李麗麗,單路娟,張 媛,高船舟,劉越堅,宋智琦
(1.大連醫(yī)科大學 附屬第一醫(yī)院 皮膚科,遼寧 大連 116011;2.大連醫(yī)科大學 附屬第一醫(yī)院 中心實驗室,遼寧 大連 116011;3.遼寧師范大學生命科學學院 生物技術與分子藥物研發(fā)重點實驗室,遼寧 大連 116021;4.大連醫(yī)科大學 中心實驗室,遼寧 大連 116044)
谷氨酸是中樞神經(jīng)系統(tǒng)中一種最重要的興奮性神經(jīng)遞質。谷氨酸受體(glutamate receptors,GluRs)分為兩大類,一類是離子型谷氨酸受體(iontropic glutamate receptors,iGluRs),該類受體屬于配體門控離子通道,通道的啟閉受谷氨酸調控。其中甲基-D-天冬氨酸受體2A(N-methyl-D-aspartate receptors 2A,NMDAR2A)是具有強烈的電壓依賴性和高Ca2+滲透性的一種亞型。另一類是代謝型谷氨酸受體(metabotropic glutamate receptors,mGluRs),該類受體是一類G蛋白偶聯(lián)受體,其中mGluR1可激活肌糖磷酸鹽代謝和細胞內鈣的轉運[1,2]。除了中樞神經(jīng)系統(tǒng)外,非神經(jīng)系統(tǒng)骨骼、睪丸、胰腺、肺臟、心臟以及皮膚組織等多種組織中已發(fā)現(xiàn)存在谷氨酸信號系統(tǒng)[3-6]。2009年有研究發(fā)現(xiàn),表皮角質形成細胞(kerytinocytes,KCs)可分泌L-谷氨酸[7];并且KCs具有谷氨酸受體NMDAR的表達,谷氨酸信號通路可能通過影響其細胞內鈣離子濃度而影響KCs的增殖和分化[8,9]?,F(xiàn)已證實表皮內的黑素細胞(melanocytes,MCs)內亦有NMDAR,α-氨基羥甲基異噁唑丙酸受體(α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor,AMPAR)等多種谷氨酸受體表達;并發(fā)現(xiàn)離子型谷氨酸受體AMPA抑制劑可下調MCs內MITF基因(Microphthalmia- associated transcription factor)的表達[10],而后者為與MCs功能密切相關的重要調控基因之一。為進一步探討該信號通路在MCs中的作用,本研究進行了原代MCs內的離子型谷氨酸受體的蛋白表達檢測,同時觀察了干擾該信號通路下MCs樹突形態(tài)的變化。
IMDM培養(yǎng)基,胎牛血清及胰酶(Gibico公司),小鼠抗NMDAR2A單克隆抗體(Chemicon公司),小鼠抗a-tubulin單克隆抗體(Gibico)公司,F(xiàn)ITC標記山羊抗小鼠二抗(Gibico公司),MK-801(Invitrogne公司),Human Melanocyte Growth Supplem(HMGS)(Invitrogne公司),Medium245(Invitrogne公司),DispaseⅡ(Invitrogne公司),N-Methyl-D-aspartic acid(NMDA)(Alexis Blomol公司),Quisqualate(Q-LA)(Alexis Blomol公司),Quanta 200F(型)掃描電鏡(美國FEI公司)。
1.2.1 分離培養(yǎng):包皮為12~20歲泌尿外科包皮手術患者捐贈。包皮用碘伏浸泡消毒10 min,PBS洗滌3次,去除皮下組織,將包皮剪成1 mm×3 mm的皮塊,用0.5%Dispase中性酶Ⅱ4℃消化16 h,分離表、真皮。用眼科剪將表皮剪成2 mm×2 mm的皮片,37°C下用0.25%胰酶消化表皮10 min,200目篩網(wǎng)過濾,PBS洗滌2次,離心獲取較純凈表皮MCs,MCs用加human melanocyte growth supplem(HMGS)的Medium245培養(yǎng)基稀釋,以4×105個/mL的細胞密度接種到25 cm2的培養(yǎng)瓶中,于5%CO2,37℃條件下傳代培養(yǎng),第3代細胞備用。
