摘 要:研究了一類帶擴(kuò)散系數(shù)的擬線性脈沖時(shí)滯拋物型方程組的振動(dòng)性, 利用振動(dòng)的定義、Green公式和Newmann邊值條件將這類脈沖時(shí)滯拋物方程組的振動(dòng)問題轉(zhuǎn)化為脈沖時(shí)滯微分不等式正解的不存在性問題, 并利用最終正解的定義和脈沖時(shí)滯微分不等式, 獲得了該類方程組所有解(強(qiáng))振動(dòng)的充分條件.
關(guān)鍵詞: 振動(dòng)性; 脈沖; 時(shí)滯; 擬線性擴(kuò)散系數(shù); 拋物型方程組
中圖分類號(hào):O175.26文獻(xiàn)標(biāo)識(shí)碼:A
Oscillations in Systems of Impulsive Delay Parabolic Equations
with Quasilinear Diffusion Coefficient
LIAO Ji-ding1,2,LIU Zai-ming1
(1.School of Mathematical Science and Computing Technology, Central South Univ,
Changsha, Hunan 410075, China;
2. School of Mathematics and Science, Univ of South China, Hengyang, Hunan 421001, China)
Abstract:The oscillation and strong oscillation of the systems of a class of impulsive delay parabolic equations with quasilinear diffusion coefficient were studied. By using the oscillatory definition, Green’s formula and Newmann boundary condition, the oscillatory problem of solution to the systems of impulsive delay parabolic equations was reduced to the nonexistence of position solution of impulsive delay differential inequality, and some sufficient conditions were obtained for the oscillation and strong oscillation of all solutions of such systems through the definition of eventual position solution and delay impulsive neutral differential inequality.
Key words: oscillations; impulse; delay; quasilinear diffusion coefficient; systems of parabolic equations
脈沖現(xiàn)象作為一種瞬時(shí)突變現(xiàn)象, 在現(xiàn)代科技諸領(lǐng)域的許多實(shí)際問題中普遍存在, 且往往對(duì)實(shí)際問題的規(guī)律產(chǎn)生本質(zhì)的影響. 因此, 在建立數(shù)學(xué)模型對(duì)這些實(shí)際問題進(jìn)行研究時(shí), 必須充分考慮脈沖現(xiàn)象的作用, 這類現(xiàn)象的數(shù)學(xué)模型往往可表示為脈沖偏微分方程. 最新研究成果表明,脈沖偏微分方程在混沌控制、機(jī)密通訊、航天技術(shù)、風(fēng)險(xiǎn)管理、信息科學(xué)、生命科學(xué)、醫(yī)學(xué)、經(jīng)濟(jì)等領(lǐng)域中均有重要應(yīng)用\\[1\\]. 脈沖偏微分方程作為偏微分方程的一個(gè)新分支, 它是20世紀(jì)90年代初形成和發(fā)展起來的, 1991年Erbe等\\[2\\]在研究單一物種生長模型時(shí)給出了脈沖拋物方程穩(wěn)定性的比較準(zhǔn)則, 這是為國際數(shù)學(xué)界真正了解有關(guān)脈沖偏微分方程研究的最早成果. 之后, 對(duì)其研究日益受到重視. 人們之所以對(duì)脈沖偏微分方程的研究有濃厚的興趣,是因?yàn)槊}沖偏微分方程能夠成功地應(yīng)用于力學(xué)、理論物理、化學(xué)及人口動(dòng)力學(xué)、生物工程、最優(yōu)控制和經(jīng)濟(jì)學(xué)等方面的數(shù)學(xué)模擬. 脈沖偏微分方程的振動(dòng)理論作為其中的一個(gè)重要研究領(lǐng)域, 對(duì)其研究僅是近十年的事情, 見文獻(xiàn)[3-12]. 但有關(guān)脈沖偏微分方程組解的強(qiáng)振動(dòng)性研究還很少見, 目前僅見文獻(xiàn)\\[13\\]. 本文的目的是研究一類具擴(kuò)散系數(shù)的擬線性脈沖時(shí)滯拋物偏微分方程組在Neumann邊值條件下解的振動(dòng)性及強(qiáng)振動(dòng)性.
