• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Production of Two Elite Glutinous Rice Varieties by Editing Wx Gene

    2019-02-19 01:30:14FeiYunyanYangJieWangFangquanFanFangjunLiWenqiWangJunXuYangZhuJinyanZhongWeigong
    Rice Science 2019年2期

    Fei Yunyan, Yang Jie, 2, Wang Fangquan, 2, Fan Fangjun, 2, Li Wenqi, 2, Wang Jun, 2, Xu Yang, 2, Zhu Jinyan, 2, Zhong Weigong, 2

    ?

    Production of Two Elite Glutinous Rice Varieties by EditingGene

    Fei Yunyan1, Yang Jie1, 2, Wang Fangquan1, 2, Fan Fangjun1, 2, Li Wenqi1, 2, Wang Jun1, 2, Xu Yang1, 2, Zhu Jinyan1, 2, Zhong Weigong1, 2

    (Institute of Food Crops, Jiangsu Academy of Agricultural Sciences / Nanjing Branch of Chinese National Center for Rice Improvement / Jiangsu High Quality Rice Research & Development Center, Nanjing 210014, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China)

    Thegene () in rice, which encodes the granule bound starch synthase enzyme, is responsible for amylose synthesis. Glutinous (sticky) rice has little or no amylose that can be used in various applications, such as brewing. In this study, knockout of thegene with CRISPR/Cas9 technology was conducted in two eliterice lines, Huaidao 5 (HD5) and Suken 118 (SK118), aiming to develop elite sticky rice varieties. We achieved six homozygous T0plants with more than 200 bp deletion in thegene, as well as 36-HD5 and 18-SK118 homozygous transgene-free plants in the T1generation. The seeds of all the mutants were white and opaque, similar to those of sticky rice, and contained only 2.6%–3.2% amylose. Results of scanning electron microscopy showed that the quality of rice did not change. In conclusion, we successfully developed two elite sticky rice varieties.

    amylose; CRISPR; Cas9; rice; starch;

    Rice is one of the most important crops globally. High yield, good quality and resistant traits are important targets in its breeding programs (Kiswara et al, 2014), and genetic diversity in rice germplasm is crucial for these purposes. Various strategies, such as exploring wild rice germplasm and natural or artificial mutation, have been employed by breeders to broaden the genetic diversity of rice (Shen et al, 2017). However, these methods are time consuming, and in the case of gene mutations, randomly. The clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9) system is a novel technology, widely used in various fields because of its cost effective, simple, flexible and highly efficient (Wang et al, 2017a). In rice, numerous studies have been performed with the CRISPR/Cas9 system (Wang et al, 2016). Ma et al (2015) reported that editing efficiency of CRISPR/Cas9 is higher in rice than in. Mikami et al (2015) found that thepromoter performs better than thein mutation frequency. A 1-bp mismatch of an sgRNA is sufficient to avoid off-target in closely related genes in rice (Baysal et al, 2016). There is a greater probability of large gene deletions inrice than inrice (Wang et al, 2017b). With the rapid development of the CRISPR-Cas system, many researchers have begun to use this technology to improve agronomic traits in rice. For example, rice blast resistance lines are produced by CRISPR/Cas9-targeted mutagenesis of(Wang et al, 2016). Hybrid-compatible lines are developed by knocking out thegenes (Xie et al, 2017). Low-Cs+/Cd rice strains are also created by knocking out the corresponding metal transporter genes (Nieves-cordones et al, 2017; Tang et al, 2017).

    Amylose is a linear polymer composed of glucose units, linked by α-D-(1-4) glycosidic linkages. In rice, amylose content (AC) is a complex trait, influenced by multiple genes, mainly the() gene, and the environment (Chen et al, 2008). Thegene encodes the granule-bound starch synthase I (GBSSI), which catalyzes the synthesis of amylose. The expression ofis modulated by many factors, which can lead to a change in AC (Wang et al, 2015). Wu et al (2015) reported that dozens ofgenes regulate the splicing efficiency of. A tetratricopeptide domain-containing protein (flo2) regulates the expression of(Wu et al, 2015).,,,and, as transcription factors, modifyexpression (Wamnugu et al, 2017). Many QTLs, such as, have been identified as genes controlling AC (Fasahat et al, 2014). Glutelin, gibberellin receptor, ADP- glucose pyrophosphorylase and pullulanase also play minor roles in affecting AC (Wamnugu et al, 2017). Here, we used CRISPR/Cas9 technology to edit thegene and generate two elite glutinous rice varieties that could meet the demands of consumers and enrich the rice genetic resources.

