• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Coupled Reaction/Distillation Process for Hydrolysis of Methyl Acetate*

    2010-02-14 08:25:56ZHAOSuying趙素英HUANGJingzhao黃鏡釗WANGLiangen王良恩andHUANGGuoqiang黃國強

    ZHAO Suying (趙素英)**, HUANG Jingzhao (黃鏡釗) WANG Liang’en (王良恩) and HUANG Guoqiang (黃國強)

    1 College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350002, China

    2 National Engineering Research Center for Distillation Technology (NERCDT), Tianjin 300072, China

    1 INTRODUCTION

    Methyl acetate (MA) is a byproduct in the industry of polyvinyl alcohol (PVA) and purified terephthalic acid (PTA). In order to obtain more valuable compound, MA is usually hydrolyzed to methanol (MeOH) and acetic acid (HAc), which are recycled to the production process of PVA or PTA. The conventional hydrolysis process contains a fix-bed reactor and four separation columns [1]. The hydrolysis reaction is carried out in the fixed-bed reactor catalyzed by ion exchange resin. Limited with a equilibrium constant ~0.14 at 25 °C, the hydrolysis ratio is relatively low (~23%), resulting in a large amount of recirculation [2]. Furthermore, in order to deal with the azeotropes of methyl acetate-methanol and methyl acetate-water existing in the system, a complex separation process required 4 columns is introduced. A number of improved processes have been developed to overcome the disadvantages mentioned above [3-6]. Reactive distillation, a process that combines reaction and separation together, is an attractive alternative process and it gives clear advantages for systems with small equilibrium constant. Fuchigami [7] proposed a reactive distillation configuration with total reflux on the top and bottom product withdrawal for the hydrolysis process.The reactive zone placed in the mid-section is packed with catalyst which consists of ion exchange resin and polyethylene powder. With a molar ratio of water to methyl acetate (RW/MA) more than 8, a nearly complete conversion (~99%) can be achieved. However, owing to the large amount of excess water, the concentration of acetic acid in the hydrolysate is so low that it cannot be accepted by PVA and PTA factory. Xiao et al. [8]proposed replacing the fixed-bed reactor by a catalytic distillation column to achieve 56% MA conversion as twice that of fixed-bed reactor technology. Wang et al.[9] reported an industrial application of catalytic distillation for MA hydrolysis with 56% conversion. The mixture of MA and water was fed in the top of catalytic distillation column, and the hydrolysate was withdrawn from the bottom. MA recycle ratio was reduced with the raise of hydrolysis ratio in the two process mentioned above, yet the separation problem of the azeotrope MA-MeOH still cannot be solved.

    Moreover, due to the use of heterogeneous catalyst, typically strong acidic cation ion exchanger resin in the hydrolysis process, there must be some internal equipments to place catalyst in the reactive distillation column [10-13]. Three additional distillation columns are still needed in order to separate the hydrolysate. A new process which consists of a fixed-bed reactor for hydrolysis and a conventional distillation column for separation was developed in this paper. In this process,MeOH is withdrawn from the side of the column and HAc from the bottom of the column. Feasibility of the process was evaluated and the optimal technology conditions were obtained through experiment and simulation.

    2 EXPERIMENTAL

    A lab-scale experiment was carried out to study the coupled process. The experimental schematic diagram is shown in Fig. 1.

    Methyl acetate and SK-1A ion exchanger resin catalyst used in the experiment were supplied by the Fujian Spinning and Chemical Fiber Group Company and the Mo-Ti stainless steel θ shape packing by Tianjin University.

    The concentration of acetic acid in samples was measured by acid-base titration while those of MA and methanol were measured by a VARIAN CP-3800

    Figure 1 The schematic diagram of experimental setup1—deionized water container; 2—constant flow pump; 3—laminar current pump; 4—methyl acetate container; 5—flask;6—thermometer; 7—standby mouth; 8—bottom outlet; 9—outlet pump; 10—bottom product container; 11—fixed-bed reactor; 12—flowmeter; 13—condenser; 14—packed distillation column; 15—side product container

    GC equipped with a 30 m×0.25 mm XP-1701 capillary column and hydrogen flame ionization detector.The GC conditions were: injector temperature 200 °C,detector temperature 250 °C and a stepwise column temperature. The initial column temperature was 50°C for 3 min, heated up to 120 °C at 15 °C·min-1, and then held for 1 min.

    3 SIMULATION MODELING

    Simulations were performed using the Aspen Plus?(Aspen Technology Inc., Aspen Plus?, Version 10.1) software package. The distillation unit was modeled using the RadFrac model in Aspen Plus?. It uses the equilibrium stage model, also called the MESH model, and consists of a set of nonlinear equations to represent material balance, vapor-liquid equilibrium, mole fraction summation, and heat balance.The RPlug model, based on plug flow model, was used to model the fixed-bed reactor. The reactions in the reactor were based on power-law kinetics.

    3.1 Physical equilibrium

    An important consideration in distillation simulation is the choice of physical equilibrium model and the ability to reliably predict multicomponent vaporliquid equilibrium (VLE) and liquid-liquid equilibrium (LLE). Reliable VLE and LLE are needed to establish distillation boundaries and to determine if and where azeotropes and phase separation occur.Several equations can be used to model methyl acetate-methanol-water-acetic acid system such as Van Laar, NRTL, UNIQUAC. Dirk-Faitakis [14] recommended NRTL model. Taking the non-ideality of the vapor phase caused by dimerization of acetic acid into account, Hayden-O’Connell(HOC) method was chosen. Therefore, the NRTL-HOC property method was used in this work because of the presence of high concentration of acetic acid.