1現(xiàn)象的描述
很多脈沖現(xiàn)象可以用如下帶擴(kuò)散系數(shù)的擬線性脈沖時(shí)滯拋物偏微分方程組來描述解的振動(dòng)性
ui(t,x)t=∑mj=1aij(t,uj(t,x))Δuj(t,x)+
∑mj=1bij(t,uj(t-λ,x))Δuj(t-λ,x)-
qi(t,x)ui(t-σ,x)-ci(t,x,(uj(t,x))mj=1,
(uj(t-ρ,x))mj=1),t≠tk,
ui(t+k,x)-ui(t-k,x)=bi(tk,x,ui(tk,x)),
i∈Im, k∈I∞, (t,x)∈R+×Ω≡G(1)
其中Im={1,2,…,m},I∞={1,2,…},R+=[0,∞),ΩRn是具有逐片光滑邊界Ω的有界區(qū)域,Δ是Rn中的n維Laplace算子, λ,σ,ρ是正常數(shù), 0 ui(t,x)N=0,(t,x)∈R+×Ω, t≠tk,i∈Im, k∈I∞(2) 和初始條件: ui(t,x)=φi(t,x), (t,x)∈[-δ,0]×Ω, i∈Im.(3) 其中N表示Ω的單位外法向量, δ=max {λ,σ,ρ}, φi∈C2([-δ,0]×Ω;R), i∈Im. 湖南大學(xué)學(xué)報(bào)(自然科學(xué)版)2010年 第2期廖基定等:帶擴(kuò)散系數(shù)的擬線性時(shí)滯脈沖現(xiàn)象的振動(dòng)性 在本文中, 我們總假定下列條件成立: (H1) qi∈PC(G-;R+),qi(t)=min x∈Ω{qi(t,x)},i∈Im. 這里PC表示具有如下性質(zhì)的分片連續(xù)函數(shù) 類: 僅在t=tk, k∈I∞為第一類間斷點(diǎn), 但在t=tk, k∈I∞左連續(xù). (H2)aij, bij∈PC(R+×R;(0,∞))且uiaii(t,ui)ui≥0,uibii(t,ui)ui≥0,i,j∈Im;aij(t,uj)uj=0,bij(t,uj)uj=0, i≠j; i,j∈Im. (H3)ci∈PC(×R2m;R), 并且 ci(x,t,ξ1,…,ξi,…,ξm,η1,…,ηi,…,ηm) ≥0,當(dāng)ξi,ηi∈(0,∞)時(shí),<0,當(dāng)ξi,ηi∈(-∞,0)時(shí). ci(x,t,ξ1,…,-ξi,…,ξm,η1,…,-ηi,…,ηm)= -ci(x,t,ξ1,…,ξi,…,ξm,η1,…,ηi,…,ηm),i∈Im. (H4) bi:G-×R→R, 對(duì)任意函數(shù)ui(t,x)∈PC(G-;R+)有: bi(tk,x,-ui(tk,x))=-bi(tk,x,ui(tk,x)). 且 ∫ Ωbi(tk,x,ui(tk,x))dx≤αik∫ Ωui(tk,x)dx. 其中αik>0為常數(shù),i∈Im,k∈I∞. 定義1 稱向量函數(shù)u(t,x)=(u1(t,x),u2(t,x),…,um(t,x))T為邊值問題(1),(2)的解, 若對(duì)i∈Im, ui(t,x)滿足: 1) 對(duì)固定的x, ui(t,x)是以tk為第一類間斷點(diǎn)的分片連續(xù)函數(shù); ui(tk,x)=ui(t-k,x), k∈I SymboleB@ ,且滿足式(1)的第二式; 2) 對(duì)t≠tk,x∈Ω,ui(t,x)t存在,且滿足式(1)的第一式; 對(duì)固定的t, t≠tk, 2ui(t,x)x2r存在,r∈Im; 3) 對(duì)t≠tk, x∈Ω, ui(t,x)N存在且滿足(2). 定義2 稱數(shù)值函數(shù)ν(t,x):G→R為非振動(dòng)的, 若它最終為正或最終為負(fù); 反之, 稱ν(t,x)為振動(dòng)的. 稱向量函數(shù)u(t,x):G→Rm為非振動(dòng)的, 若它的每一分量都是非振動(dòng)的; 稱向量函數(shù)u(t,x):G→Rm為振動(dòng)的, 若它至少有一分量作為數(shù)值函數(shù)是振動(dòng)的. 稱向量函數(shù)u(t,x):G→Rm為強(qiáng)振動(dòng)的, 若它的每一個(gè)分量作為數(shù)值函數(shù)都是振動(dòng)的. 引理1\\[14\\] 設(shè)μ是正常數(shù), p(t)∈C(R+,(0, SymboleB@ )), 且y(tk)=y(t-k), k∈I SymboleB@ . 