    Materials and methods

    Rice materials and growth conditions

    Rice () inbred lines Huaidao 5 (HD5) and Suken 118 (SK118) were used for-mediated co-cultivationtransformation experiments, as described previously (Zheng et al, 2016). During growing seasons, all the materials were cultivated in the greenhouse of the Jiangsu Academy of Agricultural Sciences in Nanjing, Jiangsu Province, China.

    Plasmid construction

    Thegene (LOC_Os06g04200) was the target of Cas9 endonuclease. According to the principles outlined in Ma et al (2015), two sgRNAs (T1 and T2) were designed on the first extron of thegene from Nipponbare. The sgRNAs were assembled into one vector pYLCRISPR/Cas9-MH usingI (New England Biolabs, Country) and T4 ligase (New England Biolabs, Country). T1 and T2 were driven byandpromoters, respectively. The vector was transformed into thestrain DH5α, and the insertions were verified by sequencing. The primers sequences of the sgRNAs are listed in Table 1. A vector map was generated using vector NTI (Lu and Moriyama, 2004).

    Detection of mutations

    The genomic DNA of transgenic plants was isolated from rice leaves using the CTAB method (Murray and Thompson, 1980). The PCRs were conducted using a Golden Star T6 Super PCR Mix (TsingKe Biotech Co., Ltd, China) to amplify the sequences of T1 and T2. The reagents and reaction conditions of the PCRs were selected and programmed according to the manufacturer’s instructions. The obtained DNA fragments were sequenced, and then a similarity search using BLAST was performed with the wild-type (WT)sequence.

    Identification of transgene-free lines

    To identify the transgene-free lines, T1seedlings were examined using PCR with specific primers (Table 1) for the sequences of Cas9 and-resistance gene ().

    Evaluation of T1 phenotype

    The rice seeds were harvested at maturity and dried in an oven at 38 oC for two days after manual dehulling. The morphology of the seed endosperms was observed by visual inspection. Potassium iodide (I2-KI, 2%) staining was used to identify the starch types in the transgenic seeds T1generation(Kawagoe et al, 2005). Dried grains were ground into fine flour to pass through a 60 mesh sieve. Then, the AC of the powder was measured using a colorimetric method (Juliano et al, 1981). Scanning electron microscopy (SEM) was also performed to investigate the morphology of the rice starch. The polished rice seeds were cut with the blade of a scalpel, mounted on copper stubs, and coated with gold. All detailed procedures were performed according to Kasem et al (2011). Images were recorded on a Hitachi-S-3000Nscanning electron microscope (Hitachi, Co., Ltd. Japan).

    Table 1. Primers used in this study.

    Results

    Construction of CRISPR/Cas9 system

    To delete thegene inrice with the CRISPR/Cas9 technology, two different 20-bp sgRNAs (T1 and T2) at the first exon ofwere selected using the web-based tool CRISPR-P (http://cbi.hzau.edu.cn/cgi-bin/CRISPR), according to the criteria reported by Ma et al (2015). Two target sites were located at 15 and 217 bp downstream of the translation initiation codon (ATG) and were named T1 and T2, respectively (Fig. 1-A). The length between T1 and T2 was 202 bp, according to the coding sequence of. Two sgRNAs were sequentially assembled into pYLCRISPR/Cas9-MH as described by Wang et al (2017c). The T1 and T2 in the plasmid were driven by theandpromoters, respectively. Both Cas9 and, elements of the plasmid, were transcribed from the CaMV 35S promoter (Fig. 1-B).

    Fig. 1. Schematic diagrams of theand CRISPR/Cas9 vector.

    A, Overview of thegene structure and target sites for sgRNAs (T1 and T2). Exons and introns ingene are depicted by orange rectangles and white rectangles, respectively. The target sequences of sgRNAs are shown at the top of the gene structure in red. B, The structure of thegene editing system. T1 and T2 are driven by U3 and U6a promoters, respectively.

    RB, Right border; LB, Left border;,CRISPR associated protein 9 gene;,-resistance gene.

    Targets editing in T0 plants

    The CRISPR/Cas9-construct was transformed into two elite rice inbred lines HD5 and SK118. We obtained 36 and 32 independent T0transgenic plants of HD5 and SK118, respectively. The PCR tests of thegene confirmed that all T0plants were positive transgenic lines (Fig. 2-A). To analyze the mutation genotypes of the T0plants, three mutants of both-HD5 and-SK118 were randomly selected for PCR amplification (Fig. 2-B). The PCR products were sequenced. The genotype differences between the T0mutants and the WT lines are shown in Fig. 2-C. The results showed that the mutagenesis efficiency of the target sites was very high, the deletion fragments were larger than 200 bp in all individuals, the nucleotides between twoprotospacer adjacent motif (PAM) sites of the targets were all deleted by CRISPR/Cas9, and all T0plants were homozygous mutations.

