• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Production of Two Elite Glutinous Rice Varieties by Editing Wx Gene

    2019-02-19 01:30:14FeiYunyanYangJieWangFangquanFanFangjunLiWenqiWangJunXuYangZhuJinyanZhongWeigong
    Rice Science 2019年2期

    Fei Yunyan, Yang Jie, 2, Wang Fangquan, 2, Fan Fangjun, 2, Li Wenqi, 2, Wang Jun, 2, Xu Yang, 2, Zhu Jinyan, 2, Zhong Weigong, 2

    ?

    Production of Two Elite Glutinous Rice Varieties by EditingGene

    Fei Yunyan1, Yang Jie1, 2, Wang Fangquan1, 2, Fan Fangjun1, 2, Li Wenqi1, 2, Wang Jun1, 2, Xu Yang1, 2, Zhu Jinyan1, 2, Zhong Weigong1, 2

    (Institute of Food Crops, Jiangsu Academy of Agricultural Sciences / Nanjing Branch of Chinese National Center for Rice Improvement / Jiangsu High Quality Rice Research & Development Center, Nanjing 210014, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China)

    Thegene () in rice, which encodes the granule bound starch synthase enzyme, is responsible for amylose synthesis. Glutinous (sticky) rice has little or no amylose that can be used in various applications, such as brewing. In this study, knockout of thegene with CRISPR/Cas9 technology was conducted in two eliterice lines, Huaidao 5 (HD5) and Suken 118 (SK118), aiming to develop elite sticky rice varieties. We achieved six homozygous T0plants with more than 200 bp deletion in thegene, as well as 36-HD5 and 18-SK118 homozygous transgene-free plants in the T1generation. The seeds of all the mutants were white and opaque, similar to those of sticky rice, and contained only 2.6%–3.2% amylose. Results of scanning electron microscopy showed that the quality of rice did not change. In conclusion, we successfully developed two elite sticky rice varieties.

    amylose; CRISPR; Cas9; rice; starch;

    Rice is one of the most important crops globally. High yield, good quality and resistant traits are important targets in its breeding programs (Kiswara et al, 2014), and genetic diversity in rice germplasm is crucial for these purposes. Various strategies, such as exploring wild rice germplasm and natural or artificial mutation, have been employed by breeders to broaden the genetic diversity of rice (Shen et al, 2017). However, these methods are time consuming, and in the case of gene mutations, randomly. The clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9) system is a novel technology, widely used in various fields because of its cost effective, simple, flexible and highly efficient (Wang et al, 2017a). In rice, numerous studies have been performed with the CRISPR/Cas9 system (Wang et al, 2016). Ma et al (2015) reported that editing efficiency of CRISPR/Cas9 is higher in rice than in. Mikami et al (2015) found that thepromoter performs better than thein mutation frequency. A 1-bp mismatch of an sgRNA is sufficient to avoid off-target in closely related genes in rice (Baysal et al, 2016). There is a greater probability of large gene deletions inrice than inrice (Wang et al, 2017b). With the rapid development of the CRISPR-Cas system, many researchers have begun to use this technology to improve agronomic traits in rice. For example, rice blast resistance lines are produced by CRISPR/Cas9-targeted mutagenesis of(Wang et al, 2016). Hybrid-compatible lines are developed by knocking out thegenes (Xie et al, 2017). Low-Cs+/Cd rice strains are also created by knocking out the corresponding metal transporter genes (Nieves-cordones et al, 2017; Tang et al, 2017).

    Amylose is a linear polymer composed of glucose units, linked by α-D-(1-4) glycosidic linkages. In rice, amylose content (AC) is a complex trait, influenced by multiple genes, mainly the() gene, and the environment (Chen et al, 2008). Thegene encodes the granule-bound starch synthase I (GBSSI), which catalyzes the synthesis of amylose. The expression ofis modulated by many factors, which can lead to a change in AC (Wang et al, 2015). Wu et al (2015) reported that dozens ofgenes regulate the splicing efficiency of. A tetratricopeptide domain-containing protein (flo2) regulates the expression of(Wu et al, 2015).,,,and, as transcription factors, modifyexpression (Wamnugu et al, 2017). Many QTLs, such as, have been identified as genes controlling AC (Fasahat et al, 2014). Glutelin, gibberellin receptor, ADP- glucose pyrophosphorylase and pullulanase also play minor roles in affecting AC (Wamnugu et al, 2017). Here, we used CRISPR/Cas9 technology to edit thegene and generate two elite glutinous rice varieties that could meet the demands of consumers and enrich the rice genetic resources.

    Materials and methods

    Rice materials and growth conditions

    Rice () inbred lines Huaidao 5 (HD5) and Suken 118 (SK118) were used for-mediated co-cultivationtransformation experiments, as described previously (Zheng et al, 2016). During growing seasons, all the materials were cultivated in the greenhouse of the Jiangsu Academy of Agricultural Sciences in Nanjing, Jiangsu Province, China.

    Plasmid construction

    Thegene (LOC_Os06g04200) was the target of Cas9 endonuclease. According to the principles outlined in Ma et al (2015), two sgRNAs (T1 and T2) were designed on the first extron of thegene from Nipponbare. The sgRNAs were assembled into one vector pYLCRISPR/Cas9-MH usingI (New England Biolabs, Country) and T4 ligase (New England Biolabs, Country). T1 and T2 were driven byandpromoters, respectively. The vector was transformed into thestrain DH5α, and the insertions were verified by sequencing. The primers sequences of the sgRNAs are listed in Table 1. A vector map was generated using vector NTI (Lu and Moriyama, 2004).

    Detection of mutations

    The genomic DNA of transgenic plants was isolated from rice leaves using the CTAB method (Murray and Thompson, 1980). The PCRs were conducted using a Golden Star T6 Super PCR Mix (TsingKe Biotech Co., Ltd, China) to amplify the sequences of T1 and T2. The reagents and reaction conditions of the PCRs were selected and programmed according to the manufacturer’s instructions. The obtained DNA fragments were sequenced, and then a similarity search using BLAST was performed with the wild-type (WT)sequence.