若滿足條件: (a)lim sup t→ SymboleB@ ∏t-μ SymboleB@ , 其中b-k=max {0,bk}; (b)lim inf t→ SymboleB@ ∫ t t-μp(s)ds>1elim sup t→ SymboleB@ ∏t-μ 則脈沖時(shí)滯微分不等式為: y′(t)+p(t)y(t-μ)≤0,t≥0, t≠tk,y(t+k)-y(-k)≤bky(tk),k∈I∞. 無最終正解. 2主要結(jié)果及其證明 為敘述方便, 引入如下記號(hào): Ui(t)=∫ Ωui(t,x)dx, t≥0, i∈Im. 定理1 若存在某一i0∈Im, 使得: lim sup t→∞∏t-σ lim inft→∞∫ t t-σqi0(s)ds>1elim sup t→∞∏t-σ 則邊值問題(1), (2)的所有非零解在G內(nèi)振動(dòng). 證(用反證法)假設(shè)邊值問題(1), (2)有一個(gè)非振動(dòng)解u(t,x)=(u1(t,x),u2(t,x),…,um(t,x))T,則 ui0(t,x)在G內(nèi)非振動(dòng).不失一般性,設(shè)ui0(t,x)最終為正,于是存在T>0,使得(t,x)∈[T,∞)×Ω,有ui0(t,x)>0,ui0(t-λ,x)>0,ui0(t-σ,x)>0,ui0(t-ρ,x)>0. 考慮下面的方程: ui0(t,x)t=∑mj=1ai0j(t,uj(t,x))Δuj(t,x)+ ∑mj=1bi0j(t,uj(t-λ,x))Δuj(t-λ,x) - qi0(t,x)ui0(t-σ,x)-ci0(t,x,(uj,(t,x))mj=1, (uj(t-ρ,x))mj=1),t≠tk, ui0(t+k,x)-ui0(t-k,x)=bi0(tk,x,ui0(tk,x)), k∈I SymboleB@ , (t,x)∈R+×Ω≡G.(6) (Ⅰ)當(dāng)t≠tk,k∈I SymboleB@ 時(shí), 對(duì)式(6)的第一式兩邊關(guān)于x在Ω上積分, 有 ddt(∫ Ωui0(t,x)dx)= ∑mj=1∫ Ωai0j(t,uj(t,x))Δuj(x,t)dx+ ∑mj=1∫ Ωbi0j(t,uj(t-λ,x))Δuk(t-λ,x)dx- ∫ Ωqi0(t,x)ui0(t-σ,x)dx- ∫ Ωci0(t,x,(uj(t,x))mj=1,(uj(t-ρ,x))mj=1)dx,t≥T.(7) 由Green公式, 邊值條件(2)及條件(H2)有: ∫Ωai0i0(t,ui0(t,x))Δui0(t,x)dx= ∫Ωai0i0(t,ui0(t,x))ui0(t,x)NdS- ∫ Ωai0i0(t,ui0(t,x))ui0 SymbolQC@ ui0(t,x)2dx= -∫ Ωai0i0(t,ui0(x,t))ui0 SymbolQC@ ui0(x,t)2dx≤0, t≥T, ∫Ωai0j(t,uj(t,x))Δuj(t,x)dx= ∫Ωai0j(t,uj(t,x))uj(t,x)NdS- ∫ Ωai0j(t,uj(t,x))uj SymbolQC@ uj(t,x)2dx=0, t≥T, j≠i0, j∈Im. 其中dS是Ω上的面積元素.即 ∫Ωai0j(t,uj(t,x))Δuj(t,x)dx <0, 當(dāng)j=i0時(shí),=0, 當(dāng)j≠i0時(shí), t≥T.(8) 同理 ∫Ωbi0j(t,uj(t-λ,x))Δuj(t-λ,x)dx <0, 當(dāng)j=i0時(shí),=0, 當(dāng)j≠i0時(shí), t≥T.(9) 由條件(H3)易知: ci0(t,x,(uj(t,x))mj=1,(uj(t-ρ,x)))mj=1)≥0,t≥T.(10) 因此由式(7)~(10)及條件(H1)可得: U′i0(t)+qi0(t)Ui0(t-σ)≤0,t≥T.(11) (Ⅱ)當(dāng)t=tk,k∈I SymboleB@ 時(shí), 由式(6)的第二式, 結(jié)合條件(H4)及定義1中的條件1)可得: Ui0(t+k)-Ui0(t-k)= ∫ Ωui0(t+k,x)dx-∫ Ωui0(t-k,x)dx= ∫ Ωbi0(tk,x,ui0(tk,x))dx≤ αi0k∫ Ωui0(tk,x)dx=αi0kUi0(tk).(12) 從而可知(11),(12)有最終正解Ui0(t)=∫ Ωui0(t,x)dx. 另一方面,由定理的條件(4),(5)及引理1知(11),(12) 無最終正解, 矛盾, 所以邊值問題(1),(2)的所有非零解在區(qū)域G內(nèi)振動(dòng). 定理1證畢. 