    Selection of transgene-free homozygous mutant lines

    Because inherited Cas9 could also induce new mutations and lead to unpredicted segregation, distortion and chimerism in later generations, it is important to eliminate Cas9 by segregation in the T1generation and obtain stable mutants (Ishizaki, 2016; Yin et al, 2017). Three-SK118 (-SK118-1,-SK118-2 and-SK118-3) and three-HD5 (-HD5-1,-HD5-2 and-HD5-3) T0mutants were self-pollinated to generate T1plants. Transgene-free lines were analyzed by PCR using specific primers for theandsequences in the T1plants (Table 1). The results were determined using negative PCRs of bothand. The 235-HD5 and 118-SK118T1plants (including selections from all the six lines) were subjected to PCR tests, respectively, and 36-HD5 and 18-SK118transgene-free plants were isolated, respectively (Table 2).

    Fig. 2. CRISPR/Cas9-induced mutations in thegene.

    A, PCR analysis ofin T0lines (part of the picture). M, DNA marker; 1,-SK118-1; 2,-SK118-2; 3,-SK118-3; 4,-HD5-1; 5,-HD5-2; 6,-HD5-3; 7, Positive control of pYLCRISPR/Cas9-MH-; 8, Negative control of SK118; 9, Negative control of HD5; 10, Negative control of ddH2O. B, Polymerase chain reaction assays ofin T0lines. M, DNA marker; 1,-SK118-1; 2,-SK118-2; 3,-SK118-3; 4,-HD5-1; 5,-HD5-2; 6,-HD5-3; 7, Control of SK118; 8, Control of HD5. C, Sequencing results of T0mutant lines. sgRNA is shown in red letter; Insertion sequence is shown in green letter; Deletion sequence is shown by dashed line.

    Table 2. Segregation of transgene-free rice in T1 generation.

    Amylose content of rice grains

    The phenotypes of the mutant grains were compared with those of the WT. As shown in Fig. 3-A, the grains of the mutants were all white and opaque, which showed similar characteristics to those of typical glutinous rice varieties. The starch properties of the mutants were identified by a screen with I2-KI staining, as the seeds with more amylose have higher iodine binding capacity. Non-glutinous rice varieties have granules that are stained with a dark blue color. Seeds with more amylopectin, such as sticky rice, have a lower iodine binding capacity, and therefore, granules are stained with a reddish brown color (Kawagoe et al, 2005). As shown in Fig. 3-B, all the seeds of the mutants were reddish brown, while the WT grains were dark blue. The results revealed that the amylose content in the mutants was dramatically decreased. Further analysis showed that the AC of the mutants was 2.6%–3.2%, while the AC of the WT grains was 15.4%–15.7% (Fig. 3-C). As expected, the dramatic decrease of AC in the mutants was closely associated with the grain appearance and iodine staining results. The-HD5 and-SK118 rice strains were turned into glutinous lines.

    Microstructural features

    The cross sections of the grains were observed with SEM (Fig. 4). Results in Fig. 4-A revealed that the grain surfaces of the mutants were smoother and flatter than in the wild-types. Radiation from the rectangular columns, as revealed by cross-sections of grains, was reduced in the mutants, especially in-HD5. The fractured surfaces of grains from both the mutants and WTs were all densely packed with starch granules, and all the starch granules displayed large and irregular polygonal shapes with sharp edges (Fig. 4-B).

    Fig. 3. Phenotype of themutants.

    A, Intact polished rice. B, Grains stained with iodine solution. C, Amylose content ofmutants.

    Data represent Mean ± SD (= 3). **, Significant at the 0.01 level by the-test.

    Fig. 4. Cross-sections of endosperm in rice.

    DisCussion

    The first application of CRISPR/Cas9-based genome editing in rice was presented in 2013 (Cho et al, 2013). Since then, the technology has been widely used to improve agronomic traits and create novel germplasm in rice. Li et al (2016) and Zhou et al (2016) developed photoperiod-controlled and thermo-sensitive male sterile lines by disrupting theandgenes, respectively. Mutants of the,andgenes, which function as negative regulators of grain weight, were generated through CRISPR/Cas9-mediated targeted mutagenesis (Xu et al, 2016). Li et al (2017) designed sgRNAs to target,and, and produced early-maturing rice germplasm, which can improve the ecological adaptability of those rice varieties. Sun et al (2017) created high amylose rice plants through CRISPR/Cas9-mediated target gene editing ofand. The CRISPR/Cas9 technology has a great potential to facilitate plant breeding. Given this, we developed two elite glutinous rice varieties using the CRISPR/Cas9 technology by editing thegene.

