪啪吃奶动态图| 午夜福利视频精品| 亚洲成人手机| 国产黄色视频一区二区在线观看| 精品亚洲成a人片在线观看| av又黄又爽大尺度在线免费看| 麻豆国产av国片精品| 免费不卡黄色视频| 国产97色在线日韩免费| 欧美乱码精品一区二区三区| 一二三四在线观看免费中文在| 久久精品aⅴ一区二区三区四区| 国产欧美亚洲国产| 国产黄频视频在线观看| bbb黄色大片| 国产精品人妻久久久影院| 激情五月婷婷亚洲| 男人爽女人下面视频在线观看| 狠狠精品人妻久久久久久综合| 亚洲av成人不卡在线观看播放网 | av福利片在线| 免费不卡黄色视频| 搡老乐熟女国产| 高清欧美精品videossex| 精品久久久精品久久久| 丝袜脚勾引网站| 久久人人97超碰香蕉20202| 午夜免费观看性视频| 欧美老熟妇乱子伦牲交| 国产精品麻豆人妻色哟哟久久| 老熟女久久久| 天天影视国产精品| 91成人精品电影| 午夜精品国产一区二区电影| 无限看片的www在线观看| av电影中文网址| 久久久久网色| 激情视频va一区二区三区| 在线亚洲精品国产二区图片欧美| 在线观看一区二区三区激情| 精品人妻在线不人妻| 久久狼人影院| 看免费成人av毛片| 99国产精品一区二区蜜桃av | 亚洲国产精品一区二区三区在线| 欧美日韩综合久久久久久| 国产女主播在线喷水免费视频网站| 精品国产乱码久久久久久小说| 色综合欧美亚洲国产小说| 一本综合久久免费| 天堂俺去俺来也www色官网| 欧美亚洲日本最大视频资源| 在线观看人妻少妇| 国产深夜福利视频在线观看| 在线观看一区二区三区激情| 国产精品麻豆人妻色哟哟久久| 搡老岳熟女国产| 国产野战对白在线观看| 少妇精品久久久久久久| 亚洲精品中文字幕在线视频| 久久人人97超碰香蕉20202| h视频一区二区三区| 欧美人与善性xxx| 丝袜美腿诱惑在线| 男女免费视频国产| 日韩av不卡免费在线播放| 亚洲美女黄色视频免费看| e午夜精品久久久久久久| 亚洲欧洲日产国产| 久久精品久久精品一区二区三区| netflix在线观看网站| 99热全是精品| 国产高清视频在线播放一区 | 亚洲精品中文字幕在线视频| 纯流量卡能插随身wifi吗| 好男人视频免费观看在线| netflix在线观看网站| 欧美日韩精品网址| 中文字幕制服av| 中文字幕人妻丝袜一区二区| 女人久久www免费人成看片| 麻豆av在线久日| 又大又黄又爽视频免费| 免费久久久久久久精品成人欧美视频| 免费av中文字幕在线| 中国美女看黄片| 欧美日韩成人在线一区二区| 777米奇影视久久| 亚洲欧洲精品一区二区精品久久久| 伦理电影免费视频| 九色亚洲精品在线播放| 国产主播在线观看一区二区 | 国产高清不卡午夜福利| 色精品久久人妻99蜜桃| 亚洲综合色网址| 亚洲午夜精品一区,二区,三区| 日韩电影二区| 满18在线观看网站| av福利片在线| 精品第一国产精品| 国产男女内射视频| 亚洲欧美成人综合另类久久久| 亚洲综合色网址| 丝袜美足系列| 在线观看www视频免费| 尾随美女入室| 午夜福利在线免费观看网站| 亚洲人成电影观看| 国产成人91sexporn| 国产在视频线精品| 热re99久久精品国产66热6| 建设人人有责人人尽责人人享有的| 丝瓜视频免费看黄片| 国产主播在线观看一区二区 | 久久久亚洲精品成人影院| 欧美日韩成人在线一区二区| 国产麻豆69| 一本大道久久a久久精品| 狠狠精品人妻久久久久久综合| 赤兔流量卡办理| 99精国产麻豆久久婷婷| 18在线观看网站| 久久久国产一区二区| 中文字幕高清在线视频| 妹子高潮喷水视频| 免费少妇av软件| 日本黄色日本黄色录像| 免费女性裸体啪啪无遮挡网站| 欧美日韩视频精品一区| 欧美亚洲 丝袜 人妻 在线| 五月开心婷婷网| 大型av网站在线播放| 亚洲欧美成人综合另类久久久| 国产视频首页在线观看| 婷婷色综合www| 久久精品国产a三级三级三级| av欧美777| 午夜福利在线免费观看网站| 伊人亚洲综合成人网| 女人精品久久久久毛片| 91老司机精品| 欧美 亚洲 国产 日韩一| 热99国产精品久久久久久7| 亚洲精品国产av蜜桃| 搡老岳熟女国产| 在线精品无人区一区二区三| 51午夜福利影视在线观看| 男人操女人黄网站| www.