    Identification of transgene-free lines

    To identify the transgene-free lines, T1seedlings were examined using PCR with specific primers (Table 1) for the sequences of Cas9 and-resistance gene ().

    Evaluation of T1 phenotype

    The rice seeds were harvested at maturity and dried in an oven at 38 oC for two days after manual dehulling. The morphology of the seed endosperms was observed by visual inspection. Potassium iodide (I2-KI, 2%) staining was used to identify the starch types in the transgenic seeds T1generation(Kawagoe et al, 2005). Dried grains were ground into fine flour to pass through a 60 mesh sieve. Then, the AC of the powder was measured using a colorimetric method (Juliano et al, 1981). Scanning electron microscopy (SEM) was also performed to investigate the morphology of the rice starch. The polished rice seeds were cut with the blade of a scalpel, mounted on copper stubs, and coated with gold. All detailed procedures were performed according to Kasem et al (2011). Images were recorded on a Hitachi-S-3000Nscanning electron microscope (Hitachi, Co., Ltd. Japan).

    Table 1. Primers used in this study.

    Results

    Construction of CRISPR/Cas9 system

    To delete thegene inrice with the CRISPR/Cas9 technology, two different 20-bp sgRNAs (T1 and T2) at the first exon ofwere selected using the web-based tool CRISPR-P (http://cbi.hzau.edu.cn/cgi-bin/CRISPR), according to the criteria reported by Ma et al (2015). Two target sites were located at 15 and 217 bp downstream of the translation initiation codon (ATG) and were named T1 and T2, respectively (Fig. 1-A). The length between T1 and T2 was 202 bp, according to the coding sequence of. Two sgRNAs were sequentially assembled into pYLCRISPR/Cas9-MH as described by Wang et al (2017c). The T1 and T2 in the plasmid were driven by theandpromoters, respectively. Both Cas9 and, elements of the plasmid, were transcribed from the CaMV 35S promoter (Fig. 1-B).

    Fig. 1. Schematic diagrams of theand CRISPR/Cas9 vector.

    A, Overview of thegene structure and target sites for sgRNAs (T1 and T2). Exons and introns ingene are depicted by orange rectangles and white rectangles, respectively. The target sequences of sgRNAs are shown at the top of the gene structure in red. B, The structure of thegene editing system. T1 and T2 are driven by U3 and U6a promoters, respectively.

    RB, Right border; LB, Left border;,CRISPR associated protein 9 gene;,-resistance gene.

    Targets editing in T0 plants

    The CRISPR/Cas9-construct was transformed into two elite rice inbred lines HD5 and SK118. We obtained 36 and 32 independent T0transgenic plants of HD5 and SK118, respectively. The PCR tests of thegene confirmed that all T0plants were positive transgenic lines (Fig. 2-A). To analyze the mutation genotypes of the T0plants, three mutants of both-HD5 and-SK118 were randomly selected for PCR amplification (Fig. 2-B). The PCR products were sequenced. The genotype differences between the T0mutants and the WT lines are shown in Fig. 2-C. The results showed that the mutagenesis efficiency of the target sites was very high, the deletion fragments were larger than 200 bp in all individuals, the nucleotides between twoprotospacer adjacent motif (PAM) sites of the targets were all deleted by CRISPR/Cas9, and all T0plants were homozygous mutations.

    Selection of transgene-free homozygous mutant lines

    Because inherited Cas9 could also induce new mutations and lead to unpredicted segregation, distortion and chimerism in later generations, it is important to eliminate Cas9 by segregation in the T1generation and obtain stable mutants (Ishizaki, 2016; Yin et al, 2017). Three-SK118 (-SK118-1,-SK118-2 and-SK118-3) and three-HD5 (-HD5-1,-HD5-2 and-HD5-3) T0mutants were self-pollinated to generate T1plants. Transgene-free lines were analyzed by PCR using specific primers for theandsequences in the T1plants (Table 1). The results were determined using negative PCRs of bothand. The 235-HD5 and 118-SK118T1plants (including selections from all the six lines) were subjected to PCR tests, respectively, and 36-HD5 and 18-SK118transgene-free plants were isolated, respectively (Table 2).

    Fig. 2. CRISPR/Cas9-induced mutations in thegene.

    A, PCR analysis ofin T0lines (part of the picture). M, DNA marker; 1,-SK118-1; 2,-SK118-2; 3,-SK118-3; 4,-HD5-1; 5,-HD5-2; 6,-HD5-3; 7, Positive control of pYLCRISPR/Cas9-MH-; 8, Negative control of SK118; 9, Negative control of HD5; 10, Negative control of ddH2O. B, Polymerase chain reaction assays ofin T0lines. M, DNA marker; 1,-SK118-1; 2,-SK118-2; 3,-SK118-3; 4,-HD5-1; 5,-HD5-2; 6,-HD5-3; 7, Control of SK118; 8, Control of HD5. C, Sequencing results of T0mutant lines. sgRNA is shown in red letter; Insertion sequence is shown in green letter; Deletion sequence is shown by dashed line.

    Table 2. Segregation of transgene-free rice in T1 generation.

    Amylose content of rice grains

    The phenotypes of the mutant grains were compared with those of the WT. As shown in Fig. 3-A, the grains of the mutants were all white and opaque, which showed similar characteristics to those of typical glutinous rice varieties. The starch properties of the mutants were identified by a screen with I2-KI staining, as the seeds with more amylose have higher iodine binding capacity. Non-glutinous rice varieties have granules that are stained with a dark blue color. Seeds with more amylopectin, such as sticky rice, have a lower iodine binding capacity, and therefore, granules are stained with a reddish brown color (Kawagoe et al, 2005). As shown in Fig. 3-B, all the seeds of the mutants were reddish brown, while the WT grains were dark blue. The results revealed that the amylose content in the mutants was dramatically decreased. Further analysis showed that the AC of the mutants was 2.6%–3.2%, while the AC of the WT grains was 15.4%–15.7% (Fig. 3-C). As expected, the dramatic decrease of AC in the mutants was closely associated with the grain appearance and iodine staining results. The-HD5 and-SK118 rice strains were turned into glutinous lines.