    We designed two sgRNAs (T1 and T2), targeting the first exon of thegene. The GC contents of T1 and T2 were 70% and 65% respectively, and the secondary structures of sgRNAs had less than 6 bp complete matching. Using these sgRNAs, we observed extremely high editing efficiency in thegene. The design parameters of the sgRNA are in line with the reported critia (Ma et al, 2015), which might be a reason for the high sgRNA editing efficiency in this study. It was very interesting that the genotypes of all mutants generated from six lines were homozygous with more than 200 bp deletions and that the fragment between T1 and T2 was missing. It has been reported that CRISPR/Cas9 induces modifications that are small, presumably because of the blunt-ended double-strand breaks (Zheng et al, 2016). In this study, the CRISPR/Cas9 systerm seemed to preferentially induced full-length deletions, rather than small modifications. When the number of base pairs between the two target sites in Wx was 202 bp, and so that we found that the genetypes of all the six selected T0transgenic plants were about 200 bp-fragment deletion. A similar phenomenon was described by (Wang et al, 2017a), but the distance between the sgRNAs required to induce large deletions should be further explored.

    mutation with different amylose content has been reported (Toru and Naoko, 2017). Rice varieties can be classified as waxy (0–2%), very low (3%–9%), low (10%–19%), intermediate (20%–25%) and high (> 25%) according to their AC (Cai et al, 2015). Thegene is the principal gene controlling the AC and can explain almost 90% of the AC variation in some cultivars (Wamnugu et al, 2017). Variousmutations (Wx,Wx,Wx,Wx,Wxand) generate a wide range of variation in AC (Yang et al, 2016; Wang et al, 2018). Studies have reported that different types ofmutations, such as a G/T mutation at the 5′ splice site of intron 1, a C deletion at intron 5, a G/A SNP in thepromoter region, or a T/G SNP at the intron 1-exon 1 junction, would result in amylose content decreased (Wang et al, 2015; Shahid et al, 2016). Ma et al (2015) disrupted thegene by CRISPR/Cas9 system in arice Taichung 65, and the AC in the mutants decreased to 2.6%, which is similar to a natural glutinous rice. Zhang et al (2018) used the CRISPR/Cas9 to target the first exon ofin tworice varieties, Xiushui 134 and Wuyunjing 7, and the results showed that the AC of mutants is reduced without affecting the other desirable agronomic traits. Our results generally agree with those reported in other studies.

    In conclusion, we precisely edited thegene using CRISPR/Cas9technology and generated high-quality glutinous rice. This work would provide new materials for traditional breeding and broaden the genetic diversity of glutinous rice.

    ACKNOWLEDGEMENTS

    This work was supported by the National Key Research and Development Program (Grant No. 2017YFD0100403), the Jiangsu Province Key Research and Development Program (Modern Agriculture) Project (Grant No. BE2017345-2), the Exploratory Project of the Jiangsu Academy of Agricultural Sciences [Grant No. ZX(17)2014], and the Jiangsu Province Natural Science Foundation (Grant No. BK20171326).

    Baysal C, Bortesi L, Zhu C, Farre G, Schillberg S, Christou P. 2016. CRISPR/Cas9 activity in the ricegene does not induce off-target effects in the closely related paralog., 36: 108.

    Cai J W, Man J M, Huang J, Liu Q Q, Wei W X, Wei C X. 2015. Relationship between structure and functional properties of normal rice starches with different amylose contents., 125: 35–44.

    Chen M H, Bergman C, Pinson S, Fjellstrom R. 2008.gene haplotypes: Associations with apparent amylose content and the effect by the environment in an international rice germplasm collection., 47(3): 536–545.

    Cho S W, Kim S, Kim J M, Kim JS. 2013. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease., 31: 230–232.

    Fasahat P, Rahman S, Ratnam W. 2014. Genetic controls on starch amylose content in wheat and rice grains., 93(1): 279–292.

    Ishizaki T. 2016. CRISPR/Cas9 in rice can induce new mutations in later generations, leading to chimerism and unpredicted segregation of the targeted mutation., 36(12): 165.

    Juliano B O, Perez C M, Blakeney A B, Castillo D T, Kongseree N, Laignelet B, Lapis E T, Murty V V S, Paule C M, Webb B D. 1981. International cooperative testing on the amylose content of milled rice., 33(5): 157–162.

    Kasem S, Waters D L E, Rice N F, Shapter F M, Henry R J. 2011. The endosperm morphology of rice and its wild relatives as observed by scanning electron microscopy., 4(1): 12–20.