1.2.2 MCs鑒定:(1)多巴染色:取對數(shù)生長的MCs(2~3代),0.25%胰酶消化,調節(jié)細胞密度為5×105/mL接種于含有蓋玻片的培養(yǎng)皿中,連續(xù)培養(yǎng)48~72 h,觀察細胞在蓋玻片上的生長情況。當達到60%~70%時,終止生長,4%多聚甲醛固定10 min,L-Dopa緩沖液孵育4~5 h,溫度37℃,鏡下觀察發(fā)現(xiàn)染液變?yōu)樽厣纯山K止。乙醇脫水、二甲苯透明、封片、陽性反應者細胞漿和樹突呈褐色至黑色。(2)透射電鏡觀察MCs超微結構:收集細胞,2.5%戊二醛固定后,經(jīng)脫水、滲透、包埋、超薄切片、鈾鉛染色等常規(guī)電鏡樣品制備程序,于日立H-7000型透射電鏡觀察細胞中的黑素小體及分期。
收集MCs,用PBS緩沖液漂洗3次,離心,棄上清;視細胞密度酌情加入100~200 μL細胞裂解液RIPA,反復吹洗50次,冰上作用30 min;振蕩混勻,4℃下14000 r/min離心15 min;取上清液,100℃水浴中變性3~5 min,-20℃保存。而后采用考馬思亮藍法進行蛋白質定量分析。進行SDS-PAGE蛋白電泳和Western blot檢測:細胞溶解液蛋白(25 μg)在4%積層膠和7.5%分離膠的SDS-PAGE上電泳;濕轉法將蛋白轉移至PVDF膜,將膜浸入5%脫脂奶粉1 h封閉非特異性抗原,膜與一抗稀釋液鼠抗NMDAR2A(1∶1000)及鼠抗α-tubulin(1∶1000)4℃下孵育過夜;第二天TBST洗3次,15 min/次,分別加入二抗HRP標記的抗鼠IgG(1∶5000)室溫孵育1 h,TBST洗3次,15 min/次,用ECL顯色系統(tǒng)曝光顯影。根據(jù)條帶的輝度判斷目的蛋白表達差異。上述試驗重復3次。
取第3代MCs于6孔板蓋坡片上培養(yǎng)24 h,細胞密度30%左右,加入谷氨酸受體激動劑(NMDA,Q-LA)和抑制劑(MK801),48 h后,加入2.5%戊二醛固定后,常規(guī)掃描電鏡細胞樣品制作后,于美國FEI公司Quanta 200F型掃描電鏡觀察。
為鑒定原代培養(yǎng)細胞,分別采用多巴染色及透射電鏡觀察。結果如下:多巴染色顯示胞漿內呈黑褐色(圖1A、B);掃描電鏡下可見細胞漿內大量的成熟的黑素小體(圖1C、D)。
Western Blot結果顯示,黑素細胞內有NMDAR2A蛋白的表達(圖2)。
圖1 黑素細胞生物學特性鑒定Fig 1 The identification of biological characteristics of melanocytesA,B:DOPA reactivity of melanocytes.Cells were cultured in medium supplemented with 5 mol/L DOPA under light microscopy(A×200,B×400);C:Transmission electron micrographs of melanocytes(Scale bars = 2 μm);D:The Stage III-IV melanosomes seen in cytoplasm of melanocytes(bar=500 μm)
圖2 NMDAR2A在黑素細胞內的表達Fig 2 The expression of ionotropic glutamate receptorNMDAR2A in human melanocytes Western blot was performed with 50 μg of protein lysates of normal melanocyte cells,Mouse brain lysate was loaded as a positive control(lane Ⅰ).170 kD product for NMDAR2A(lane Ⅱ)
MCs在NMDAR激動劑NMDA(200 μmol/L)和Q-LA(50 μmol/L)、非競爭性NMDAR拮抗劑MK801(150 μmol/L)分別作用48 h后細胞的樹突形態(tài)發(fā)生變化。NMDA及Q-LA作用后細胞樹突變粗,末端二、三級樹突增加。MK801作用后細胞樹突末端明顯變窄,二、三級樹突減少(圖3 A)。采用JEOL Smile View 2.1軟件測量細胞樹突長度(圖3B、C),與陰性對照組比較,NMDA(200 μmol/L)和Q-LA(50 μmol/L)作用下樹突較短,P<0.05;非競爭性NMDAR拮抗劑MK801(150 μmol/L)作用下樹突長度無明顯變化。
