• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The interconnected stability and cooperative control for a class of uncertain time-delay systems

    2010-02-10 01:29:20ZHAOHuiCHENDongyanHUJun
    關(guān)鍵詞:魯棒學(xué)報(bào)電機(jī)

    ZHAO Hui, CHEN Dong-yan, HU Jun

    (Department of Applied Mathematics,Harbin University of Science and Technology,Harbin 150080,China)

    0 Introduction

    A large-scale dynamical system is generally characterized by a large number of variables representing the system.Considerable research attention has been devoted to the decentralized control theory,which is a basic method for addressing large scale system,and many results have been reported,see[1-6]and the references cited therein.Some special decentralized control problems are studied for discrete-time interconnected systems in [4]and [5].It has been shown that some unstable subsystems can generate a stable system under effective interconnections.Recently,stability analysis and decentralized control problems are addressed for a class of complex dynamical networks in[6].Some criteria for stability and stabilization under a special decentralized control strategy are established for networks by using a simple similarity transformation.

    Recently,a series of significant results on interconnections and cooperative control of linear or nonlinear systems have been presented[3,5,7-9].The interconnected stability and cooperative control of largescale linear systems are investigated in [9].Necessary and sufficient conditions for interconnected stability and cooperative stabilization of two independent subsystems are presented by using the BMI technique,and the problems of designing interconnection matrices and cooperative controllers are converted into corresponding optimization problems.It is well known that time-delays are frequently encountered in a variety of industrial and engineering systems.The existence of time-delay may cause undesirable dynamic network behaviors such as oscillation and instability.It worth mentioning that the time-delay case was not discussed in [9],then there is much room for further investigating.

    On the other hand,convex polytopic uncertainties have the properties of natural and more universal and less conservative than norm-bounded uncertainty on describing practical problems[10],and have been received considerable attention from researchers and a large number of related results have been obtained[11].

    Motivated by the above discussion,in this paper,we deal with the interconnected stability and cooperative control of linear uncertain time-delay subsystems with convex polytopic uncertainty by using the LMI and BMI techniques.Firstly,a sufficient condition for the interconnected stability of uncertain time-delay subsystems with convex polytopic uncertainty is presented.In addition,we consider the optimization designing problem of the interconnection matrices,and give a sufficient condition for interconnected stability such that certain performance index of uncertain time-delay subsystems with convex polytopic uncertainty is satisfied.Secondly,we investigate the stabilizing problem of given uncertain time-delay subsystems through cooperative controllers.Thirdly,optimization algorithms based on the BMI are presented,and a numerical example is given to demonstrate the validity of the presented result.Finally,we conclude this paper.

    Notations.The notations used throughout the paper are standard.Matrices are denoted by capital letters and scalars are denoted by lowercase Greek letters.The superscript‘T’stands for matrix transposition;Rndenotes then-dimensional Euclidean space.I and 0 represent the identity matrix and a zero matrix with appropriate dimensions.‘diag{…}’stands for a block-diagonal matrix.Matrices,if there dimensions are not explicitly stated,are assumed to be compatible for algebraic operations.

    1 The interconnected stability and guaranteed cost of linear uncertain timedelay subsystems

    Consider the following two independent linear uncertain time-delay subsystems:

    where xi(t)∈Rni,i=1,2 are the states of subsystem;Ai,Aiτ∈Rni×ni,i=1,2 are known constant matrices,ΔAi,ΔAiτ∈Rni×ni,i=1,2 are unknown uncertain matrices;τ1andτ2represent the non-negative delays components in the states;φi(t),i=1,2 are the initial functions on the segment[- τi,0].

    Suppose that uncertain matrices ΔAiand ΔAiτ,i=1,2 are not precisely known,but belong to a convex bounded uncertain domain given by

    where Eijiand Filiare known constant matrices.

    We are in the position to state the problem to be addressed in this section as follows.

    Problem 1:For all the unknown uncertain matrices ΔAiand ΔAiτsatisfying(3),whether there exist interconnected matrices A12∈Rn1×n2and A21∈Rn2×n1and how to design interconnected matrices A12and A21,such that the interconnected uncertain time-delay system

    is asymptotically stable,as well as the optimization problem for designing interconnected matrices A12and A21under the following performance index

    Here,x(t)= [x1(t),x2(t)]T,Ad=diag{A12,A21},and Q is a known symmetric semi-positive definite matrix.

    Definition 1 If there exist matrices A12and A21,such that the interconnected uncertain time-delay system(4)is asymptotically stable for all the unknown uncertain matrices ΔAiand ΔAiτsatisfying(3),then the uncertain time-delay subsystems(1)and(2)are said to be interconnected stable.