    Binary interaction parameters were taken from Aspen Plus?data banks. Table 1 summarizes the interactive parameters used in vapor-liquid equilibrium calculation.

    It was reported that methyl acetate-methanol system exhibits an azeotrope with minimum boiling point at 53.5 °C and 0.6618 mole fraction methyl acetate in the vapor at 101.32 kPa [15]. Methyl acetate-water exhibits a homogeneous azeotrope and also displays a miscibility gap in the region at ambient pressure.Besslinget al. [16] reported a minimum boiling azeotrope at 0.92 mole fraction methyl acetate at temperature of 56.1 °C. Azeotropes predicted by NRTL-HOC model atP=101.3 kPa are shown in Table 2.

    Table 1 Summary of NRTL binary interaction parameters used in the prediction of equilibrium data

    Table 2 Azeotropes predicted by Aspen Plus? using NRTL-HOC model

    3.2 Reaction kinetics

    The hydrolysis of methyl acetate is a reversible reaction with the following expression:

    The equilibrium constant of this reaction is 0.15 at 55 °C. According to the reaction mechanism the pseudohomogeneous reaction kinetics can be expressed as:

    A detailed study of this reaction has been done in our previous work [17] and the forward and reverse reaction rate constant (k+andk-, respectively ) can be expressed by following equations.

    Forward:ThecatC′ in Eq. (2) was 7.8×105g·m-3(catalyst mass/reaction liquid) in this experiment. And this kinetics equation was verified by experiments.

    4 RESULTS AND DISCUSSION

    4.1 Simulation of coupled reactor/column process

    After confirmed the physical equilibrium and reaction kinetics, the continuous reaction and distillation process shown in Fig. 1 can be simulated. The hydrolysate distillation column consists of a 20 stages column with none condenser and a partial reboiler. The height of packed section of the experimental column is 1.6 m. According to the manufacturer, one meter θ shape packing equals 12 theoretical stages, so the theoretical stages of packed section is 20 including reboiler.Compared the results of simulation with experimental data in the next part, 20 theoretical stages is suitable.The side product location is 0.9 m from the bottom of the column, thus the stage is 11. In order to meet demands of MeOH mass concentration of less than 0.5%in bottom product in the PTA and PVA plants, we set a design value of 0.4%.RL/Fof 4.5 andRW/MAof 5.0 are feasible parameters obtained by several simulations.Other parameters are the same as the experimental data. All the parameters for the base case simulation are given in Table 3. All feed streams enter at 25 °C.

    The mass basis distribution in the hydrolysate distillation column is shown in Figs. 2 and 3. Fig. 2 indicates the methanol concentrations in vapor phase at 6th-14th stages are more than 0.8 with less than 0.15 water, 0.03HAc and rare MA. That means 6th-14th stages are the feasible locations for side withdrawal and the side product is readily to be refined by simple distillation to attain high purity methanol. In this way the separation problem of the azeotrope MA-MeOH has been solved. The bottom product only composes of acetate acid and water. The mass concentration of acetic acid is higher than 40% and meets the requirement of PTA plant.

    Figure 2 Vapor profiles in the hydrolysate separation columnMEOH; HAc; MA; Water

    Figure 3 Liquid profiles in the hydrolysate separation columnMEOH; HAc; MA; Water

    Table 3 Parameters used in the simulations

    Table 4 The results of experiment and simulation (mass fraction)

    4.2 Experimental verification

    The results of the experiment and simulation are compared in Table 4. Here, the experimental value ofRSP/Fwere adopted by simulation. As shown in the table,most of the side product is composed of more than 80%(by mass) methanol(xSP-MeOH) and less than 2% (by mass)MA(xSP-MA), which is readily to get >96% (by mass)methanol in the following distillation. At the same time, the mass concentration of the HAc in the bottom(xW-HAc) is more than 46%, which satisfied the requirement in the PVA manufacture. The experimental results agree with those predicted by simulation. Thus,the simulation model can be used to discuss the influence of different parameters on the process.

    4.3 Feasible technology conditions

    RW/MAandRL/Fare the most important parameters in this process. Their value decide whether MA can be hydrolyzed completely or not. Simulation work has been done to study the effect ofRL/Fon the side product, whileRW/MAis kept constant. As shown in Figs. 4 and 5, the increase ofRL/Fwill raise MeOH concentration in the side product and reduce MA impurity whenRW/MAis 4 and 5. Fig. 5 shows that there is a critical value ofRL/F. Below it, MA in the side product is quite high, which means that MA is not hydrolyzed completely. Above it, MA is near zero, indicating about 100% conversion of MA. The critical value is 3 atRW/MA=5.0 and about 4.5 atRW/MA=4.0. Attentions must be paid that atRW/MA=3.0 there always contains a large amount of MA in the side product no matter how muchRL/Fis. It can be predicted that the critical value will further decrease if a largerRW/MAis provided. But the acid concentration in the bottom will decrease. Proper operation conditions can be chosen with the specification of the manufacturer. Under conditions thatRW/MA=4.0-5.0 andRL/Fabove critical value, more than 80% (by mass) MeOH in the side product and more than 46% (by mass) HAc in the bottom can be obtained (Fig. 6).