    Kawagoe Y, Kubo A, Satoh H, Takaiwa F, Nakamura Y. 2005. Roles of isoamylase and ADP-glucose pyrophosphorylase in starch granule synthesis in rice endosperm., 42: 164–174.

    Kiswara G, Lee J H, Hur Y J, Cho J H, Lee J Y, Kim S Y, Sohn Y B, Song Y C, Nam M H, Yun B W. 2014. Genetic analysis and molecular mapping of low amylose gene(t) in rice (L.)., 127(1): 51–57.

    Li Q L, Zhang D B, Chen M J, Liang W Q, Wei J J, Qi Y P, Yuan Z. 2016. Development ofphoto-sensitive genic male sterile rice lines by editing carbon starved anther using CRISPR/Cas9., 43(6): 415–419.

    Li X F, Zhou W J, Ren Y K, Tian X J, Lv T X, Wang Z Y, Fang J, Chu C C, Yang J, Bu Q Y. 2017. High-efficiency breeding of early-maturing rice cultivars via CRISPR/Cas9-mediated genome editing., 44(3): 175–178.

    Lu G, Moriyama E N. 2004. Vector NTI, a balanced all-in-one sequence analysis suite., 5(4): 378–388.

    Ma X L, Zhang Q Y, Zhu Q L, Liu W, Chen Y, Qiu R, Wang B, Yang Z F, Li H Y, Lin Y R, Xie Y Y, Shen R X, Chen S F, Wang Z, Chen Y L, Guo J X, Chen L T, Zhao X C, Dong Z C, Liu Y G. 2015. A robust CRISPR/Cas9 system for convenient, high- efficiency multiplex genome editing in monocot and dicot plants., 8(8): 1274–1284.

    Mikami M, Toki S, Endo M. 2015. Comparison of CRISPR/Cas9 expression constructs for efficient targeted mutagenesis in rice., 88(6): 561–572.

    Murray M G, Thompson W F. 1980. Rapid isolation of high molecular weight plant DNA., 8(19): 4321–4325.

    Nieves-cordones M, Mohamed S, Tanoi K, Kobayashi N I, Takagi K, Vernet A, Guiderdoni E, Périn C, Sentenac H, Véry A A. 2017. Production of low-Cs(+) rice plants by inactivation of the K(+) transporter OsHAK1 with the CRISPR-Cas system., 92(1): 43–56.

    Peng B, Sun Y F, Pang R H, Li H L, Song X H, Yuan H Y, Zhang S H, Zhou Q Y, Li Q R, Li D, Song S Z. 2016. Study on chalkiness character and endosperm structure of rice grain in differentvarieties., 28(11): 1803–1811. (in Chinese with English abstract)

    Shahid S, Begum R, Razzaque S, Jesmin, Seraj Z I. 2016. Variability in amylose content of Bangladeshi rice cultivars due to unique SNPs inallele., 71: 1–9.

    Shen L, Hua Y F, Fu Y P, Jian L, Liu Q, Jiao X Z, Xin G W, Wang J J, Wang X C, Yan C J, Wang K J. 2017. Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice., 60(5): 506–515.

    Sun Y W, Jiao G A, Liu Z P, Zhang X, Li J Y, Guo X P, Du W M, Du J L, Francis F, Zhao Y D, Xia L Q. 2017. Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes., 8: 298.

    Tang L, Mao B G, Li Y K, Lv Q M, Zhang L P, Chen C Y, He H J, Wang W P, Zeng X F, Shao Y, Pan Y L, Hu Y Y, Peng Y, Fu X Q, Li H Q, Xia S T, Zhao B R. 2017. Knockout ofusing the CRISPR/Cas9 system produces low Cd-accumulatingrice without compromising yield., 7(1): 14438.

    Toru T, Naoko F. 2017. Thermal and rheological characteristics of mutant rice starches with widespread variation of amylose content and amylopectin structure., 62: 83–93.

    Wamnugu P, Ndjiondjop M N, Furtado A, Henry R. 2017. Sequencing of bulks of segregants allows dissection of genetic control of amylose content in rice., 16: 100–110.

    Wang B K, Zhang H, Hong R K, Zhang J W, Yang R, Luo Q, Zeng Q C. 2018.gene editing via CRISPR/Cas9 system in rice., 32(1): 35–42. (in Chinese with English abstract)

    Wang F J, Wang C L, Liu P Q, Lei C L, Hao W, Gao Y, Liu Y G, Zhao K J. 2016. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene., 11(4): e0154027.