熟女人妻精品国产| 不卡av一区二区三区| 18禁观看日本| 国产成人一区二区在线| 欧美在线一区亚洲| 亚洲av男天堂| 久久国产亚洲av麻豆专区| 亚洲精品第二区| 国产xxxxx性猛交| 亚洲精品美女久久久久99蜜臀 | 视频区欧美日本亚洲| 欧美精品人与动牲交sv欧美| 亚洲国产精品999| 91九色精品人成在线观看| 不卡av一区二区三区| 丝袜在线中文字幕| 乱人伦中国视频| 久久毛片免费看一区二区三区| 天堂中文最新版在线下载| 亚洲色图 男人天堂 中文字幕| e午夜精品久久久久久久| 黄色怎么调成土黄色| 欧美精品亚洲一区二区| 在线观看一区二区三区激情| 亚洲成人国产一区在线观看 | 性高湖久久久久久久久免费观看| 交换朋友夫妻互换小说| 爱豆传媒免费全集在线观看| 国产在视频线精品| av天堂在线播放| 啦啦啦 在线观看视频| 久久99精品国语久久久| 午夜久久久在线观看| 高清欧美精品videossex| 乱人伦中国视频| 女人久久www免费人成看片| 亚洲天堂av无毛| 国产精品一区二区免费欧美 | 大话2 男鬼变身卡| 成人黄色视频免费在线看| 亚洲欧美成人综合另类久久久| 9色porny在线观看| 国产视频一区二区在线看| 两个人免费观看高清视频| 人体艺术视频欧美日本| 久久久精品国产亚洲av高清涩受| 亚洲精品av麻豆狂野| 国产爽快片一区二区三区| 色94色欧美一区二区| 亚洲精品国产色婷婷电影| 999精品在线视频| 黄色视频不卡| av网站在线播放免费| 女性被躁到高潮视频| 国产亚洲精品第一综合不卡| 国产成人精品在线电影| 免费不卡黄色视频| 久久国产精品影院| 久久久精品免费免费高清| 日韩av不卡免费在线播放| 国产男人的电影天堂91| 久久久久久久大尺度免费视频| 国产精品九九99| 国产成人一区二区三区免费视频网站 | 一级片'在线观看视频| 久久精品亚洲熟妇少妇任你| 中文字幕制服av| 国产精品九九99| 国产成人av教育| 国产1区2区3区精品| 国产欧美日韩一区二区三区在线| 九草在线视频观看| 青草久久国产| 久久天躁狠狠躁夜夜2o2o | 欧美精品av麻豆av| 欧美国产精品va在线观看不卡| 日韩视频在线欧美| 国产伦人伦偷精品视频| 少妇的丰满在线观看| 国产成人啪精品午夜网站| 咕卡用的链子| 丝袜在线中文字幕| 欧美老熟妇乱子伦牲交| 久久精品成人免费网站| 国产成人啪精品午夜网站| 黄色视频在线播放观看不卡| h视频一区二区三区| 亚洲av欧美aⅴ国产| 91麻豆av在线| 狂野欧美激情性bbbbbb| 国产av一区二区精品久久| 日韩av不卡免费在线播放| svipshipincom国产片| 一级a爱视频在线免费观看| 欧美变态另类bdsm刘玥| 只有这里有精品99| 高潮久久久久久久久久久不卡| 悠悠久久av| 黄频高清免费视频| 少妇人妻 视频| 高清欧美精品videossex| 一区福利在线观看| 永久免费av网站大全| 男女高潮啪啪啪动态图| 性色av一级| 国产在线免费精品| 日韩伦理黄色片| 国精品久久久久久国模美| 亚洲少妇的诱惑av| 中文字幕另类日韩欧美亚洲嫩草| 777米奇影视久久| 久热爱精品视频在线9| 18禁国产床啪视频网站| 最近最新中文字幕大全免费视频 | 狂野欧美激情性xxxx| 九色亚洲精品在线播放| 国产91精品成人一区二区三区 | 国产主播在线观看一区二区 | √禁漫天堂资源中文www| 国产日韩欧美视频二区| 亚洲图色成人| www.999成人在线观看| 亚洲精品日韩在线中文字幕| 免费av中文字幕在线| 亚洲欧美日韩另类电影网站| 黄色视频不卡| 人人澡人人妻人| 深夜精品福利| 亚洲av国产av综合av卡| 亚洲欧美日韩高清在线视频 | 蜜桃在线观看..| 波多野结衣一区麻豆| 色视频在线一区二区三区| 激情视频va一区二区三区| 无遮挡黄片免费观看| 久久免费观看电影| 国产人伦9x9x在线观看| 天堂俺去俺来也www色官网| 久久久国产精品麻豆| 啦啦啦在线观看免费高清www| 国产精品99久久99久久久不卡| 国产一区二区三区综合在线观看| 国产成人av教育| 欧美性长视频在线观看| 国产深夜福利视频在线观看| 国产精品av久久久久免费| 中文精品一卡2卡3卡4更新| 一级黄片播放器| 精品人妻在线不人妻| 性少妇av在线| 国产黄色视频一区二区在线观看| 99国产精品免费福利视频| 国产一区二区在线观看av| 欧美 亚洲 国产 日韩一| 考比视频在线观看| 日本色播在线视频|