    Figure 4 Effect of RL/F on MeOH concentration inside productRW/MA: ■ 3; ● 4; ▲ 5

    Figure 5 Effect of RL/F on MA concentration in side product RW/MA: ■ 3; ● 4; ▲ 5

    In the simulation mentioned above, a Design specs-Vary was set, which varied the amount of side product to keep MeOH mass concentration <0.4% in the bottom. At the sameRW/MA, the volume of side product decreases with the increase ofRL/F. TakingRW/MA=4.0 for example, theRSP/Fchanges from 0.68 to 0.57, whileRL/Fchanges from 2 to 9. Because of the decrease ofRSP/F, the quantity of water in the side product reduces. On consequence, the concentration of HAc in the bottom product decreases with the increase ofRL/Fwhen the MA is totally hydrolyzed.

    Figure 6 Effect of RL/F on HAc concentration inbottom productRW/MA: ■ 3; ● 4; ▲ 5

    5 SUPERIORITIES OF THIS PROCESS

    A further simulation was carried out to examine the energy consumption of the proposed process. A simple distillation column was added to purify methanol. As shown in Fig. 7, the side product is distillated to get methanol with high purity and the bottom product is sent back to fixed-bed reactor. Process flow diagram (PFD) of the catalytic distillation process is shown in Fig. 8. This technology [18, 19] has industrialized in several PTA and PVA plants. Ref. [19] describes the process in details.

    Based on data given by a certain petrochemical corporation, energy consumption was compared between this process and the catalytic distillation one(the old process). The mass compositions of the feed MA stream are as follows: MA 94.625%, MeOH 0.625%,and water 3.75%. The purity specifications that the HAc in the bottom equals to 46% (by mass) and product MeOH amounts to 96% (by mass) are required.

    The two processes were both simulated by Aspen plus based on the thermodynamics and kinetics which have been discussed earlier. The operation conditions for catalytic column are: the volume ratio of reflux to MA feed, 3.0, and the molar ratio of H2O to MA feed,4.0. The catalytic column can be simulated using these data by the model introduced by Wuet al. [20]. The energy consumption of other distillation columns can be calculated easily according to separation requirements. The energy consumptions of the main equipments of the two processes are summarized in Tables 5 and 6,respectively.

    Figure 8 PFD of the catalytic distillation process

    Table 5 The energy consumptions of the main equipments of the old process (kW)

    Table 6 The energy consumptions of the main equipments of the new process (kW)

    Obviously the new process have saved a main equipment by comparing Figs. 7 and 8. The MA-MeOH separation column is not needed in which the side-withdraw of the hydrolysate distillation column can solve the separation problem of the azeotrope MA-MeOH. Table 5 shows that the sum of energy consumptions of fixed-bed and hydrolysate distillation column in the new process is 747.81 kW. It is much smaller than that of CD column and hydrolysate distillation column of 1222.31 kW in the old process. As known, MA hydrolyzes with water in liquid phase [21].But MA is vaporized in the reactive distillation zone of the CD column. Thus, the reflux quantity on the top of the CD column needs to be increased to promote reaction. More reflux quantity, more energy consumption. The energy consumption of MeOH distillation column are also reduced greatly as shown in Table 6.In the old process, extra water enters on the top of the MA-MeOH distillation column to extract MeOH from MA, so methanol concentration is much lower than that of the side product in the new process. The vapor feeding used in the new process also saves a lot of energy. The energy consumption gap between the new and the old is up to 47.6%. Therefore, no matter in the capital investment or in the operation cost, the new process takes every superiority.

    6 CONCLUSIONS

    Both simulation and experiment have proven that MA can be hydrolyzed completely in the coupled system of fix-bed reactor and distillation column with vapor side product. However, RW/MAshould be greater than 3.0 and RL/Fabove the critical value at every RW/MA. Under the conditions that RW/MA=4.0-5.0 and RL/Fabove the critical value the side product will contain more than 80% (by mass) MeOH and less than 2% (by mass) MA, while the bottom will contain more than 46% (by mass) HAc. Only a simple column is needed to attain MeOH with high purity. Compared with the catalytic distillation process we proposed before, this process can save 47.6% of energy consumption and a distillation column.

    NOMENCLATURE

    Ciconcentration of component i, mol·m-3

    Eaapparent activation energy, kJ·mol-1

    k rate constant, m6·mol-1·s-1·g-1

    k0pre-exponential factor, m6·mol-1·s-1·g-1

    R universal gas constant, J·mol-1·K-1

    RL/Fdistillate to feed MA volume ratio, m3·m-3

    RSP/Fvolume ratio of side product to feed MA, m3·m-3

    RW/MAmolar feed ratio of water to methyl acetate, mol·mol-1

    r reaction rate, mol·s-1·m-3

    xSP-HAcmass concentration of acetate acid in the side product

    xSP-MAmass concentration of methyl acetate in the side product xSP-MeOHmass concentration of methanol in the side product

    xW-HAcmass concentration of acetate acid in the bottom product

    xW-MeOHmass concentration of methanol in the bottom product

    Superscripts

    + forward reaction

    - reverse reaction

    Subscripts

    az azeotrope cat catalyst

    1 Ma, Y.G., Mou, C.G., Wu, S.H., Technology of PVA Production, Textile Industry Press, Beijing (1986). (in Chinese)

    2 Wang, C.X., “Study on hydrolysis of methyl acetate in a catalytic distillation column”, Chin. J. Chem. Eng., 9, 382-387 (2001).