    Setting

    then the interconnected uncertain time-delay system(4)can be rewritten as follows

    We are in the position to derive a sufficient condition under ensuring the uncertain time-delay subsystems(1)and(2)to be interconnected stable for all parameter uncertainty satisfying(3).

    Theorem 1 The uncertain time-delay subsystems(1)and(2)is interconnected stable,if there exist symmetric positive definite matrices P11,P22,S11,S22,R11,R22,and matrices P12,S12,R12,A12,A21,R12,A12such that the following matrix inequalities(7)~(10)hold,According to the Lyapunov stability theory,if there exist symmetric positive definite matrices P,S and R,such that the following inequality holds,then the system(6)is asymptotically stable.Note that,inequality(12)can be expressed as follows

    Hence,it follows from(10)that(13)holds.This completes the proof.

    Remark 1 Note that the inequalities(7)-(9)are LMIs and inequality(10)is a BMI,the solution of Theorem 1 can be converted into a problem of find the global solution to the following optimization problem(P1):

    Now,weconsidertheoptimization designing problem of the interconnected matrices.

    Theorem 2 If there exist symmetric positive definite matrices P11,P22,S11,S22,R11,R22,and matrices P12,S12,R12,A12,A21,such that LMIs(7)~ (9)and the following BMI

    and then the uncertain time-delay subsystems(1)and(2)can be interconnected stable by interconnection matrices A12and A21.The performance index(5)satisfies the following inequality:

    ProofFor the interconnected uncertain time-delay system(6),we choose a Lyapunov function as(11).Then,along the solution of system(6),the time derivative ofV(x(t))is given by

    Therefore,the interconnected uncertain time-delay system(6)is asymptotically stable.

    Furthermore,integrating both sides of(17)from 0 toT,and noting the initial condition,we have

    Then,we obtain inequality(15).

    On the other hand,together with the Schur complements,inequality(16)is equivalent to the following inequality:

    Similar to the proof of Theorem 1,inequality(18)holds if the BMI(14)holds.This completes the proof.

    According to Theorem 2,the optimization problem for designing interconnection matrices A12and A21can be formulated as:

    2 Optimization design of the cooperative controllers for linear uncertain time-delay subsystems

    In this section,we consider the stabilized problem of given uncertain time-delay subsystems through cooperative controllers.

    Consider the following two independent linear uncertain time-delay subsystems:where u12(t)∈Rm1and u21(t)∈Rm2are cooperative control variables,B12∈Rn1×m1and B21∈Rn2×m2are known constant matrices,other symbols are the same as those in the above section.

    In this section,we consider the following problem.

    Problem 2:For all the unknown uncertain matrices ΔAiand ΔAiτ(i=1,2)satisfying(3),whether there exist state feedback controllers(i.e.,cooperative controllers)

    u12(t)=K12x2(t),u21(t)=K21x1(t), (23)such that the following closed-loop interconnected uncertain time-delay system

    is asymptotically stable,as well as the optimization problem for designing cooperative controllers(23)under the following performance index

    where U12∈Rm1×m1and U21∈Rm2×m2are given symmetric positive definite matrices,K12∈Rm1×n2and K21∈Rm2×n1are unknown constant matrices to be designed.

    Definition 2If there exist cooperative controllers(23),such that the closed-loop interconnected uncertain time-delay system(24)is asymptotically stable for all the unknown uncertain matrices ΔAiand Δ Aiτ(i=1,2)satisfying(3),then the uncertain time-delay subsystems(21)and(22)are said to be cooperatively stable.

    The following theorem presents a sufficient condition underwhich uncertain time-delay subsystems(21)and(22)are cooperatively stable through cooperative controllers(23).

    Theorem 3If there exist symmetric positive definite matrices P11,P22,S11,S22,R11,R22,and matrices P12,S12,R12,K12,K21,such that inequalities(7)~(9)and the following matrix inequality

    Then the uncertain time-delay subsystems(21)and(22)can be cooperatively stable,and state feedback controllers(23)are said to be cooperative controllers.where

    ProofTo prove this theorem,we only need to replace A12and A21with B12K12and B21K21in Theorem 1.The proof is complete.

    Theorem 3 can be obtained by solving the following optimization problem:

    Theorem 4If there exist symmetric positive definite matrices P11,P22,S11,S22,R11,R22,matrices P12,S12,R12,K12,K21,such that the LMIs(7)~ (9),and the following BMI

    Then subsystems(1)and(2)can be cooperatively stable by cooperative controllers(23),and the performance index(25)satisfies the following inequality:

    ProofTo prove this theorem,we only need to replace A12and A21with B12K12and B21K21in Theorem 2.The proof is complete.