    Wang F Q, Fan F J, Li W Q, Zhu J Y, Wang J, Zhong W G, Yang J. 2016. Knock out efficiency analysis ofgene using CRISPR/Cas9 in rice., 30(5): 469–478. (in Chinese with English abstract)

    Wang K, Hasjim J, Wu A C, Li E, Henry R J, Gilbert R G. 2015. Roles ofandin determining amylose fine structure., 127: 264–274.

    Wang M G, Mao Y F, Lu Y M, Tao X P, Zhu J K. 2017a. Multiplex gene editing in rice using the CRISPR-Cpf1 system., 10(7): 1011–1013.

    Wang Q X, Zhao H, Jiang J P, Xu J Y, Xie W B, Fu X K, Liu C, He Y Q, Wang G W. 2017b. Genetic architecture of natural variation in rice nonphotochemical quenching capacity revealed by genome-wide association study., 8: 1773.

    Wang Y, Geng L Z, Yuan M L, Wei J, Jin C, Li M, Yu K, Zhang Y, Jin H B, Wang E, Chai Z J, Fu X D, Li X G. 2017c. Deletion of a target gene inrice via CRISPR/Cas9., 36(8): 1333–1343.

    Wu Y P, Pu C H, Lin H Y, Huang H Y, Huang Y C, Hong C Y, Chang M C, Lin Y R. 2015. Three novel alleles of() confer dull grains with low amylose content in rice., 233: 44–52.

    Xie Y Y, Niu B X, Long Y M, Li G S, Tang J T, Zhang Y L, Ren D, Liu Y G, Chen L T. 2017. Suppression or knockout of/overcomes the-mediated hybrid male sterility in rice., 59(9): 669–679.

    Xu R F, Yang Y C, Qin R Y, Li H, Qiu C H, Li L, Wei P C, Yang J B. 2016. Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice., 43(8): 529–532.

    Yang X H, Nong B X, Xia X Z, Zhang Z Q, Zeng Y, Liu K Q, Deng G F, Li D T. 2016. Rapid identification of a new gene influencing low amylose content in rice landraces (L.) using genome-wide association study with specific-locus amplified fragment sequencing., 60(6): 465–472.

    Yin X J, Biswal A K, Dionora J, Perdigon K M, Balahadia C P, Mazumdar S, Chater C, Lin H C, Coe R A, Kretzschmar T, Guick J E, Quick P W, Bandyopadhyay A. 2017. CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of a stomatal developmental genein rice., 36(5): 745–757.

    Zhang H, Xu H, Feng M J, Zhu Y. 2018. Suppression ofin rice endosperm stabilizes amylose content under high temperature stress., 16(1): 18–26.

    Zhang J S, Zhang H, Botella J R, Zhu J K. 2018. Generation of new glutinous rice by CRISPR/Cas9-targeted mutagenesis of thegene in elite rice varieties., 60(5): 369–375.

    Zheng X L, Yang S X, Zhang D W, Zhong Z H, Tang X, Deng K J, Zhou J P, Qi Y P, Zhang Y. 2016. Effective screen of CRISPR/Cas9-induced mutants in rice by single-strand conformation polymorphism., 35(7): 1545–1554.

    Zhou H, He M, Li J, Chen L, Huang Z F, Zheng S Y, Zhu L Y, Ni E, Jiang D G, Zhao B R, Zhuang C X. 2016. Development of commercial thermo-sensitive genic male sterile rice accelerates hybrid rice breeding using the CRISPR/Cas9-mediatedediting system., 6: 37395.

    (Managing Editor: Wang Caihong)

    Copyright ? 2019, China National Rice Research Institute. Hosting by Elsevier B V

    This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Peer review under responsibility of China National Rice Research Institute

    http://dx.doi.org/10.1016/j.rsci.2018.04.007

    26 February 2018;

    27 April 2018

    Yang Jie (yangjie168@aliyun.com)