    3 Pan, Y.B., Li, W.X., Shen, P.D., Wan, H., Han, M.J., Guan, G.F.,“Study on hydrolysis of methyl acetate from production of purified terephthalic acid by catalytic distillation”, Chem. Reac. Eng. & Tech.,25, 132-136 (2009). (in Chinese)

    4 Wang, J.F., Ge, X.D., Wang, Z.W, Jin, Y., “Experimental studies on the catalytic distillation for hydrolysis of methyl acetate”, Chem.Eng. Technol., 24, 155-159 (2001).

    5 Sander, S., Flisch, C., “Methyl acetate hydrolysis in a reactive divided wall column”, Chem. Eng. Res. Des., 85,149-154 (2007).

    6 Yuan, P.Q., Chen, Z.M., Liu, T., Yuan, W.K., “Hydrolysis of methyl acetate under near or supercritical condition”, Chem. J. Chinese U.,24, 1241-1245 (2003). (in Chinese)

    7 Fuchigami, Y., “Hydrolysis of methyl acetate in distillation column packed with reactive packing of ion exchange resin”, J. Chem. Eng.Jpn., 23, 354-359 (1990).

    8 Xiao, J., Liu, J.Q., Li, J.T., Jiang, X.H., Zhang, Z.B., “Increase MeOAc conversion in PVA production by replacing the fixed bed reactor with a catalytic distillation column”, Chem. Eng. Sci., 56, 6553-6562 (2001).

    9 Wang, L.E., Su, W.R., Zhao, Z.S., Liu, J.Q., Wu, Y.X., Shen, J.N., Qiu, T.,“Industrial application of the catalytic distillation technique in hydrolysis of methyl acetate”, Viny. Commu., 21, 10-12 (2001). (in Chinese)

    10 Wu, Y.X., Wang, L.E., Zhao, Z.S., Tan, T.E., “Mass transfer model for catalyst capsule in catalyst distillation (I) mathematical model”,CIESC J., 53, 503-507 (2002). (in Chinese)

    11 Wu, Y.X., Wang, L.E., Zhao, Z.S., Tan, T.E., “Mass transfer model for catalyst capsule in catalyst distillation (II) measurement and calculation of effectiveness factor”, CIESC J., 53, 508-512 (2002). (in Chinese)

    12 Kim, K., Roh, H.D., “Reactive distillation process and equipment for the production of acetic acid and methanol from methyl acetate hydrolysis”, U.S. Pat., .5970770 (1998).

    13 Moritz, P., Hasse, H., “Fluid dynamics in reactive distillation packing Katapak?-S”, Chem. Eng. Sci., 54, 1367-13741 (1999).

    14 Dirk-Faitakis, C.B., An, W.Z., Lin, T.B., Chuang, K.T., “Catalytic distillation for simultaneous hydrolysis of methyl acetate and etherification of methanol”, Chem. Eng. Process., 48, 1080-1087 (2009).

    15 Gmehling, J., B?lts, R., “Azeotropic data for binary and ternary systems at moderate pressures”, J. Chem. Eng. Data., 41, 202-209 (1996).

    16 Bessling, B., L?ning, J.M., Ohligschl?ger, A., Schembecker, G.,Sundmacher, K., “Investigations on the synthesis of methyl acetate in a heterogeneous reactive distillation process”, Chem. Eng. Technol.,21, 393-400 (1998).

    17 Wu, Y.X., Zhao, Z.S., Wang, L.E., Zhao, S.Y., “Kinetics of hydrolysis of methyl acetate and the effectiveness factor of catalyst capsule”,Eng. Chem. Meta., 20, 241-246 (1999). (in Chinese)

    18 Wang, L.E., Liu, J.Q., Su, W.R., Zhao, Z.S., Zheng, W.H., Zhang,J.L., “Catalytic distillation process for methyl acetate hydrolysis and its equipments”, China Pat., 97101306.3 (1997).

    19 Wang, L.E., Zhao, Z.S., Qiu, T., Zhao, S.Y., Zheng, H.D., Qiu, T.R.,Su, W.R., Xie, Y.H., Luo, D.H., “Byproduct methyl acetate hydrolysis process and its equipments in the industry of PTA”, China Pat.,200610124556.7 (2006).

    20 Wu, Y.X., Tan, T.E., Wang, L.E., Zhao. Z.S., “Simulation of the catalytic distillation process for hydrolysis of methyl acetate”, Eng.Chem. Meta., 21, 24-29 (2000). (in Chinese)

    21 P?pken, T., G?tze, L., Gmehling, J., “Reaction kinetics and chemical equilibrium of homogeneously and heterogeneously catalyzed acetic acid esterification with methanol and methyl acetate hydrolysis”, Ind.Eng. Chem. Res., 39, 2601-2611 (2000).