    Microstructural features

    The cross sections of the grains were observed with SEM (Fig. 4). Results in Fig. 4-A revealed that the grain surfaces of the mutants were smoother and flatter than in the wild-types. Radiation from the rectangular columns, as revealed by cross-sections of grains, was reduced in the mutants, especially in-HD5. The fractured surfaces of grains from both the mutants and WTs were all densely packed with starch granules, and all the starch granules displayed large and irregular polygonal shapes with sharp edges (Fig. 4-B).

    Fig. 3. Phenotype of themutants.

    A, Intact polished rice. B, Grains stained with iodine solution. C, Amylose content ofmutants.

    Data represent Mean ± SD (= 3). **, Significant at the 0.01 level by the-test.

    Fig. 4. Cross-sections of endosperm in rice.

    DisCussion

    The first application of CRISPR/Cas9-based genome editing in rice was presented in 2013 (Cho et al, 2013). Since then, the technology has been widely used to improve agronomic traits and create novel germplasm in rice. Li et al (2016) and Zhou et al (2016) developed photoperiod-controlled and thermo-sensitive male sterile lines by disrupting theandgenes, respectively. Mutants of the,andgenes, which function as negative regulators of grain weight, were generated through CRISPR/Cas9-mediated targeted mutagenesis (Xu et al, 2016). Li et al (2017) designed sgRNAs to target,and, and produced early-maturing rice germplasm, which can improve the ecological adaptability of those rice varieties. Sun et al (2017) created high amylose rice plants through CRISPR/Cas9-mediated target gene editing ofand. The CRISPR/Cas9 technology has a great potential to facilitate plant breeding. Given this, we developed two elite glutinous rice varieties using the CRISPR/Cas9 technology by editing thegene.

    We designed two sgRNAs (T1 and T2), targeting the first exon of thegene. The GC contents of T1 and T2 were 70% and 65% respectively, and the secondary structures of sgRNAs had less than 6 bp complete matching. Using these sgRNAs, we observed extremely high editing efficiency in thegene. The design parameters of the sgRNA are in line with the reported critia (Ma et al, 2015), which might be a reason for the high sgRNA editing efficiency in this study. It was very interesting that the genotypes of all mutants generated from six lines were homozygous with more than 200 bp deletions and that the fragment between T1 and T2 was missing. It has been reported that CRISPR/Cas9 induces modifications that are small, presumably because of the blunt-ended double-strand breaks (Zheng et al, 2016). In this study, the CRISPR/Cas9 systerm seemed to preferentially induced full-length deletions, rather than small modifications. When the number of base pairs between the two target sites in Wx was 202 bp, and so that we found that the genetypes of all the six selected T0transgenic plants were about 200 bp-fragment deletion. A similar phenomenon was described by (Wang et al, 2017a), but the distance between the sgRNAs required to induce large deletions should be further explored.

    mutation with different amylose content has been reported (Toru and Naoko, 2017). Rice varieties can be classified as waxy (0–2%), very low (3%–9%), low (10%–19%), intermediate (20%–25%) and high (> 25%) according to their AC (Cai et al, 2015). Thegene is the principal gene controlling the AC and can explain almost 90% of the AC variation in some cultivars (Wamnugu et al, 2017). Variousmutations (Wx,Wx,Wx,Wx,Wxand) generate a wide range of variation in AC (Yang et al, 2016; Wang et al, 2018). Studies have reported that different types ofmutations, such as a G/T mutation at the 5′ splice site of intron 1, a C deletion at intron 5, a G/A SNP in thepromoter region, or a T/G SNP at the intron 1-exon 1 junction, would result in amylose content decreased (Wang et al, 2015; Shahid et al, 2016). Ma et al (2015) disrupted thegene by CRISPR/Cas9 system in arice Taichung 65, and the AC in the mutants decreased to 2.6%, which is similar to a natural glutinous rice. Zhang et al (2018) used the CRISPR/Cas9 to target the first exon ofin tworice varieties, Xiushui 134 and Wuyunjing 7, and the results showed that the AC of mutants is reduced without affecting the other desirable agronomic traits. Our results generally agree with those reported in other studies.

    In conclusion, we precisely edited thegene using CRISPR/Cas9technology and generated high-quality glutinous rice. This work would provide new materials for traditional breeding and broaden the genetic diversity of glutinous rice.

    ACKNOWLEDGEMENTS

    This work was supported by the National Key Research and Development Program (Grant No. 2017YFD0100403), the Jiangsu Province Key Research and Development Program (Modern Agriculture) Project (Grant No. BE2017345-2), the Exploratory Project of the Jiangsu Academy of Agricultural Sciences [Grant No. ZX(17)2014], and the Jiangsu Province Natural Science Foundation (Grant No. BK20171326).

    Baysal C, Bortesi L, Zhu C, Farre G, Schillberg S, Christou P. 2016. CRISPR/Cas9 activity in the ricegene does not induce off-target effects in the closely related paralog., 36: 108.

    Cai J W, Man J M, Huang J, Liu Q Q, Wei W X, Wei C X. 2015. Relationship between structure and functional properties of normal rice starches with different amylose contents., 125: 35–44.

    Chen M H, Bergman C, Pinson S, Fjellstrom R. 2008.gene haplotypes: Associations with apparent amylose content and the effect by the environment in an international rice germplasm collection., 47(3): 536–545.

    Cho S W, Kim S, Kim J M, Kim JS. 2013. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease., 31: 230–232.

    Fasahat P, Rahman S, Ratnam W. 2014. Genetic controls on starch amylose content in wheat and rice grains., 93(1): 279–292.

    Ishizaki T. 2016. CRISPR/Cas9 in rice can induce new mutations in later generations, leading to chimerism and unpredicted segregation of the targeted mutation., 36(12): 165.