    By Theorem 4,the optimization methods for designing cooperative controllers(23)can be formulated as:

    3 Optimization algorithm based on BMI

    The optimization(P1)is a feasible problem of the LMI and BMI.Since inequality(10)is a BMI with variable Pij,i,j=1,2 and A12,A21,if fix Pij,i,j=1,2,BML(10)can be formulated as LMI in matrix variable A12,A21,and if fix A12,A21,BML(10)can be formulated as LMI in matrix variable Pij,i,j=1,2.Therefore,we can present the following algorithm to solving optimization problem(P1).

    Optimization problem(P2)is a standard generalized eigenvalue problem(GEVP)with LMI and BMI constraints,the process of solving it can be finished in two steps.The first step is to obtain the feasible solution(P(0),S(0),R(0),A(0)12,A(0)21)of LMIs(7)~ (9)and BMI(10)by using the same methods as Algorithm 1;the second step is to use the following optimization algorithm 2.

    It can be noted that if A12,A21are fixed,optimization(P3)is a standard GEVP problem with LMI constraints.It has been proved that the existence and the uniqueness are satisfied for optimal solution to such optimization problems.

    Only the replacement of A12and A21with B12K12and B21K21,respectively,in Algorithm 1 and Algorithm 2 is required to solve the(P4)~(P6).

    4 A numerical example

    We consider the following two independent subsystems·

    It is easy to determine that the subsystem(29)is unstable,but the subsystem(30)is stable.We shall stabilize the subsystems by the method of interconnected stability.Here,the inequality(10)in Theorem 1 becomes to

    is stable.The curves of systems above are given as follows.

    The simulation results are shown in Figs.1 - 3 which imply that the desired goal is well achieved.

    Fig.1 state response of subsystems(29)

    Fig.2 state response of subsystem(30)

    Fig.3 state response of interconnected system(34)

    5 Conclusion

    This paper discusses the problem of interconnected stability and cooperative control for linear time-delay subsystems with convex polytopicuncertainty.Based on the technique of linear matrix inequality(LMI)and bilinear matrix inequality(BMI),we present several sufficient conditions for the interconnected stability and cooperative control of two independent uncertain time-delay subsystems.The cooperative controllers designing problems can be formulated as a feasible problem with LMI and BMI constraints.In addition,the problem of designing optimal cooperative controller is converted into an optimization problem with LMI and BMI constraints,which can be easily tested by using standard numerical software.The discussion of this paper can be extended to studying the problem of interconnected stability and cooperative control for more independent uncertain time-delay subsystems

    [1] WANG S H,DAVISON E J.On the stabilization of decentralized fixed modes for interconnected systems[J].Automatica,1983,19(2):473-478.

    [2] YAND G H,WANG J L.SOH Y C.Decentralized control of symmetric systems [J].Systems&Control Letters,2001,42(2):145-149.

    [3] DUAN Z S,WANG J Z,HUANG L.Special decentralized control problems and effectiveness of parameter-dependent Lyapunov function method [C]//Proceedings of American Control Conference.Portland,USA.2005:1697-1702.

    [4] DUAN Z S,WANG J Z,HUANG L.Special decentralized control problems in discrete-time interconnected systems composed of two subsystems[C]//Proceedings of the25th Chinese Control Conference,August 7 -11,2006,Harbin,China.2006:1080 -1085.

    [5] DUAN Z S,WANG J Z,HUANG L.Special decentralized control problems in discrete-time interconnected systems composed of two subsystems[J].Systems and Control Letters,2007,56(3):206-214.

    [6] DUAN Z S,WANG J Z,CHEN G R,et al.Stability analysis and decentralized control of a class of complex dynamical networks[J].Automatica,2008,44(4):1028 -1035.

    [7] DUAN Z S,HUANG L,WANG J Z,et al.Harmonic control between two systems[J].Acta Automatica Sinica,2003,29(1):14-22.

    [8] YANG Y,DUAN Z S,HUANG L.Design of nonlinear interconnections guaranteeing the absence of periodic solutions [J].Systems and Control Letters,2006,55(4):338 -346.

    [9] NIAN X H,CAO L.BMI approach to the interconnected stability and cooperative control of linear systems[J].Acta Automatica Sinica,2008,34(4):438-444.

    [10] 王廣雄,李連鋒,王新生.魯棒設(shè)計(jì)中參數(shù)不確定性的描述[J].電機(jī)與控制學(xué)報(bào),2001,5(1):5 -7.