    精品福利观看| 国产一区二区激情短视频| 男女之事视频高清在线观看| 黄色片一级片一级黄色片| 美女扒开内裤让男人捅视频| 又黄又爽又免费观看的视频| 久久人人97超碰香蕉20202| 99国产综合亚洲精品| 国产精品一区二区在线不卡| 夫妻午夜视频| 久久精品国产综合久久久| 一级a爱视频在线免费观看| 国产成人欧美| 精品视频人人做人人爽| 久久久精品免费免费高清| 亚洲欧美色中文字幕在线| 久久精品熟女亚洲av麻豆精品| 少妇被粗大的猛进出69影院| 亚洲,欧美精品.| 天天添夜夜摸| 中国美女看黄片| 欧美成狂野欧美在线观看| 午夜精品在线福利| 日本撒尿小便嘘嘘汇集6| 国产亚洲欧美精品永久| 最新美女视频免费是黄的| 99国产精品99久久久久| 亚洲午夜精品一区,二区,三区| 久久久久久免费高清国产稀缺| 免费黄频网站在线观看国产| 人妻一区二区av| 叶爱在线成人免费视频播放| cao死你这个sao货| 后天国语完整版免费观看| aaaaa片日本免费| 国产精品久久电影中文字幕 | netflix在线观看网站| www日本在线高清视频| 亚洲三区欧美一区| 国产精品电影一区二区三区 | 日韩熟女老妇一区二区性免费视频| 亚洲男人天堂网一区| av在线播放免费不卡| 99re在线观看精品视频| 国产精品香港三级国产av潘金莲| 18禁国产床啪视频网站| 久久久国产精品麻豆| 51午夜福利影视在线观看| 一边摸一边抽搐一进一小说 | 国产成人欧美| 好男人电影高清在线观看| av中文乱码字幕在线| 一a级毛片在线观看| 人妻一区二区av| 成在线人永久免费视频| 狠狠狠狠99中文字幕| 成人手机av| 欧美乱妇无乱码| 在线观看免费午夜福利视频| 免费不卡黄色视频| 精品久久蜜臀av无| av一本久久久久| 搡老乐熟女国产| 黑人猛操日本美女一级片| 中文字幕最新亚洲高清| 精品国产乱子伦一区二区三区| 色播在线永久视频| 欧美不卡视频在线免费观看 | 国产亚洲欧美98| 久久久久国产一级毛片高清牌| 国产成人欧美在线观看 | 久久精品熟女亚洲av麻豆精品| 亚洲第一青青草原| 国产精品.久久久| 久久人妻熟女aⅴ| 18在线观看网站| 亚洲熟女精品中文字幕| 精品国产一区二区久久| 人妻久久中文字幕网| 久久久久精品国产欧美久久久| 50天的宝宝边吃奶边哭怎么回事| 精品第一国产精品| 欧美日韩国产mv在线观看视频| 欧美国产精品va在线观看不卡| 又紧又爽又黄一区二区| 婷婷成人精品国产| 午夜福利欧美成人| 久久久久精品人妻al黑| 久久人妻熟女aⅴ| 久久精品亚洲av国产电影网| 在线av久久热| 国产精品 欧美亚洲| 一级毛片高清免费大全| 水蜜桃什么品种好| 日韩免费av在线播放| 日韩成人在线观看一区二区三区| av视频免费观看在线观看| 色94色欧美一区二区| svipshipincom国产片| 国产高清videossex| 久久久国产精品麻豆| 久久国产精品大桥未久av| av网站免费在线观看视频| 中文字幕人妻熟女乱码| 美女扒开内裤让男人捅视频| 午夜免费鲁丝| 亚洲色图av天堂| 天天躁夜夜躁狠狠躁躁| 国产xxxxx性猛交| 国产一区二区三区综合在线观看| 高清黄色对白视频在线免费看| 国产精华一区二区三区| 一级作爱视频免费观看| 自拍欧美九色日韩亚洲蝌蚪91| 人人澡人人妻人| 欧美性长视频在线观看| 超碰97精品在线观看| 国产野战对白在线观看| 1024香蕉在线观看| 亚洲九九香蕉| 高清毛片免费观看视频网站 | 51午夜福利影视在线观看| 久9热在线精品视频| 久久久久国产一级毛片高清牌| 久久国产精品人妻蜜桃| 香蕉久久夜色| 不卡一级毛片| 美女午夜性视频免费| 欧美激情极品国产一区二区三区| 亚洲欧美一区二区三区黑人| 中文欧美无线码| 久久久久国产一级毛片高清牌| 在线国产一区二区在线| 精品一区二区三区视频在线观看免费 | 国产麻豆69| 大码成人一级视频| 操美女的视频在线观看| 成人影院久久| 欧美 亚洲 国产 日韩一| 日韩免费av在线播放| 在线观看免费视频网站a站| 亚洲人成77777在线视频| 亚洲色图 男人天堂 中文字幕| svipshipincom国产片| 亚洲va日本ⅴa欧美va伊人久久| 91字幕亚洲| 宅男免费午夜| 亚洲aⅴ乱码一区二区在线播放 | 大陆偷拍与自拍| 午夜精品在线福利| 亚洲精品国产色婷婷电影| 777久久人妻少妇嫩草av网站| 亚洲第一av免费看| 亚洲精品国产精品久久久不卡| 