    Juliano B O, Perez C M, Blakeney A B, Castillo D T, Kongseree N, Laignelet B, Lapis E T, Murty V V S, Paule C M, Webb B D. 1981. International cooperative testing on the amylose content of milled rice., 33(5): 157–162.

    Kasem S, Waters D L E, Rice N F, Shapter F M, Henry R J. 2011. The endosperm morphology of rice and its wild relatives as observed by scanning electron microscopy., 4(1): 12–20.

    Kawagoe Y, Kubo A, Satoh H, Takaiwa F, Nakamura Y. 2005. Roles of isoamylase and ADP-glucose pyrophosphorylase in starch granule synthesis in rice endosperm., 42: 164–174.

    Kiswara G, Lee J H, Hur Y J, Cho J H, Lee J Y, Kim S Y, Sohn Y B, Song Y C, Nam M H, Yun B W. 2014. Genetic analysis and molecular mapping of low amylose gene(t) in rice (L.)., 127(1): 51–57.

    Li Q L, Zhang D B, Chen M J, Liang W Q, Wei J J, Qi Y P, Yuan Z. 2016. Development ofphoto-sensitive genic male sterile rice lines by editing carbon starved anther using CRISPR/Cas9., 43(6): 415–419.

    Li X F, Zhou W J, Ren Y K, Tian X J, Lv T X, Wang Z Y, Fang J, Chu C C, Yang J, Bu Q Y. 2017. High-efficiency breeding of early-maturing rice cultivars via CRISPR/Cas9-mediated genome editing., 44(3): 175–178.

    Lu G, Moriyama E N. 2004. Vector NTI, a balanced all-in-one sequence analysis suite., 5(4): 378–388.

    Ma X L, Zhang Q Y, Zhu Q L, Liu W, Chen Y, Qiu R, Wang B, Yang Z F, Li H Y, Lin Y R, Xie Y Y, Shen R X, Chen S F, Wang Z, Chen Y L, Guo J X, Chen L T, Zhao X C, Dong Z C, Liu Y G. 2015. A robust CRISPR/Cas9 system for convenient, high- efficiency multiplex genome editing in monocot and dicot plants., 8(8): 1274–1284.

    Mikami M, Toki S, Endo M. 2015. Comparison of CRISPR/Cas9 expression constructs for efficient targeted mutagenesis in rice., 88(6): 561–572.

    Murray M G, Thompson W F. 1980. Rapid isolation of high molecular weight plant DNA., 8(19): 4321–4325.

    Nieves-cordones M, Mohamed S, Tanoi K, Kobayashi N I, Takagi K, Vernet A, Guiderdoni E, Périn C, Sentenac H, Véry A A. 2017. Production of low-Cs(+) rice plants by inactivation of the K(+) transporter OsHAK1 with the CRISPR-Cas system., 92(1): 43–56.

    Peng B, Sun Y F, Pang R H, Li H L, Song X H, Yuan H Y, Zhang S H, Zhou Q Y, Li Q R, Li D, Song S Z. 2016. Study on chalkiness character and endosperm structure of rice grain in differentvarieties., 28(11): 1803–1811. (in Chinese with English abstract)

    Shahid S, Begum R, Razzaque S, Jesmin, Seraj Z I. 2016. Variability in amylose content of Bangladeshi rice cultivars due to unique SNPs inallele., 71: 1–9.

    Shen L, Hua Y F, Fu Y P, Jian L, Liu Q, Jiao X Z, Xin G W, Wang J J, Wang X C, Yan C J, Wang K J. 2017. Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice., 60(5): 506–515.

    Sun Y W, Jiao G A, Liu Z P, Zhang X, Li J Y, Guo X P, Du W M, Du J L, Francis F, Zhao Y D, Xia L Q. 2017. Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes., 8: 298.

    Tang L, Mao B G, Li Y K, Lv Q M, Zhang L P, Chen C Y, He H J, Wang W P, Zeng X F, Shao Y, Pan Y L, Hu Y Y, Peng Y, Fu X Q, Li H Q, Xia S T, Zhao B R. 2017. Knockout ofusing the CRISPR/Cas9 system produces low Cd-accumulatingrice without compromising yield., 7(1): 14438.

    Toru T, Naoko F. 2017. Thermal and rheological characteristics of mutant rice starches with widespread variation of amylose content and amylopectin structure., 62: 83–93.

    Wamnugu P, Ndjiondjop M N, Furtado A, Henry R. 2017. Sequencing of bulks of segregants allows dissection of genetic control of amylose content in rice., 16: 100–110.

    Wang B K, Zhang H, Hong R K, Zhang J W, Yang R, Luo Q, Zeng Q C. 2018.gene editing via CRISPR/Cas9 system in rice., 32(1): 35–42. (in Chinese with English abstract)

    Wang F J, Wang C L, Liu P Q, Lei C L, Hao W, Gao Y, Liu Y G, Zhao K J. 2016. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene., 11(4): e0154027.

    Wang F Q, Fan F J, Li W Q, Zhu J Y, Wang J, Zhong W G, Yang J. 2016. Knock out efficiency analysis ofgene using CRISPR/Cas9 in rice., 30(5): 469–478. (in Chinese with English abstract)

    Wang K, Hasjim J, Wu A C, Li E, Henry R J, Gilbert R G. 2015. Roles ofandin determining amylose fine structure., 127: 264–274.

    Wang M G, Mao Y F, Lu Y M, Tao X P, Zhu J K. 2017a. Multiplex gene editing in rice using the CRISPR-Cpf1 system., 10(7): 1011–1013.

    Wang Q X, Zhao H, Jiang J P, Xu J Y, Xie W B, Fu X K, Liu C, He Y Q, Wang G W. 2017b. Genetic architecture of natural variation in rice nonphotochemical quenching capacity revealed by genome-wide association study., 8: 1773.

    Wang Y, Geng L Z, Yuan M L, Wei J, Jin C, Li M, Yu K, Zhang Y, Jin H B, Wang E, Chai Z J, Fu X D, Li X G. 2017c. Deletion of a target gene inrice via CRISPR/Cas9., 36(8): 1333–1343.