    成人精品一区二区免费| 成人亚洲精品一区在线观看| 久久精品人人爽人人爽视色| 51午夜福利影视在线观看| 在线看a的网站| 国产精品偷伦视频观看了| 午夜精品久久久久久毛片777| 亚洲成国产人片在线观看| 最新美女视频免费是黄的| 一级毛片精品| 亚洲国产精品合色在线| 好男人电影高清在线观看| 亚洲国产毛片av蜜桃av| 欧美午夜高清在线| 51午夜福利影视在线观看| 男人操女人黄网站| 一级片'在线观看视频| 日日摸夜夜添夜夜添小说| 亚洲专区字幕在线| 成人国产一区最新在线观看| 国产欧美日韩一区二区三| 亚洲av日韩精品久久久久久密| 免费人成视频x8x8入口观看| 性少妇av在线| 黄片播放在线免费| 777久久人妻少妇嫩草av网站| ponron亚洲| 国产又色又爽无遮挡免费看| 亚洲性夜色夜夜综合| 国产精品久久视频播放| 欧美一级毛片孕妇| 亚洲精品av麻豆狂野| 窝窝影院91人妻| 亚洲一区中文字幕在线| 好男人电影高清在线观看| 久久久精品免费免费高清| 久久香蕉国产精品| 电影成人av| 热99re8久久精品国产| 欧美国产精品一级二级三级| 免费在线观看视频国产中文字幕亚洲| 好男人电影高清在线观看| 热99久久久久精品小说推荐| 精品国产乱码久久久久久男人| 香蕉国产在线看| 国产精品亚洲av一区麻豆| 91老司机精品| 岛国在线观看网站| 男女午夜视频在线观看| 日韩欧美三级三区| a级毛片在线看网站| 精品国产一区二区久久| 欧美久久黑人一区二区| 777米奇影视久久| 日日摸夜夜添夜夜添小说| 国产精品1区2区在线观看. | 男人舔女人的私密视频| 99re6热这里在线精品视频| 精品免费久久久久久久清纯 | 欧美精品亚洲一区二区| 国产精品久久久av美女十八| 久久久久久久午夜电影 | av福利片在线| 正在播放国产对白刺激| 下体分泌物呈黄色| 身体一侧抽搐| 日韩免费av在线播放| 久久精品国产亚洲av香蕉五月 | 久久热在线av| 岛国在线观看网站| 色在线成人网| 久久精品国产清高在天天线| 一级,二级,三级黄色视频| 多毛熟女@视频| 水蜜桃什么品种好| 亚洲av成人av| 亚洲人成电影免费在线| av电影中文网址| 午夜影院日韩av| 久久中文字幕人妻熟女| 久久草成人影院| 91大片在线观看| a级毛片黄视频| 一进一出抽搐gif免费好疼 | 国产精品久久视频播放| 脱女人内裤的视频| 国产野战对白在线观看| 天天操日日干夜夜撸| 亚洲国产中文字幕在线视频| 国产精品久久久久久精品古装| 天堂动漫精品| 免费在线观看黄色视频的| 色综合婷婷激情| 精品人妻1区二区| 欧美日韩亚洲综合一区二区三区_| 国产97色在线日韩免费| 一二三四在线观看免费中文在| 精品人妻在线不人妻| a级毛片在线看网站| 制服人妻中文乱码| 少妇粗大呻吟视频| 亚洲中文av在线| 日本wwww免费看| 欧美乱码精品一区二区三区| 欧美在线黄色| 久久精品成人免费网站| 婷婷丁香在线五月| 亚洲中文日韩欧美视频| 精品第一国产精品| 又黄又粗又硬又大视频| 国产男靠女视频免费网站| 久久人妻福利社区极品人妻图片| 免费久久久久久久精品成人欧美视频| 亚洲欧美日韩另类电影网站| 国产精品九九99| 久久久精品国产亚洲av高清涩受| 一边摸一边抽搐一进一出视频| 人妻 亚洲 视频| 国产黄色免费在线视频| 成人精品一区二区免费| 久久精品aⅴ一区二区三区四区| 中国美女看黄片| 精品第一国产精品| 午夜影院日韩av| 69av精品久久久久久| 国产精品永久免费网站| 亚洲专区中文字幕在线| 亚洲一码二码三码区别大吗| 淫妇啪啪啪对白视频| 女人被躁到高潮嗷嗷叫费观| 午夜亚洲福利在线播放| 最新美女视频免费是黄的| 欧美日韩亚洲高清精品| 少妇裸体淫交视频免费看高清 | 91老司机精品| 黑人巨大精品欧美一区二区蜜桃| 免费女性裸体啪啪无遮挡网站| 精品午夜福利视频在线观看一区| 每晚都被弄得嗷嗷叫到高潮| 亚洲av第一区精品v没综合| 色尼玛亚洲综合影院| 国产精品国产高清国产av | 亚洲精品久久午夜乱码| 不卡一级毛片| 热99久久久久精品小说推荐| 精品无人区乱码1区二区| 丰满人妻熟妇乱又伦精品不卡| av免费在线观看网站| 