    WANG G X,LI L F,WANG X S.The description of the parameter uncertainty for robust design [J].Electric Machines and Control,2001,5(1):5 -7.

    [11] 王常虹,奚伯齊,李清華,等.網(wǎng)絡(luò)化控制系統(tǒng)魯棒L2-L∞控制器設(shè)計(jì)[J].電機(jī)與控制學(xué)報(bào),2010,14(2):25-30.

    WANG C H,XI B Q,LI Q H,et al.Robust L2-L∞controller design for networked control systems [J].Electric Machines and Control,2010,14(2):25-30.

    (編輯:于智龍)

    猜你喜歡
    魯棒學(xué)報(bào)電機(jī)
    關(guān)于電機(jī)滾動(dòng)軸承的選擇與計(jì)算
    瞻望電機(jī)的更新?lián)Q代
    歡迎訂閱2022年《電機(jī)與控制應(yīng)用》
    致敬學(xué)報(bào)40年
    基于學(xué)習(xí)的魯棒自適應(yīng)評判控制研究進(jìn)展
    目標(biāo)魯棒識別的抗旋轉(zhuǎn)HDO 局部特征描述
    電機(jī)隱憂
    能源(2016年2期)2016-12-01 05:10:31
    基于Cauchy魯棒函數(shù)的UKF改進(jìn)算法
    目標(biāo)軌跡更新的點(diǎn)到點(diǎn)魯棒迭代學(xué)習(xí)控制
    學(xué)報(bào)簡介
    久久久久久国产a免费观看| 老司机福利观看| 国产成人av激情在线播放| 免费大片18禁| 国产日本99.免费观看| 精品一区二区三区av网在线观看| 亚洲熟女毛片儿| 久久精品aⅴ一区二区三区四区| 亚洲熟妇中文字幕五十中出| 成人特级av手机在线观看| 日本a在线网址| 久久精品综合一区二区三区| 变态另类丝袜制服| 国产美女午夜福利| 日日夜夜操网爽| 日本黄色视频三级网站网址| 男女床上黄色一级片免费看| 给我免费播放毛片高清在线观看| 国产成人av激情在线播放| 国产视频一区二区在线看| 国产精品香港三级国产av潘金莲| 国产成人精品久久二区二区91| e午夜精品久久久久久久| 麻豆一二三区av精品| 99久久久亚洲精品蜜臀av| 男女床上黄色一级片免费看| 99在线视频只有这里精品首页| 九色国产91popny在线| 又紧又爽又黄一区二区| 88av欧美| 久久午夜亚洲精品久久| 精品国产乱子伦一区二区三区| 成人特级黄色片久久久久久久| 久久99热这里只有精品18| 99久久无色码亚洲精品果冻| 亚洲avbb在线观看| 黑人巨大精品欧美一区二区mp4| 国内揄拍国产精品人妻在线| 亚洲精品久久国产高清桃花| 亚洲在线自拍视频| 日韩人妻高清精品专区| 国产午夜精品久久久久久| 最近在线观看免费完整版| 久久久精品大字幕| 男人舔奶头视频| 琪琪午夜伦伦电影理论片6080| 麻豆成人午夜福利视频| 国产精品野战在线观看| 国产三级中文精品| 黄频高清免费视频| 亚洲第一电影网av| 国产极品精品免费视频能看的| 91麻豆精品激情在线观看国产| 18美女黄网站色大片免费观看| svipshipincom国产片| 白带黄色成豆腐渣| 亚洲av免费在线观看| 午夜福利在线观看吧| 色尼玛亚洲综合影院| 一个人看的www免费观看视频| 在线观看一区二区三区| 久久久久国内视频| 免费一级毛片在线播放高清视频| 亚洲自拍偷在线| 国内毛片毛片毛片毛片毛片| 欧美日韩亚洲国产一区二区在线观看| 国产乱人伦免费视频| 热99在线观看视频| 后天国语完整版免费观看| 