    Wu Y P, Pu C H, Lin H Y, Huang H Y, Huang Y C, Hong C Y, Chang M C, Lin Y R. 2015. Three novel alleles of() confer dull grains with low amylose content in rice., 233: 44–52.

    Xie Y Y, Niu B X, Long Y M, Li G S, Tang J T, Zhang Y L, Ren D, Liu Y G, Chen L T. 2017. Suppression or knockout of/overcomes the-mediated hybrid male sterility in rice., 59(9): 669–679.

    Xu R F, Yang Y C, Qin R Y, Li H, Qiu C H, Li L, Wei P C, Yang J B. 2016. Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice., 43(8): 529–532.

    Yang X H, Nong B X, Xia X Z, Zhang Z Q, Zeng Y, Liu K Q, Deng G F, Li D T. 2016. Rapid identification of a new gene influencing low amylose content in rice landraces (L.) using genome-wide association study with specific-locus amplified fragment sequencing., 60(6): 465–472.

    Yin X J, Biswal A K, Dionora J, Perdigon K M, Balahadia C P, Mazumdar S, Chater C, Lin H C, Coe R A, Kretzschmar T, Guick J E, Quick P W, Bandyopadhyay A. 2017. CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of a stomatal developmental genein rice., 36(5): 745–757.

    Zhang H, Xu H, Feng M J, Zhu Y. 2018. Suppression ofin rice endosperm stabilizes amylose content under high temperature stress., 16(1): 18–26.

    Zhang J S, Zhang H, Botella J R, Zhu J K. 2018. Generation of new glutinous rice by CRISPR/Cas9-targeted mutagenesis of thegene in elite rice varieties., 60(5): 369–375.

    Zheng X L, Yang S X, Zhang D W, Zhong Z H, Tang X, Deng K J, Zhou J P, Qi Y P, Zhang Y. 2016. Effective screen of CRISPR/Cas9-induced mutants in rice by single-strand conformation polymorphism., 35(7): 1545–1554.

    Zhou H, He M, Li J, Chen L, Huang Z F, Zheng S Y, Zhu L Y, Ni E, Jiang D G, Zhao B R, Zhuang C X. 2016. Development of commercial thermo-sensitive genic male sterile rice accelerates hybrid rice breeding using the CRISPR/Cas9-mediatedediting system., 6: 37395.

    (Managing Editor: Wang Caihong)

    Copyright ? 2019, China National Rice Research Institute. Hosting by Elsevier B V

    This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Peer review under responsibility of China National Rice Research Institute

    http://dx.doi.org/10.1016/j.rsci.2018.04.007

    26 February 2018;

    27 April 2018

    Yang Jie (yangjie168@aliyun.com)