圖3 NMDAR拮抗劑對黑素細胞樹突形態(tài)的影響Fig 3 The dendritic morphology changes of melanocyte treated by agonists or antagonist of NMDARA:Relative to the negative control group,human melanocytes in the antagonist effect of MK-801 dendritic cells in thin and narrow,two branches significantly reduced agonist NMDA and the AMPA under the action of short and thick dendritic cells,and secondary branches increased significantly(Scale bar,a=20 μm,b =10 μm,c=5 μm );B ,C:Length of cell dendrites changes under agonists or antagonist of nmdar treatment measured by JEOL Smile View 2.1 software(Scale bar,200 μm;*P<0.05 vs control group)
谷氨酸是主要的興奮性神經(jīng)遞質。除中樞神經(jīng)系統(tǒng)外,現(xiàn)已證實表皮內亦存在谷氨酸信號通路。不僅占表皮主要細胞成分的KCs內有谷氨酸受體表達,并且目前有研究發(fā)現(xiàn)MCs內亦存在谷氨酸信號通路。已證實離子型谷氨酸受體NMDAR2A、2C及AMPAR在MCs內有表達。并發(fā)現(xiàn)AMPAR拮抗劑可下調MCs內MITF(Microphthalmia- associated transcri- ption factor)基因的表達[10]。提示該信號通路與MITF基因具有相互作用。而大量研究發(fā)現(xiàn)MITF對于MCs增殖等多種生物學功能具有調節(jié)作用。MCs內高表達的MITF可促進細胞分化,惡性黑素瘤內MITF上調可抗惡黑細胞增殖[11];同時有研究發(fā)現(xiàn)白癜風患者皮損處的表皮組織內,MITF及BCL-2的mRNA水平較白癜風患者非皮損處明顯下降[12]。因此,作者推測谷氨酸信號通路可能通過MITF參與白癜風的發(fā)病。
白癜風的發(fā)病過程中表皮MCs受損,從而導致具有正常生理功能的MCs的數(shù)目下降,但其具體發(fā)生機制目前尚不十分清楚[13]。Tobin等[14]研究了白癜風患者的皮損發(fā)現(xiàn)即使在穩(wěn)定期的發(fā)病20年以上的患者的皮損處仍存在部分MCs。從皮損處發(fā)皰取表皮,仍可在體外培養(yǎng)出有產(chǎn)生黑素功能的MCs,提示當致病因素排除后MCs可恢復功能。一項在泛發(fā)性白癜風患者及正常對照的臨床研究中發(fā)現(xiàn),患者皮損處經(jīng)摩擦后MCs變圓并部分脫離基底層,“脫落”至棘細胞層及顆粒細胞層,而患者的正常皮膚或正常對照組則較少或無MCs移入表皮現(xiàn)象。推測白癜風發(fā)病過程中皮損處MCs數(shù)量的減少可能與“脫落”現(xiàn)象有關,而后者可能與MCs變圓等形態(tài)學改變有關[15]。本研究發(fā)現(xiàn)在NMDAR拮抗劑MK801作用下,可使MCs產(chǎn)生樹突變細以及二、三級細胞樹突明顯減少等超微結構的變化,推測這種超微結構的變化有可能是造成MCs的遷移及脫落的原因。同時,近期有多項研究發(fā)現(xiàn)谷氨酸信號通路與淋巴細胞的功能有關[16-18]。本研究結果提示,谷氨酸信號通路的調節(jié)異??赡転榘遵帮L的發(fā)病機制之一,探討其作用機制對于色素異常性皮膚病的治療具有重要意義。
[1] Monaghan DT,Bridges RJ,Cotman CW.The excitatory amino acid receptors:their classes,pharmacology,and distinct properties in the function of the central nervous system[J].Annu Rev Pharmacol Toxicol,1989,29:365-402.