淫妇啪啪啪对白视频| 12—13女人毛片做爰片一| 床上黄色一级片| 欧美日韩一级在线毛片| 亚洲一区二区三区不卡视频| 久久精品国产亚洲av香蕉五月| 日本 欧美在线| 天堂影院成人在线观看| 午夜视频精品福利| 露出奶头的视频| 免费在线观看亚洲国产| 国产乱人伦免费视频| 黄色女人牲交| 成人av在线播放网站| 国产激情欧美一区二区| 午夜影院日韩av| 一夜夜www| 99久久综合精品五月天人人| 老熟妇乱子伦视频在线观看| 男女床上黄色一级片免费看| 国产视频内射| 一二三四在线观看免费中文在| 日韩欧美一区二区三区在线观看| 毛片女人毛片| 亚洲av中文字字幕乱码综合| 18禁黄网站禁片免费观看直播| 99国产精品一区二区蜜桃av| 高清在线国产一区| 亚洲精品在线美女| 久久久水蜜桃国产精品网| 国产麻豆成人av免费视频| 日韩欧美在线乱码| 国产精品久久久av美女十八| 亚洲国产精品成人综合色| 亚洲国产精品久久男人天堂| 久久久久久人人人人人| 搡老妇女老女人老熟妇| 中文在线观看免费www的网站| 日本黄色视频三级网站网址| 香蕉丝袜av| 老司机福利观看| 三级男女做爰猛烈吃奶摸视频| 丰满人妻一区二区三区视频av | 99国产综合亚洲精品| 欧美3d第一页| 熟女电影av网| 噜噜噜噜噜久久久久久91| 性欧美人与动物交配| 国产精品一区二区三区四区免费观看 | 黄色日韩在线| 床上黄色一级片| e午夜精品久久久久久久| 搞女人的毛片| 欧美黑人欧美精品刺激| 欧美丝袜亚洲另类 | 男女之事视频高清在线观看| 精品日产1卡2卡| 久久久久久久久免费视频了| 国产av在哪里看| 搡老妇女老女人老熟妇| 午夜精品一区二区三区免费看| 大型黄色视频在线免费观看| 国产精品女同一区二区软件 | 热99在线观看视频| 在线观看免费午夜福利视频| 国产午夜精品论理片| 啦啦啦免费观看视频1| 中国美女看黄片| 欧美最黄视频在线播放免费| 精品人妻1区二区| 日日干狠狠操夜夜爽| 国产精品 欧美亚洲| 成年女人看的毛片在线观看| 制服丝袜大香蕉在线| 法律面前人人平等表现在哪些方面| 欧美三级亚洲精品| 国内毛片毛片毛片毛片毛片| 精品久久久久久久久久免费视频| 在线视频色国产色| 午夜精品在线福利| 亚洲自偷自拍图片 自拍| 国产真人三级小视频在线观看| 国产精品 国内视频| 两个人看的免费小视频| 婷婷精品国产亚洲av在线| 性色av乱码一区二区三区2| 亚洲国产中文字幕在线视频| 日韩免费av在线播放| 嫩草影院精品99| 欧美一级毛片孕妇| 国产高潮美女av| 一个人免费在线观看的高清视频| 中出人妻视频一区二区| 精品不卡国产一区二区三区| 亚洲九九香蕉| 久久久久久久久免费视频了| 亚洲精品一区av在线观看| 亚洲国产精品成人综合色| 夜夜躁狠狠躁天天躁| 欧美日本亚洲视频在线播放| 给我免费播放毛片高清在线观看| 欧美精品啪啪一区二区三区| 亚洲av日韩精品久久久久久密| 亚洲第一欧美日韩一区二区三区| 三级国产精品欧美在线观看 | 亚洲国产精品合色在线| 久久精品综合一区二区三区| 精品日产1卡2卡| 999久久久精品免费观看国产| or卡值多少钱| 观看免费一级毛片| 99re在线观看精品视频| 非洲黑人性xxxx精品又粗又长| 日韩精品中文字幕看吧| 午夜福利免费观看在线| 国产综合懂色| 美女大奶头视频| 高清毛片免费观看视频网站| 99久久99久久久精品蜜桃| 九九久久精品国产亚洲av麻豆 | 全区人妻精品视频| 18禁美女被吸乳视频| 亚洲av成人精品一区久久| 人人妻人人澡欧美一区二区| 两性夫妻黄色片| 搡老熟女国产l中国老女人| 国产蜜桃级精品一区二区三区| 成人性生交大片免费视频hd| 女同久久另类99精品国产91| 精品免费久久久久久久清纯| 中文字幕最新亚洲高清| 美女免费视频网站| 非洲黑人性xxxx精品又粗又长| 国产精品98久久久久久宅男小说| 天堂√8在线中文| 国产单亲对白刺激| 久久久久久九九精品二区国产| 