    国产视频一区二区在线看| 久久性视频一级片| 久久精品国产清高在天天线| 久久人妻av系列| 国产精品久久视频播放| 成人午夜高清在线视频| www日本黄色视频网| 亚洲专区国产一区二区| 赤兔流量卡办理| 欧美一级a爱片免费观看看| 久久伊人香网站| 欧美成人性av电影在线观看| 欧美精品国产亚洲| 国产精品一及| 美女免费视频网站| 精品人妻偷拍中文字幕| 午夜两性在线视频| 国产精品1区2区在线观看.| 一个人看视频在线观看www免费| 淫妇啪啪啪对白视频| 国产精品永久免费网站| 欧美成人免费av一区二区三区| 国产精品美女特级片免费视频播放器| 最后的刺客免费高清国语| 美女高潮喷水抽搐中文字幕| 日韩人妻高清精品专区| 亚洲在线观看片| 两人在一起打扑克的视频| 美女cb高潮喷水在线观看| 狂野欧美白嫩少妇大欣赏| 男女做爰动态图高潮gif福利片| 国产精品av视频在线免费观看| 老熟妇仑乱视频hdxx| 国产毛片a区久久久久| 99久久精品一区二区三区| 日韩 亚洲 欧美在线| 欧美乱妇无乱码| 欧美乱妇无乱码| 国产精品日韩av在线免费观看| 国产精品免费一区二区三区在线| 全区人妻精品视频| 日本黄色视频三级网站网址| 一进一出抽搐gif免费好疼| 每晚都被弄得嗷嗷叫到高潮| 免费看光身美女| 国内精品久久久久精免费| 亚洲avbb在线观看| 性欧美人与动物交配| 亚洲欧美清纯卡通| 成年人黄色毛片网站| 免费观看的影片在线观看| 亚洲欧美清纯卡通| 简卡轻食公司| 非洲黑人性xxxx精品又粗又长| 18禁黄网站禁片午夜丰满| 国产视频内射| 国模一区二区三区四区视频| 18禁在线播放成人免费| 18禁在线播放成人免费| 午夜亚洲福利在线播放| 亚洲成人精品中文字幕电影| 亚洲成人免费电影在线观看| 99视频精品全部免费 在线| 国产精品久久久久久久电影| 亚洲成人免费电影在线观看| 日韩免费av在线播放| 人人妻,人人澡人人爽秒播| 日本免费一区二区三区高清不卡| 日韩欧美国产一区二区入口| 久久国产乱子伦精品免费另类| 国产一区二区在线观看日韩| 国产午夜福利久久久久久| 黄色日韩在线| 中文亚洲av片在线观看爽| 好看av亚洲va欧美ⅴa在| 国产又黄又爽又无遮挡在线| 免费在线观看日本一区| 怎么达到女性高潮| 小蜜桃在线观看免费完整版高清| netflix在线观看网站| 久久久久精品国产欧美久久久| 亚洲av不卡在线观看| 日本撒尿小便嘘嘘汇集6| 国产真实乱freesex| 国模一区二区三区四区视频| 日本免费a在线| a级毛片免费高清观看在线播放| 久久精品久久久久久噜噜老黄 | 久久中文看片网| 国产欧美日韩一区二区三| 美女黄网站色视频| 国产黄a三级三级三级人| 丰满人妻一区二区三区视频av| 日韩成人在线观看一区二区三区| 老熟妇仑乱视频hdxx| 久久精品人妻少妇| 日韩欧美 国产精品| 国产三级在线视频| 美女免费视频网站| 国产蜜桃级精品一区二区三区| 精品人妻偷拍中文字幕| 亚洲一区二区三区色噜噜| 在线观看免费视频日本深夜| av福利片在线观看| 此物有八面人人有两片| 少妇丰满av| 国产91精品成人一区二区三区| 天堂√8在线中文| 波多野结衣高清作品| 国产精品日韩av在线免费观看| 欧美日韩乱码在线| 男插女下体视频免费在线播放| 国产麻豆成人av免费视频| 国产成人欧美在线观看| 亚洲不卡免费看| 国内精品久久久久精免费| 好看av亚洲va欧美ⅴa在| 国产一级毛片七仙女欲春2| 少妇人妻一区二区三区视频| 午夜a级毛片| 搡女人真爽免费视频火全软件 | 精品午夜福利在线看| 婷婷色综合大香蕉| 91麻豆精品激情在线观看国产| 美女高潮喷水抽搐中文字幕| 深夜精品福利| 亚洲av电影在线进入| а√天堂www在线а√下载| 毛片一级片免费看久久久久 | 男人舔奶头视频| 亚洲美女黄片视频| 黄色女人牲交| 国产午夜精品久久久久久一区二区三区 | 成人鲁丝片一二三区免费| 一级av片app| 内地一区二区视频在线| 欧美成人免费av一区二区三区| 久久伊人香网站| 老司机福利观看| 亚洲avbb在线观看| 欧美另类亚洲清纯唯美| 精品久久久久久成人av| 如何舔出高潮| 亚洲人成网站在线播| 亚洲不卡免费看| 国内久久婷婷六月综合欲色啪| 国产色婷婷99| 久久久精品大字幕| 国产色婷婷99| 欧美潮喷喷水| 麻豆一二三区av精品| 亚洲欧美日韩高清在线视频| 免费观看人在逋| 欧美精品国产亚洲| 久久人人爽人人爽人人片va | 超碰av人人做人人爽久久| 乱人视频在线观看| 亚洲精华国产精华精| 毛片一级片免费看久久久久 | 久久人人精品亚洲av| 亚洲成人精品中文字幕电影| 国产真实伦视频高清在线观看 | 91久久精品电影网| 国产免费一级a男人的天堂| 大型黄色视频在线免费观看| 成人三级黄色视频| 99久久精品热视频| 国产精品一及| 国产一区二区激情短视频| 天美传媒精品一区二区| 嫁个100分男人电影在线观看| 午夜激情欧美在线| 免费看日本二区| 国产精品伦人一区二区| 丰满人妻熟妇乱又伦精品不卡| 亚洲在线观看片| 中文资源天堂在线| 少妇熟女aⅴ在线视频| 中文亚洲av片在线观看爽| 97碰自拍视频| 欧美在线黄色| 丰满的人妻完整版| www.999成人在线观看| 一级毛片久久久久久久久女| 精品久久久久久久末码| 国产成人aa在线观看| 精品日产1卡2卡| av专区在线播放| 国产精品亚洲美女久久久| 国产精品99久久久久久久久| 日本熟妇午夜| 国内精品美女久久久久久| 成人国产一区最新在线观看| 亚洲国产精品sss在线观看| 色噜噜av男人的天堂激情| 亚洲综合色惰| 亚洲熟妇中文字幕五十中出| 国产欧美日韩精品亚洲av| 岛国在线免费视频观看| 成人无遮挡网站| 很黄的视频免费| 男人狂女人下面高潮的视频| 一本精品99久久精品77| 日日摸夜夜添夜夜添小说| 成人欧美大片| 国产精品电影一区二区三区| 