亚洲五月天丁香| 亚洲精品乱久久久久久| 男男h啪啪无遮挡| 午夜视频精品福利| 久久中文看片网| 欧美在线一区亚洲| av片东京热男人的天堂| 看片在线看免费视频| 亚洲成人免费电影在线观看| 免费人成视频x8x8入口观看| 免费在线观看黄色视频的| 精品第一国产精品| 亚洲色图av天堂| 亚洲美女黄片视频| 五月开心婷婷网| 麻豆国产av国片精品| 99久久综合精品五月天人人| 中文字幕av电影在线播放| 黄色成人免费大全| 精品久久久久久,| 91精品三级在线观看| 中国美女看黄片| 日韩欧美在线二视频 | 岛国毛片在线播放| 亚洲五月婷婷丁香| 成人18禁在线播放| 成人永久免费在线观看视频| 免费在线观看影片大全网站| 1024香蕉在线观看| 亚洲九九香蕉| 精品国产一区二区久久| 国精品久久久久久国模美| 麻豆成人av在线观看| 波多野结衣av一区二区av| 99精国产麻豆久久婷婷| 精品一区二区三区四区五区乱码| av国产精品久久久久影院| 午夜精品国产一区二区电影| 人人妻人人爽人人添夜夜欢视频| 99riav亚洲国产免费| 丰满迷人的少妇在线观看| 欧美成人午夜精品| 黄色女人牲交| 十八禁人妻一区二区| 搡老乐熟女国产| 久热爱精品视频在线9| 国产精品国产av在线观看| 麻豆av在线久日| 婷婷丁香在线五月| 欧美 亚洲 国产 日韩一| 国产男靠女视频免费网站| 国产免费现黄频在线看| tocl精华| 国产人伦9x9x在线观看| 9热在线视频观看99| 精品国产一区二区三区四区第35| 久久中文字幕人妻熟女| 夜夜夜夜夜久久久久| 少妇猛男粗大的猛烈进出视频| 日韩欧美国产一区二区入口| 捣出白浆h1v1| 午夜精品在线福利| 亚洲情色 制服丝袜| 变态另类成人亚洲欧美熟女 | 夜夜躁狠狠躁天天躁| 午夜两性在线视频| 一区二区日韩欧美中文字幕| 欧美在线一区亚洲| 91麻豆av在线| 黄色毛片三级朝国网站| 精品一区二区三区视频在线观看免费 | 可以免费在线观看a视频的电影网站| 黄色怎么调成土黄色| 日本黄色视频三级网站网址 | 黑人猛操日本美女一级片| 色老头精品视频在线观看| 美女午夜性视频免费| 亚洲av日韩在线播放| 老司机福利观看| 99久久99久久久精品蜜桃| 老熟妇仑乱视频hdxx| 一二三四社区在线视频社区8| 制服诱惑二区| 久久国产精品人妻蜜桃| 国产一区二区三区视频了| 欧美黑人欧美精品刺激| 欧美人与性动交α欧美精品济南到| 多毛熟女@视频| 亚洲五月色婷婷综合| 精品人妻在线不人妻| 亚洲黑人精品在线| 老司机福利观看| 曰老女人黄片| 精品视频人人做人人爽| 交换朋友夫妻互换小说| 午夜成年电影在线免费观看| 久久久久国产精品人妻aⅴ院 | 国产97色在线日韩免费| 欧美性长视频在线观看| 韩国精品一区二区三区| 另类亚洲欧美激情| 母亲3免费完整高清在线观看| www.精华液| 国产精品一区二区精品视频观看| 久久亚洲精品不卡| 中文字幕另类日韩欧美亚洲嫩草| 色婷婷av一区二区三区视频| 亚洲成人手机| 成人国产一区最新在线观看| 大香蕉久久网| 操出白浆在线播放| 真人做人爱边吃奶动态| 婷婷成人精品国产| 久久久水蜜桃国产精品网| 免费观看a级毛片全部| 人人澡人人妻人| 超碰97精品在线观看| 日韩三级视频一区二区三区| 国产成人av教育| 王馨瑶露胸无遮挡在线观看| 亚洲精品在线观看二区| 免费观看人在逋| 成人国语在线视频| 老司机亚洲免费影院| 精品国产一区二区三区四区第35| 亚洲五月天丁香| 最新美女视频免费是黄的| 老汉色∧v一级毛片| 国产亚洲欧美在线一区二区| 精品一区二区三区四区五区乱码| 亚洲精品av麻豆狂野| 久久人人97超碰香蕉20202| www.熟女人妻精品国产| 亚洲专区字幕在线| 无遮挡黄片免费观看| 在线看a的网站| √禁漫天堂资源中文www| 久久香蕉精品热| 男女床上黄色一级片免费看| 在线观看免费午夜福利视频| 啦啦啦在线免费观看视频4| 午夜免费成人在线视频| 狠狠婷婷综合久久久久久88av| 久久久久久亚洲精品国产蜜桃av| 老司机亚洲免费影院| 国产av一区二区精品久久| 国产精华一区二区三区| 窝窝影院91人妻| 涩涩av久久男人的天堂| 亚洲七黄色美女视频| 搡老乐熟女国产| 999精品在线视频| 99国产综合亚洲精品| 免费av中文字幕在线| 妹子高潮喷水视频| 91成年电影在线观看| 国产亚洲欧美98| 一二三四在线观看免费中文在| 