[2] Dingledine R,Borges K,Bowie D,et al.The glutamate receptor1 on channels[J].Pharmacol Rev,1999,51:7-61.
[3] Genever PG,Maxfield SJ,Kennovin GD,et al.Evidence for a novel glutamate -mediated signaling pathway in keratinocytes[J].J Invest Dermatol,1999,112:337-342.
[4] Itzstein C,Cheynel H,Burt-Pichat B,et al.Molecular identification of NMDA glutamate receptors expressed in bone cells[J].J Cell Biochem,2001,82(1):134-144.
[5] Cho JH,Chen L,Kim MH,et al.Characteristics and functions of {alpha}-amino -3- hydroxy -5- methyl- 4 -isoxazole propionate receptors expressed in mouse pancreatic {alpha}-cells[J].Endocrinology,2010,151 (4):1541-1550.
[6] Spanaki C,Zaganas I,Kleopa KA,et al.Human GLUD2 glutamate dehydrogenase is expressed in neural and testicular supporting cells[J].J Biol Chem,2010,285(22):16748-16756.
[7] Fischer M,Glanz D,Urbatzka M,et al.Keratinocytes:a source of the transmitter L-glutamate in the epidermis[J].Exp Dermatol,2009,18(12):1064 -1066.
[8] Fischer M,Glanz D,William T,et al.N-methyl-D-aspartate receptors influence the intracellular calcium concentration of keratinocytes[J].Exp Dermatol,2004,13(8):512-519.
[9] Fischer M,Fiedler E,Seidel C,et al.Cultivated keratinocytes express N-methyl-D-aspartate receptors of the NMDAR2D type[J].Arch Dermatol Res,2006,297(7):316-318.
[10] Hoogduijn MJ,Hitchcock IS,Smit NP,et al.Glutamate receptors on human melanocytes regulate the expression of MiTF[J].Pigment Cell Res,2006,19(1):58-67.
[11] Wellbrock C,Marais R.Elevated expression of MITF counteracts B-RAF stimulated melanocyte and melanoma cell proliferation[J].J Cell Biol,2005,170:703-708.
[12] Kingo K,Aunin E,Karelson M,et al.Expressional changes in the intracellular melanogenesis pathways and their possible role in the pathogenesis of vitiligo[J].J Dermatol Sci,2008,52(1):39-46.
[13] Huggins RH,Schwartz RA,Janniger CK.Vitiligo[J].Acta Dermatovenerol Alp Panonica Adriat,2005,14(4):137-142,144-145.
[14] Tobin DJ,Swanson NN,Pittelkow MR,et al.Melanocytes are not absent in lesional skin of long duration vitiligo[J].J Pathol,2000,191(4):407-416.
[15] Gauthier Y,Cario-Andre M,Lepreux S,et al.Melanocyte detachment after skin friction in non lesional skin of patients with generalized vitiligo[J].Br J Dermatol,2003,148(1):95-101.
[16] Ganor Y,Grinberg I,Reis A,et al.Human T-leukemia and T-lympho-maexpress glutamate receptor AMPA GluR3,and the neurotransmitter glutamate elevates the cancer-related matrix- metalloproteinases inducerCD147/EMMPRIN,MMP-9 secretion and engraftment of T-leukemia in vivo[J].Leuk Lymphoma,2009,50(6):985- 997.
[17] Kvaratskhelia E,Maisuradze E,Dabrundashvili NG,et al.N-methyl-D-aspartate and sigma-ligands change the production of interleukins 8 and 10 in lymphocytes through modulation of the NMDA glutamate receptor[J].Neuroimmunomodulation,2009,16(3):201-207.
[18] Chen G,Han G,Feng J,et al.Glutamic acid decarboxylase-derived epitopes with specific domains expand CD4(+) CD25(+) regulatory Tcells[J].PLoS One,2009,4(9):e7034.