亚洲av中文字字幕乱码综合| 日日摸夜夜添夜夜添av毛片 | 日韩大尺度精品在线看网址| 久久久久免费精品人妻一区二区| 在线十欧美十亚洲十日本专区| 日本成人三级电影网站| 亚洲成人久久性| 国产三级在线视频| 欧美黑人欧美精品刺激| 变态另类丝袜制服| 日韩av在线大香蕉| 亚洲欧美激情综合另类| 国产色婷婷99| 成年版毛片免费区| 亚洲欧美日韩无卡精品| a级毛片a级免费在线| 日韩高清综合在线| 少妇人妻精品综合一区二区 | 亚洲第一区二区三区不卡| 国内精品美女久久久久久| 午夜日韩欧美国产| 成人精品一区二区免费| 国产探花在线观看一区二区| 国产精品亚洲一级av第二区| 午夜福利在线在线| 99在线人妻在线中文字幕| 91久久精品国产一区二区成人| 日韩有码中文字幕| 精品99又大又爽又粗少妇毛片 | 一级av片app| 国产色婷婷99| 在线天堂最新版资源| 亚洲成人中文字幕在线播放| 乱人视频在线观看| 亚洲国产色片| 怎么达到女性高潮| 国产午夜福利久久久久久| 宅男免费午夜| 天天躁日日操中文字幕| 特大巨黑吊av在线直播| 亚洲国产精品合色在线| 无遮挡黄片免费观看| 亚洲精品粉嫩美女一区| 久久精品国产亚洲av香蕉五月| 日本精品一区二区三区蜜桃| 国产三级在线视频| 亚洲av五月六月丁香网| 亚洲,欧美,日韩| 在线观看66精品国产| 欧美不卡视频在线免费观看| 免费av不卡在线播放| 国产精品久久久久久久电影| 日本成人三级电影网站| 亚洲国产精品999在线| 人人妻,人人澡人人爽秒播| 90打野战视频偷拍视频| 琪琪午夜伦伦电影理论片6080| 欧美成狂野欧美在线观看| 十八禁人妻一区二区| 欧美日韩亚洲国产一区二区在线观看| 男人狂女人下面高潮的视频| 国产成+人综合+亚洲专区| 人人妻人人看人人澡| 欧美又色又爽又黄视频| 波多野结衣高清无吗| 国产三级黄色录像| 亚洲最大成人av| 国产精华一区二区三区| 禁无遮挡网站| 亚洲第一电影网av| 中文字幕免费在线视频6| 国产免费男女视频| 少妇熟女aⅴ在线视频| 悠悠久久av| 变态另类丝袜制服| 午夜激情福利司机影院| 国产欧美日韩精品一区二区| 麻豆久久精品国产亚洲av| 香蕉av资源在线| 亚洲五月天丁香| 亚洲精品乱码久久久v下载方式| 成年版毛片免费区| 少妇丰满av| 亚洲aⅴ乱码一区二区在线播放| 欧美黄色淫秽网站| 91九色精品人成在线观看| 欧美又色又爽又黄视频| 亚洲国产欧美人成| 午夜精品久久久久久毛片777| 欧美潮喷喷水| 亚洲专区中文字幕在线| 亚洲av电影在线进入| 欧美色欧美亚洲另类二区| 又黄又爽又免费观看的视频| 在线观看一区二区三区| 天天躁日日操中文字幕| 亚洲国产精品久久男人天堂| 黄色一级大片看看| 九九久久精品国产亚洲av麻豆| 美女cb高潮喷水在线观看| 精品国内亚洲2022精品成人| 老熟妇仑乱视频hdxx| 国产精品自产拍在线观看55亚洲| 免费在线观看亚洲国产| 亚洲成av人片在线播放无| 一进一出抽搐gif免费好疼| a级毛片免费高清观看在线播放| 青草久久国产| 国产久久久一区二区三区| 欧美+日韩+精品| 亚洲精品在线观看二区| 欧美性猛交黑人性爽| 给我免费播放毛片高清在线观看| 中文字幕免费在线视频6| 小蜜桃在线观看免费完整版高清| 亚洲第一区二区三区不卡| 国产免费av片在线观看野外av| 一级毛片久久久久久久久女| 久99久视频精品免费| 精品一区二区三区av网在线观看| 国产乱人伦免费视频| 午夜福利欧美成人| 国模一区二区三区四区视频| 老司机福利观看| 韩国av一区二区三区四区| 一区二区三区高清视频在线| 免费电影在线观看免费观看| 色精品久久人妻99蜜桃| 成年女人毛片免费观看观看9| 国产亚洲精品av在线| 91午夜精品亚洲一区二区三区 | 色综合亚洲欧美另类图片| 久久天躁狠狠躁夜夜2o2o| 亚洲欧美日韩高清专用| aaaaa片日本免费| 成人欧美大片| 欧美区成人在线视频| 1000部很黄的大片| 91av网一区二区| 国产精品,欧美在线| 久久久久久国产a免费观看| 欧美乱妇无乱码| 国产在视频线在精品| .国产精品久久| 久久精品国产亚洲av香蕉五月| 99精品久久久久人妻精品| 国产在线男女| 亚洲国产精品sss在线观看| or卡值多少钱| 无人区码免费观看不卡| 免费在线观看日本一区| 国内精品美女久久久久久| 色综合亚洲欧美另类图片| 99久久无色码亚洲精品果冻| 亚洲av不卡在线观看| 国产探花极品一区二区| 亚洲乱码一区二区免费版| 黄色视频,在线免费观看| 一级黄片播放器| 麻豆一二三区av精品| 国产高清视频在线播放一区| 精品久久久久久久久av| 男人和女人高潮做爰伦理| 最近最新中文字幕大全电影3| 日本成人三级电影网站| 精品一区二区免费观看| 老鸭窝网址在线观看| 国产精品99久久久久久久久| 一区二区三区高清视频在线| 男女床上黄色一级片免费看| 国产亚洲av嫩草精品影院| 久久人妻av系列| 日本黄色视频三级网站网址| 男女床上黄色一级片免费看| 麻豆国产av国片精品| 99热精品在线国产| 一区二区三区高清视频在线| 国产一区二区三区在线臀色熟女| 国产视频内射| 欧美激情久久久久久爽电影| eeuss影院久久| 亚洲精品影视一区二区三区av| 色视频www国产| 特级一级黄色大片| www日本黄色视频网| 久久久久久久精品吃奶| 亚洲男人的天堂狠狠| 亚洲经典国产精华液单 | 亚洲一区高清亚洲精品| 欧美乱色亚洲激情| 国产不卡一卡二| 久久午夜福利片| 十八禁国产超污无遮挡网站| 日韩精品青青久久久久久| 中文字幕熟女人妻在线| 麻豆av噜噜一区二区三区| 一个人看视频在线观看www免费| 一区福利在线观看| 天天躁日日操中文字幕| 中文字幕人妻熟人妻熟丝袜美| 精品一区二区三区视频在线观看免费| 亚洲熟妇熟女久久| 两人在一起打扑克的视频| 欧美激情国产日韩精品一区| 一级a爱片免费观看的视频| av视频在线观看入口| 别揉我奶头 嗯啊视频| 国产亚洲精品久久久久久毛片| 欧美黄色片欧美黄色片| 亚洲国产色片| 欧美日本视频| 18禁黄网站禁片免费观看直播| 免费人成视频x8x8入口观看| www.