成年人免费黄色播放视频| 亚洲成a人片在线一区二区| 少妇 在线观看| 一个人免费在线观看的高清视频| 欧美另类亚洲清纯唯美| 一边摸一边做爽爽视频免费| 中文字幕人妻丝袜一区二区| 在线观看免费午夜福利视频| 国产免费男女视频| 亚洲第一青青草原| 精品无人区乱码1区二区| a级毛片黄视频| 美女高潮喷水抽搐中文字幕| 性少妇av在线| 一边摸一边抽搐一进一出视频| 宅男免费午夜| 精品一区二区三区四区五区乱码| 亚洲一区中文字幕在线| 亚洲精品美女久久久久99蜜臀| 国产97色在线日韩免费| 亚洲熟女毛片儿| 露出奶头的视频| 亚洲国产中文字幕在线视频| 久久久久久人人人人人| 俄罗斯特黄特色一大片| 国内久久婷婷六月综合欲色啪| 亚洲专区中文字幕在线| 黄色视频,在线免费观看| 大片电影免费在线观看免费| 少妇 在线观看| 日韩熟女老妇一区二区性免费视频| 中文字幕色久视频| 一区二区三区激情视频| 亚洲中文av在线| 午夜久久久在线观看| ponron亚洲| av超薄肉色丝袜交足视频| 精品国内亚洲2022精品成人 | 女性生殖器流出的白浆| 亚洲精品乱久久久久久| 一级a爱视频在线免费观看| 精品人妻熟女毛片av久久网站| 国产亚洲欧美98| 国产精品一区二区精品视频观看| 人人妻人人爽人人添夜夜欢视频| 十分钟在线观看高清视频www| 亚洲专区国产一区二区| 日韩三级视频一区二区三区| 精品午夜福利视频在线观看一区| 久热爱精品视频在线9| 视频区欧美日本亚洲| 久久久国产成人精品二区 | 欧美成人午夜精品| 午夜福利免费观看在线| 国产精品久久电影中文字幕 | 亚洲熟妇熟女久久| 亚洲精品乱久久久久久| 国产亚洲精品久久久久久毛片 | 亚洲av成人一区二区三| 国产不卡av网站在线观看| x7x7x7水蜜桃| 一二三四在线观看免费中文在| 国产精品九九99| 美女扒开内裤让男人捅视频| 午夜视频精品福利| 久久久久久久精品吃奶| 免费一级毛片在线播放高清视频 | 成人18禁高潮啪啪吃奶动态图| 日本五十路高清| 一边摸一边抽搐一进一小说 | 精品人妻在线不人妻| 99精品久久久久人妻精品| 在线十欧美十亚洲十日本专区| 欧美老熟妇乱子伦牲交| 国产97色在线日韩免费| 动漫黄色视频在线观看| 免费女性裸体啪啪无遮挡网站| 人人澡人人妻人| 久久久国产欧美日韩av| 又大又爽又粗| 国产免费男女视频| 亚洲成av片中文字幕在线观看| 99久久精品国产亚洲精品| 侵犯人妻中文字幕一二三四区| 一个人免费在线观看的高清视频| 高清av免费在线| 国产精品综合久久久久久久免费 | 日日摸夜夜添夜夜添小说| 日韩欧美一区视频在线观看| 视频区图区小说| 丰满饥渴人妻一区二区三| 国产av精品麻豆| 欧美大码av| 免费黄频网站在线观看国产| 在线观看午夜福利视频| 亚洲欧美一区二区三区久久| 午夜免费观看网址| 日韩一卡2卡3卡4卡2021年| 亚洲欧美日韩另类电影网站| 人人妻人人澡人人爽人人夜夜| 男女高潮啪啪啪动态图| 成人国产一区最新在线观看| 中亚洲国语对白在线视频| 女人爽到高潮嗷嗷叫在线视频| 两个人免费观看高清视频| 亚洲人成伊人成综合网2020| 麻豆乱淫一区二区| 亚洲精品中文字幕一二三四区| 亚洲精品av麻豆狂野| 国产av一区二区精品久久| 女人被狂操c到高潮| 午夜视频精品福利| 最近最新免费中文字幕在线| 欧美乱码精品一区二区三区| 日本精品一区二区三区蜜桃| 自拍欧美九色日韩亚洲蝌蚪91| 老司机靠b影院| 久久亚洲真实| 99久久99久久久精品蜜桃| 国产精品偷伦视频观看了| av电影中文网址| 亚洲男人天堂网一区| 亚洲一区高清亚洲精品| 嫩草影视91久久| 99riav亚洲国产免费| 9热在线视频观看99| 亚洲av欧美aⅴ国产| 丝袜美足系列| 精品人妻熟女毛片av久久网站| 校园春色视频在线观看| 成人国产一区最新在线观看| 一级,二级,三级黄色视频| 成人永久免费在线观看视频| 欧美激情 高清一区二区三区| 久久久国产成人免费| 国产1区2区3区精品| 亚洲在线自拍视频| 搡老熟女国产l中国老女人| 在线永久观看黄色视频| 少妇的丰满在线观看| 天天躁夜夜躁狠狠躁躁| 桃红色精品国产亚洲av| 欧美日韩瑟瑟在线播放| 久久久国产精品麻豆| 最近最新中文字幕大全电影3 | 韩国精品一区二区三区| 中文欧美无线码| 国产精品1区2区在线观看. | 老司机午夜福利在线观看视频| 国产高清视频在线播放一区| 亚洲精品自拍成人| 