利用上面的結(jié)論, 很容易得到下面的關(guān)于邊值問題(1), (2)強(qiáng)振動(dòng)的結(jié)論. 定理2 若對(duì)每一個(gè)i∈Im, 都有: lim sup t→∞∏t-σ 其中k=max {0,αik}. lim inf t→∞∫ t t-σqi(s)ds>1elim sup t→∞∏t-σ 則邊值問題(1), (2)的所有非零解在G內(nèi)強(qiáng)振動(dòng). 3結(jié) 論 本文討論了帶擴(kuò)散系數(shù)的擬線性脈沖時(shí)滯拋物型偏微分方程組解的振動(dòng)性和強(qiáng)振動(dòng)性,得到了判別其振動(dòng)和強(qiáng)振動(dòng)的充分條件, 結(jié)果充分反映了脈沖和時(shí)滯在振動(dòng)中的影響作用, 這是一個(gè)重要的結(jié)論. 所得結(jié)果為解決生物學(xué)、物理學(xué)、工程學(xué)、氣象學(xué)、醫(yī)學(xué)、化學(xué)和控制理論等學(xué)科領(lǐng)域中的一些實(shí)際問題提供了數(shù)學(xué)理論基礎(chǔ). 參考文獻(xiàn) [1] 傅希林,閆寶強(qiáng),劉衍勝.非線性脈沖微分系統(tǒng)\\[M\\].北京:科學(xué)出版社,2008. FU Xi-lin, YAN Bao-qiang,LIU Yan-sheng. Nonlinear impulsive differential system\\[M\\].Beijing: Science Press,2008. (In Chinese) \\[2\\] ERBE L H, FREEDMAN H I, LIU X Z, et al. Comparison principles for impulsive parabolic equations with applications to models of single species growth\\[J\\]. J Austral Math SocSer B,1991,32(4):382-400. \\[3\\] 羅李平,歐陽自根.脈沖中立型時(shí)滯拋物偏微分方程組的振動(dòng)準(zhǔn)則\\[J\\].應(yīng)用數(shù)學(xué)學(xué)報(bào),2007,30(5):822-830. LUO Li-ping,OUYANG Zi-gen. Oscillation criteria of systems of impulsive neutral delay parabolic partial differential equations \\[J\\].Acta Math Appl Sinica,2007,30(5):822-830. (In Chinese) \\[4\\] 羅李平.具非線性擴(kuò)散系數(shù)的脈沖時(shí)滯雙曲型方程組的振動(dòng)性\\[J\\].自然科學(xué)進(jìn)展,2008,18(3):341-344. LUO Li-ping. Oscillation of systems of impulsive delay hyperbolic equations with nonlinear diffusion coefficient \\[J\\].Progress of Natural Science,2008,18(3):341-344. (In Chinese) \\[5\\] LUO Li-ping, LIAO Ji-ding, GAO Zheng-hui. Oscillation of systems of impulsive delay hyperbolic equations\\[J\\].International Journal of Applied Mathematics and Applications,2008,1(2):147-154. \\[6\\] 羅李平,歐陽自根.非線性脈沖中立型時(shí)滯拋物方程組解的振動(dòng)性\\[J\\].生物數(shù)學(xué)學(xué)報(bào),2007,22(3):496-502. LUO Li-ping ,OUYANG Zi-gen. Oscillation of solutions of systems of nonlinear impulsive neutral delay parabolic equations\\[J\\].J of Biomathematics,2007,22(3):496-502. (In Chinese) \\[7\\] 羅李平,歐陽自根.