熟女人妻精品国产| 欧美又色又爽又黄视频| 99国产综合亚洲精品| 国产成人啪精品午夜网站| 日韩中文字幕欧美一区二区| 综合色av麻豆| 国产69精品久久久久777片| 成人国产综合亚洲| 国产精品一区二区三区四区久久| 99热这里只有是精品在线观看 | АⅤ资源中文在线天堂| 桃红色精品国产亚洲av| 亚洲avbb在线观看| 欧美日韩瑟瑟在线播放| 男女下面进入的视频免费午夜| 极品教师在线免费播放| 毛片女人毛片| 国产综合懂色| 99久久久亚洲精品蜜臀av| 亚洲av美国av| 麻豆国产av国片精品| 免费一级毛片在线播放高清视频| 大型黄色视频在线免费观看| 69人妻影院| 日日摸夜夜添夜夜添av毛片 | 国产av在哪里看| 丝袜美腿在线中文| 可以在线观看毛片的网站| eeuss影院久久| 天天躁日日操中文字幕| 国产欧美日韩精品一区二区| 毛片女人毛片| 美女被艹到高潮喷水动态| 婷婷色综合大香蕉| 看黄色毛片网站| 亚洲国产日韩欧美精品在线观看| 午夜两性在线视频| 国产成人福利小说| 久久久久性生活片| 亚洲,欧美,日韩| 国产黄a三级三级三级人| 日韩欧美国产在线观看| 亚洲成人中文字幕在线播放| 97热精品久久久久久| 91在线观看av| 国产精品一区二区三区四区久久| 蜜桃亚洲精品一区二区三区| 国产高潮美女av| 亚洲aⅴ乱码一区二区在线播放| 色综合婷婷激情| 一二三四社区在线视频社区8| 亚洲国产精品久久男人天堂| 成人av一区二区三区在线看| 欧美成人一区二区免费高清观看| 欧美高清成人免费视频www| 免费av毛片视频| 99热这里只有是精品在线观看 | 一a级毛片在线观看| 国产精品嫩草影院av在线观看 | 国产成人aa在线观看| 白带黄色成豆腐渣| 国产黄a三级三级三级人| 亚洲欧美精品综合久久99| 成人av一区二区三区在线看| 在线观看美女被高潮喷水网站 | 小说图片视频综合网站| 99国产综合亚洲精品| 免费黄网站久久成人精品 | 国产亚洲精品久久久com| 久久精品国产亚洲av涩爱 | 欧美乱色亚洲激情| 国产精品免费一区二区三区在线| 美女高潮的动态| 国产极品精品免费视频能看的| 免费观看人在逋| 免费人成在线观看视频色| 男女做爰动态图高潮gif福利片| 国产中年淑女户外野战色| 女同久久另类99精品国产91| 美女xxoo啪啪120秒动态图 | 久久亚洲精品不卡| 国产麻豆成人av免费视频| 一区二区三区激情视频| 亚洲黑人精品在线| 中文资源天堂在线| 十八禁网站免费在线| 欧美高清性xxxxhd video| 久久欧美精品欧美久久欧美| 男人的好看免费观看在线视频| 又黄又爽又免费观看的视频| 我要看日韩黄色一级片| 亚洲欧美日韩高清在线视频| 久久婷婷人人爽人人干人人爱| 性欧美人与动物交配| 老熟妇仑乱视频hdxx| 久久午夜亚洲精品久久| 内射极品少妇av片p| 欧美日韩中文字幕国产精品一区二区三区| 国产在视频线在精品| 欧美bdsm另类| 国产中年淑女户外野战色| 日韩中文字幕欧美一区二区| 欧美zozozo另类| 亚洲成av人片在线播放无| 波多野结衣高清作品| 国产久久久一区二区三区| 日本与韩国留学比较| 午夜激情欧美在线| 日韩欧美 国产精品| 日韩亚洲欧美综合| 动漫黄色视频在线观看| 中国美女看黄片| 欧美最新免费一区二区三区 | 最新在线观看一区二区三区| 男人舔奶头视频| 久久久国产成人免费| 久久香蕉精品热| 狠狠狠狠99中文字幕| 免费av观看视频| 床上黄色一级片| 中文字幕久久专区| 国产主播在线观看一区二区| 国产成人欧美在线观看| 此物有八面人人有两片| 成人av在线播放网站| 不卡一级毛片| 一边摸一边抽搐一进一小说| 国产精品国产高清国产av| 免费大片18禁| 91在线观看av| 亚洲av日韩精品久久久久久密| 天堂网av新在线| 97超视频在线观看视频| www.熟女人妻精品国产| 最新中文字幕久久久久| 美女高潮的动态| av天堂在线播放| 亚洲人成电影免费在线| 999久久久精品免费观看国产| 最近最新免费中文字幕在线| 少妇熟女aⅴ在线视频| 少妇裸体淫交视频免费看高清| 国产亚洲精品av在线| 久久精品综合一区二区三区| 啦啦啦观看免费观看视频高清| 亚洲av.av天堂| 日本三级黄在线观看| 色噜噜av男人的天堂激情| aaaaa片日本免费| 好男人电影高清在线观看| 简卡轻食公司| 悠悠久久av| 亚洲欧美日韩高清专用| 日本黄色视频三级网站网址| 久久久久国内视频| 欧美最新免费一区二区三区 | 国产日本99.免费观看| 国产乱人视频| 能在线免费观看的黄片| 人妻夜夜爽99麻豆av| 免费观看的影片在线观看| 女同久久另类99精品国产91| 色精品久久人妻99蜜桃| 亚洲av二区三区四区| 99国产精品一区二区蜜桃av| 99国产精品一区二区三区| 国产精品自产拍在线观看55亚洲| 赤兔流量卡办理| 亚洲国产欧美人成| 国产av麻豆久久久久久久| 久久久久久久久久黄片| 观看免费一级毛片| 在线免费观看的www视频| 久久人妻av系列| 日韩欧美三级三区| 十八禁国产超污无遮挡网站| 美女黄网站色视频| 国产色爽女视频免费观看| 香蕉av资源在线| 久久久久精品国产欧美久久久| 日韩欧美一区二区三区在线观看| 亚洲美女搞黄在线观看 | 在线看三级毛片| 亚洲真实伦在线观看| 麻豆av噜噜一区二区三区| 2021天堂中文幕一二区在线观| 99久久精品国产亚洲精品| 自拍偷自拍亚洲精品老妇| 日本黄色片子视频| 日韩成人在线观看一区二区三区| 免费看日本二区| 精品人妻视频免费看| 亚洲欧美精品综合久久99| 欧美bdsm另类| 国产av一区在线观看免费| 久久精品国产亚洲av香蕉五月|