国产高清有码在线观看视频| 小蜜桃在线观看免费完整版高清| 色吧在线观看| 校园春色视频在线观看| av天堂在线播放| 国模一区二区三区四区视频 | 国模一区二区三区四区视频 | 亚洲人成网站在线播放欧美日韩| 中文字幕熟女人妻在线| 久久午夜综合久久蜜桃| 国产不卡一卡二| 熟女人妻精品中文字幕| 全区人妻精品视频| 男女之事视频高清在线观看| 怎么达到女性高潮| 久久精品国产清高在天天线| 中出人妻视频一区二区| 悠悠久久av| 亚洲黑人精品在线| 亚洲一区二区三区不卡视频| 色综合站精品国产| 亚洲在线自拍视频| 免费av毛片视频| av片东京热男人的天堂| 每晚都被弄得嗷嗷叫到高潮| 嫁个100分男人电影在线观看| 久久中文看片网| 欧美成人性av电影在线观看| 午夜福利在线在线| 99热只有精品国产| bbb黄色大片| 韩国av一区二区三区四区| 国产又色又爽无遮挡免费看| 亚洲国产欧美一区二区综合| 国产av一区在线观看免费| 不卡一级毛片| 97超视频在线观看视频| 麻豆国产av国片精品| 久久久久久久久中文| 国产爱豆传媒在线观看| 黄色视频,在线免费观看| 久99久视频精品免费| 一个人看视频在线观看www免费 | 亚洲国产看品久久| 俺也久久电影网| 欧美日本视频| 色综合亚洲欧美另类图片| 亚洲欧美日韩高清专用| 99视频精品全部免费 在线 | 国产成人啪精品午夜网站| 亚洲午夜精品一区,二区,三区| av国产免费在线观看| 免费看十八禁软件| 窝窝影院91人妻| 黄色 视频免费看| a级毛片a级免费在线| 一本久久中文字幕| 久久人妻av系列| 熟女电影av网| 亚洲中文av在线| 成年免费大片在线观看| 亚洲美女视频黄频| 中国美女看黄片| 啦啦啦韩国在线观看视频| 午夜免费成人在线视频| 日本免费a在线| 亚洲国产精品久久男人天堂| 亚洲电影在线观看av| 国产精品日韩av在线免费观看| 99热6这里只有精品| 一个人看视频在线观看www免费 | 午夜免费观看网址| 可以在线观看的亚洲视频| 日韩大尺度精品在线看网址| 久久国产乱子伦精品免费另类| 1024手机看黄色片| 亚洲国产高清在线一区二区三| 成人午夜高清在线视频| 国产精品乱码一区二三区的特点| 国产av不卡久久| 制服人妻中文乱码| 一区福利在线观看| 欧美一级毛片孕妇| 精品人妻1区二区| 后天国语完整版免费观看| 欧美日韩精品网址| 一夜夜www| 9191精品国产免费久久| 国产一区二区激情短视频| 特大巨黑吊av在线直播| 婷婷亚洲欧美| 无遮挡黄片免费观看| 一个人免费在线观看的高清视频| 别揉我奶头~嗯~啊~动态视频| 国产av一区在线观看免费| 久久香蕉精品热| 美女高潮喷水抽搐中文字幕| 99国产精品一区二区蜜桃av| 日韩有码中文字幕| 丁香六月欧美| 国产男靠女视频免费网站| 色播亚洲综合网| 级片在线观看| 欧美+亚洲+日韩+国产| 免费大片18禁| 亚洲第一电影网av| 国内精品美女久久久久久| 亚洲无线在线观看| 精品久久蜜臀av无| 国产精品国产高清国产av| 18禁国产床啪视频网站| 操出白浆在线播放| 欧美绝顶高潮抽搐喷水| 久久久成人免费电影| 老司机福利观看| 日韩欧美精品v在线| 国产麻豆成人av免费视频| 麻豆久久精品国产亚洲av| 男女视频在线观看网站免费| 国产精品一区二区精品视频观看| 国产伦人伦偷精品视频| 91在线观看av| 亚洲av电影在线进入| 一级毛片女人18水好多| 亚洲精品色激情综合| 亚洲第一电影网av| 国产精品久久久人人做人人爽| e午夜精品久久久久久久| 1000部很黄的大片| 国产欧美日韩一区二区精品| 国内精品美女久久久久久| 又大又爽又粗| 91在线观看av| 宅男免费午夜| 国产成人av教育| 国产熟女xx| 亚洲国产精品999在线| 亚洲欧美一区二区三区黑人| 国产精品永久免费网站| 中文亚洲av片在线观看爽| 国产av不卡久久| 成年免费大片在线观看| 国产免费男女视频| 