成人永久免费在线观看视频| 美女高潮到喷水免费观看| 国产片内射在线| 一a级毛片在线观看| 精品无人区乱码1区二区| 精品国产超薄肉色丝袜足j| 欧美精品人与动牲交sv欧美| 天天躁日日躁夜夜躁夜夜| 亚洲熟妇中文字幕五十中出 | 国产精品一区二区免费欧美| 99re在线观看精品视频| 国产麻豆69| 久久久久久人人人人人| 成年人黄色毛片网站| 国产亚洲精品久久久久久毛片 | 午夜福利影视在线免费观看| 天堂动漫精品| 久久久久精品国产欧美久久久| 亚洲欧美色中文字幕在线| 久久午夜亚洲精品久久| 老司机在亚洲福利影院| 日本精品一区二区三区蜜桃| 亚洲成a人片在线一区二区| 欧美日韩黄片免| 久久亚洲真实| 午夜日韩欧美国产| 80岁老熟妇乱子伦牲交| 午夜老司机福利片| 欧美乱色亚洲激情| 成年人免费黄色播放视频| 丰满人妻熟妇乱又伦精品不卡| 91成人精品电影| 国产成人一区二区三区免费视频网站| 亚洲五月色婷婷综合| 精品免费久久久久久久清纯 | tube8黄色片| 久久久国产成人免费| 99久久99久久久精品蜜桃| 国产一卡二卡三卡精品| 久久久国产成人精品二区 | 免费日韩欧美在线观看| 国产成人精品在线电影| 国产高清国产精品国产三级| 午夜影院日韩av| av福利片在线| 建设人人有责人人尽责人人享有的| 亚洲精品中文字幕一二三四区| 成人精品一区二区免费| 欧美午夜高清在线| 国产成人一区二区三区免费视频网站| 亚洲五月色婷婷综合| 久久人妻福利社区极品人妻图片| 国产激情欧美一区二区| 精品国产美女av久久久久小说| 亚洲成国产人片在线观看| 女人被躁到高潮嗷嗷叫费观| 视频在线观看一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 国产免费现黄频在线看| 国产精品一区二区免费欧美| 国产不卡一卡二| 免费在线观看亚洲国产| 老司机靠b影院| 18在线观看网站| 精品福利观看| 亚洲性夜色夜夜综合| 亚洲色图综合在线观看| 午夜免费观看网址| 欧美日韩亚洲国产一区二区在线观看 | 久久热在线av| 欧美午夜高清在线| 国产精品一区二区免费欧美| 男女床上黄色一级片免费看| 中文字幕最新亚洲高清| av欧美777| 熟女少妇亚洲综合色aaa.| 国产不卡一卡二| √禁漫天堂资源中文www| 亚洲片人在线观看| 成人18禁在线播放| 80岁老熟妇乱子伦牲交| av一本久久久久| 99热只有精品国产| xxxhd国产人妻xxx| 亚洲中文av在线| 男男h啪啪无遮挡| 人人妻人人澡人人爽人人夜夜| 一区二区三区国产精品乱码| 日韩视频一区二区在线观看| 韩国av一区二区三区四区| 天天添夜夜摸| 搡老熟女国产l中国老女人| 久久人妻福利社区极品人妻图片| 国产精品久久久久成人av| 日本a在线网址| 欧美激情久久久久久爽电影 | 男人舔女人的私密视频| 国产国语露脸激情在线看| 乱人伦中国视频| 久久久国产成人精品二区 | 欧美午夜高清在线| 久久人人爽av亚洲精品天堂| 精品人妻熟女毛片av久久网站| 看片在线看免费视频| 黑丝袜美女国产一区| 一本大道久久a久久精品| 狠狠狠狠99中文字幕| 老熟妇乱子伦视频在线观看| 亚洲av欧美aⅴ国产| 亚洲三区欧美一区| 成人黄色视频免费在线看| 伊人久久大香线蕉亚洲五| 亚洲免费av在线视频| 日本黄色视频三级网站网址 | 999精品在线视频| 亚洲人成伊人成综合网2020| 精品国产一区二区三区四区第35| 成人18禁高潮啪啪吃奶动态图| 国产三级黄色录像| 两性午夜刺激爽爽歪歪视频在线观看 | 精品久久久久久,| 色尼玛亚洲综合影院| 99精品欧美一区二区三区四区| 99国产精品99久久久久| 亚洲av日韩在线播放| 黄网站色视频无遮挡免费观看| 99久久国产精品久久久| 欧美在线黄色| 久久久久久久久免费视频了| 成在线人永久免费视频| 国产精品1区2区在线观看. | 午夜福利影视在线免费观看| 欧美在线一区亚洲| 国产精品久久久久久精品古装| 99热网站在线观看| 国产av一区二区精品久久| 国产激情欧美一区二区| 男女之事视频高清在线观看| 黑人巨大精品欧美一区二区mp4| 一区在线观看完整版| 亚洲少妇的诱惑av| 高清av免费在线| 亚洲男人天堂网一区| 丝袜美足系列| 黄频高清免费视频| 国产亚洲av高清不卡| 99热国产这里只有精品6| 亚洲美女黄片视频| 大码成人一级视频| 丰满的人妻完整版| 免费一级毛片在线播放高清视频 | 91字幕亚洲|