脈沖時(shí)滯拋物型偏微分方程組的振動(dòng)性定理\\[J\\].數(shù)學(xué)雜志,2009,29(1):93-98. LUO Li-ping ,OUYANG Zi-gen. Oscillation theorem on systems of a class of impulsive delay parabolic partial differential equations\\[J\\].J of Math(PRC),2009,29(1):93-98. (In Chinese) \\[8\\] LUO Li-ping ,OUYANG Zi-gen.Oscillation theorem to systems of impulsive neutral delay parabolic partial differential equations\\[J\\].Ann of Diff Eqs,2007,23(3):297-303. \\[9\\] LUO Li-ping, PENG Bai-yu, OUYANG Zi-gen. Oscillation of nonlinear impulsive delay hyperbolic partial differential equations\\[J\\]. Chin Quart J of Math,2009,24(3):439-444. \\[10\\]羅李平,彭白玉.非線性脈沖中立型時(shí)滯拋物方程解的振動(dòng)性質(zhì)\\[J\\].數(shù)學(xué)的實(shí)踐與認(rèn)識(shí),2009,39(13):174-179. LUO Li-ping, PENG Bai-yu. Oscillation of solutions of nonlinear impulsive neutral delay parabolic equations \\[J\\].Mathematics in Practice and Theory,2009,39(13):174-179. (In Chinese) \\[11\\]羅李平,歐陽自根.一類非線性脈沖時(shí)滯拋物方程的振動(dòng)性定理\\[J\\].哈爾濱工業(yè)大學(xué)學(xué)報(bào),2009,41(3):202-204. LUO Li-ping,OUYANG Zi-gen. Oscillation theorem of a class of nonlinear impulsive delay parabolic equations\\[J\\].J of Harbin Institute of Technology,2009,41(3):202-204. (In Chinese) \\[12\\]羅李平.非線性脈沖時(shí)滯拋物型偏微分方程的強(qiáng)迫振動(dòng)性\\[J\\].應(yīng)用數(shù)學(xué),2007,20(2):357-360. LUO Li-ping. Forced oscillation of nonlinear impulsive delay parabolic partial differential equations\\[J\\].Math Appl,2007,20(2):357-360. (In Chinese) \\[13\\]ZHANG Yu-tian, LUO Qi. On the forced oscillation of solutions for systems of impulsive neutral parabolic differential equations with several delays\\[J\\]. J of Math(PRC),2006,26(3):272-276. \\[14\\]張玉珠,黨新益.脈沖中立型時(shí)滯微分方程解的振動(dòng)性\\[J\\].數(shù)學(xué)學(xué)報(bào),1998,41(1):219-224. ZHANG Yu-zhu,DANG Xin-yi. Oscillation of solutions of impulsive neutral delay differential equations\\[J\\].Acta Math Sinica,1998,41(1):219-224.(In Chinese)