久久久成人免费电影| 欧美日韩福利视频一区二区| 岛国在线观看网站| 国产精品一区二区三区四区久久| 国产成人欧美在线观看| 99视频精品全部免费 在线 | 午夜精品一区二区三区免费看| 人人妻人人澡欧美一区二区| 久久亚洲真实| 99精品在免费线老司机午夜| 天天躁狠狠躁夜夜躁狠狠躁| 禁无遮挡网站| 免费在线观看视频国产中文字幕亚洲| 久久天堂一区二区三区四区| 亚洲国产欧美一区二区综合| 亚洲精品美女久久av网站| 国产精品美女特级片免费视频播放器 | 欧美高清成人免费视频www| 亚洲成人久久性| 成人特级黄色片久久久久久久| 亚洲性夜色夜夜综合| 99久久成人亚洲精品观看| 九九在线视频观看精品| 五月玫瑰六月丁香| 国产97色在线日韩免费| 日韩中文字幕欧美一区二区| 国内毛片毛片毛片毛片毛片| 99热这里只有是精品50| 亚洲国产精品999在线| tocl精华| 亚洲国产精品合色在线| 老汉色av国产亚洲站长工具| 中文字幕最新亚洲高清| 男女床上黄色一级片免费看| 国产精品野战在线观看| 听说在线观看完整版免费高清| 亚洲国产欧美网| 黄色视频,在线免费观看| 91在线观看av| 欧美成人性av电影在线观看| 亚洲专区国产一区二区| 免费观看的影片在线观看| 动漫黄色视频在线观看| 成人性生交大片免费视频hd| 亚洲真实伦在线观看| e午夜精品久久久久久久| 村上凉子中文字幕在线| 国产精品久久电影中文字幕| 91麻豆精品激情在线观看国产| xxx96com| 麻豆国产97在线/欧美| 一级毛片高清免费大全| 观看美女的网站| www日本在线高清视频| 亚洲,欧美精品.| 久久伊人香网站| 免费av毛片视频| 亚洲av成人精品一区久久| 亚洲av成人av| 久久久久久久久中文| 俄罗斯特黄特色一大片| 老熟妇乱子伦视频在线观看| 国产成人影院久久av| 成年女人看的毛片在线观看| 久9热在线精品视频| 国产高潮美女av| 国产麻豆成人av免费视频| av天堂在线播放| 又爽又黄无遮挡网站| 欧美在线黄色| 亚洲天堂国产精品一区在线| 十八禁网站免费在线| 美女被艹到高潮喷水动态| 国产高清视频在线观看网站| 久久久久精品国产欧美久久久| 丁香欧美五月| 99久久成人亚洲精品观看| 岛国视频午夜一区免费看| 国产激情欧美一区二区| 精品国产乱码久久久久久男人| 亚洲国产精品合色在线| 嫁个100分男人电影在线观看| 1000部很黄的大片| 成年免费大片在线观看| av国产免费在线观看| 亚洲第一电影网av| 亚洲精品美女久久av网站| 亚洲欧美日韩高清在线视频| 国产精品免费一区二区三区在线| 欧美大码av| 变态另类丝袜制服| 国产伦精品一区二区三区四那| 丰满人妻一区二区三区视频av | 日本一本二区三区精品| 九九热线精品视视频播放| 亚洲专区字幕在线| 免费看十八禁软件| 18禁观看日本| 色综合欧美亚洲国产小说| 九九久久精品国产亚洲av麻豆 | 丰满的人妻完整版| 国产欧美日韩精品一区二区| 国内毛片毛片毛片毛片毛片| av天堂中文字幕网| 可以在线观看的亚洲视频| 亚洲乱码一区二区免费版| 国产激情久久老熟女| 精品乱码久久久久久99久播| 一区二区三区国产精品乱码| 99视频精品全部免费 在线 | 丁香欧美五月| 国产综合懂色| 午夜福利免费观看在线| 亚洲午夜精品一区,二区,三区| 男人的好看免费观看在线视频| 日本免费一区二区三区高清不卡| 性欧美人与动物交配| 国产蜜桃级精品一区二区三区| 中文字幕久久专区| 观看美女的网站| 又紧又爽又黄一区二区| 国产成人aa在线观看| 国产精品久久久av美女十八| 观看免费一级毛片| 亚洲性夜色夜夜综合| 欧美日韩精品网址| 麻豆成人午夜福利视频| 欧美av亚洲av综合av国产av| 伦理电影免费视频| 亚洲国产欧美人成| 亚洲午夜精品一区,二区,三区| 国产亚洲精品久久久com| 国产精品久久久久久亚洲av鲁大| 国产成人啪精品午夜网站| 一二三四社区在线视频社区8| 日日摸夜夜添夜夜添小说| 19禁男女啪啪无遮挡网站| 啦啦啦观看免费观看视频高清| 国产私拍福利视频在线观看| 美女扒开内裤让男人捅视频| 亚洲成人中文字幕在线播放| www国产在线视频色| 午夜免费成人在线视频| 亚洲人成伊人成综合网2020| 成人国产一区最新在线观看| 国产成人aa在线观看| 欧美一区二区精品小视频在线| 亚洲人成电影免费在线| 1000部很黄的大片| 精品一区二区三区视频在线 | 啦啦啦免费观看视频1| 亚洲avbb在线观看| 18禁黄网站禁片免费观看直播| 狂野欧美激情性xxxx| 亚洲成人精品中文字幕电影| e午夜精品久久久久久久| 男女午夜视频在线观看| 国产97色在线日韩免费| 亚洲美女黄片视频| 国产成人欧美在线观看| 国产精品久久久av美女十八| 久久精品国产99精品国产亚洲性色| 在线视频色国产色| 成人三级做爰电影| 啦啦啦免费观看视频1| 成人亚洲精品av一区二区| 国产又色又爽无遮挡免费看| 欧美日韩亚洲国产一区二区在线观看| 久久精品夜夜夜夜夜久久蜜豆| 蜜桃久久精品国产亚洲av| 黄色女人牲交| 观看免费一级毛片| 长腿黑丝高跟| 欧美乱码精品一区二区三区| 高清毛片免费观看视频网站| 亚洲乱码一区二区免费版| 久久午夜综合久久蜜桃| 亚洲九九香蕉| 午夜福利在线观看免费完整高清在 | 综合色av麻豆| 国产精品一区二区精品视频观看| 午夜激情欧美在线| 免费av毛片视频| 亚洲成av人片在线播放无| 精品久久久久久久末码| 久久久久亚洲av毛片大全| 欧美国产日韩亚洲一区| 亚洲av电影在线进入| 日本成人三级电影网站| 亚洲成a人片在线一区二区| 欧美午夜高清在线| 好看av亚洲va欧美ⅴa在| 男人的好看免费观看在线视频| 亚洲精品一区av在线观看| 精品日产1卡2卡| 欧美午夜高清在线| 色av中文字幕| 国产伦一二天堂av在线观看| 日韩三级视频一区二区三区| 黄色丝袜av网址大全| 一a级毛片在线观看| 色尼玛亚洲综合影院| 1024香蕉在线观看| 最新美女视频免费是黄的| 在线观看一区二区三区| 亚洲欧美精品综合久久99| 国产成人系列免费观看| 在线观看日韩欧美| av中文乱码字幕在线| 国产v大片淫在线免费观看| 91av网一区二区| 亚洲男人的天堂狠狠| 一进一出好大好爽视频| 国产人伦9x9x在线观看| 啦啦啦免费观看视频1| 法律面前人人平等表现在哪些方面| 久久精品夜夜夜夜夜久久蜜豆| 亚洲av电影不卡..在线观看| 最新中文字幕久久久久 | 精品99又大又爽又粗少妇毛片 | 成年女人永久免费观看视频| 久久久久久久久中文| 制服丝袜大香蕉在线| 手机成人av网站| 高清毛片免费观看视频网站| 免费在线观看影片大全网站| 18禁黄网站禁片午夜丰满| 亚洲精品一区av在线观看| 欧美成人免费av一区二区三区| 一进一出好大好爽视频| 看免费av毛片| 露出奶头的视频| 成人高潮视频无遮挡免费网站| 一夜夜www| 婷婷亚洲欧美| 最近最新免费中文字幕在线| 午夜两性在线视频| 欧美色视频一区免费| 12—13女人毛片做爰片一| 亚洲人成电影免费在线| 国产av在哪里看| 中出人妻视频一区二区| 国产主播在线观看一区二区| 中文在线观看免费www的网站| 国产高清视频在线观看网站| 啦啦啦韩国在线观看视频| 国产精品爽爽va在线观看网站| 国产精品99久久久久久久久| 亚洲欧美日韩卡通动漫| 久久香蕉精品热| 国产美女午夜福利| 97人妻精品一区二区三区麻豆| 级片在线观看| 欧美一区二区国产精品久久精品| 国产免费男女视频| 成人无遮挡网站| 成人av一区二区三区在线看| 国内精品久久久久久久电影| 在线观看一区二区三区| 人妻丰满熟妇av一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 精品不卡国产一区二区三区| 国产精华一区二区三区| 欧美+亚洲+日韩+国产| 老司机午夜福利在线观看视频| 国产主播在线观看一区二区|