在线永久观看黄色视频| 美女 人体艺术 gogo| 亚洲自偷自拍图片 自拍| 国产精品久久久人人做人人爽| 两性夫妻黄色片| 久久 成人 亚洲| 亚洲国产毛片av蜜桃av| 十八禁人妻一区二区| 99精品在免费线老司机午夜| 丁香欧美五月| 十八禁人妻一区二区| 一级毛片高清免费大全| 精品视频人人做人人爽| 国产极品粉嫩免费观看在线| 好看av亚洲va欧美ⅴa在| avwww免费| 久久精品亚洲av国产电影网| 又黄又粗又硬又大视频| 亚洲精品美女久久av网站| 久久这里只有精品19| a级毛片黄视频| 天堂动漫精品| 久久精品国产99精品国产亚洲性色 | 国产欧美日韩一区二区三| av福利片在线| www日本在线高清视频| 国产真人三级小视频在线观看| 电影成人av| 精品一区二区三区av网在线观看| 91成人精品电影| 亚洲精华国产精华精| 91老司机精品| 色在线成人网| 欧美精品一区二区免费开放| 99热网站在线观看| 亚洲精品在线美女| 99国产综合亚洲精品| 黄色丝袜av网址大全| 好男人电影高清在线观看| 国产精品久久久久久人妻精品电影| 多毛熟女@视频| 老熟妇仑乱视频hdxx| 欧美激情高清一区二区三区| 看免费av毛片| 亚洲国产看品久久| 久久香蕉激情| 9热在线视频观看99| 老汉色av国产亚洲站长工具| 午夜久久久在线观看| 美女视频免费永久观看网站| a级毛片在线看网站| 看片在线看免费视频| 啦啦啦免费观看视频1| 99riav亚洲国产免费| 亚洲午夜理论影院| 欧美黑人欧美精品刺激| 国产亚洲欧美精品永久| 99久久人妻综合| 中亚洲国语对白在线视频| 国精品久久久久久国模美| 国产一区有黄有色的免费视频| 中文欧美无线码| 香蕉久久夜色| 99国产精品免费福利视频| 最新在线观看一区二区三区| 国产无遮挡羞羞视频在线观看| 免费观看人在逋| 久久人妻av系列| 午夜免费成人在线视频| 制服诱惑二区| 欧美激情久久久久久爽电影 | 久久中文看片网| 精品久久久久久电影网| 热re99久久精品国产66热6| 日韩欧美免费精品| 怎么达到女性高潮| 国产蜜桃级精品一区二区三区 | 久久精品aⅴ一区二区三区四区| 国产欧美日韩综合在线一区二区| 成人特级黄色片久久久久久久| 香蕉丝袜av| 成人18禁高潮啪啪吃奶动态图| 国产亚洲精品第一综合不卡| 一级作爱视频免费观看| 中文亚洲av片在线观看爽 | 又紧又爽又黄一区二区| 国产男女超爽视频在线观看| 黄色怎么调成土黄色| 日韩精品免费视频一区二区三区| 亚洲精华国产精华精| 性少妇av在线| svipshipincom国产片| 一本大道久久a久久精品| 不卡一级毛片| 免费少妇av软件| 天堂中文最新版在线下载| 精品欧美一区二区三区在线| 岛国在线观看网站| 免费看a级黄色片| 日韩熟女老妇一区二区性免费视频| 一进一出抽搐动态| 99国产精品99久久久久| 黑人巨大精品欧美一区二区蜜桃| www.999成人在线观看| 欧美成狂野欧美在线观看| 国内久久婷婷六月综合欲色啪| 国产精品一区二区精品视频观看| 久久久精品免费免费高清| 最近最新免费中文字幕在线| 亚洲精品国产色婷婷电影| 99久久人妻综合| 青草久久国产| 国产精品国产高清国产av | 欧美人与性动交α欧美软件| 久久久国产精品麻豆| 久久午夜综合久久蜜桃| 国产免费av片在线观看野外av| 国产97色在线日韩免费| 嫩草影视91久久| 日韩大码丰满熟妇| 亚洲欧美精品综合一区二区三区| 国产精品自产拍在线观看55亚洲 | 久久国产精品大桥未久av| 久久国产精品人妻蜜桃| 两个人免费观看高清视频| x7x7x7水蜜桃| 丝袜在线中文字幕| 国产精品久久视频播放| 亚洲va日本ⅴa欧美va伊人久久| 久久久久久久午夜电影 | 国产成人欧美| 欧美亚洲 丝袜 人妻 在线| 中文字幕精品免费在线观看视频| 成人免费观看视频高清| 亚洲 欧美一区二区三区| 女人高潮潮喷娇喘18禁视频| 美女高潮喷水抽搐中文字幕| 久久久国产欧美日韩av| 亚洲中文av在线| x7x7x7水蜜桃| 少妇猛男粗大的猛烈进出视频| 伊人久久大香线蕉亚洲五| videosex国产| 欧美另类亚洲清纯唯美| 成人永久免费在线观看视频| 精品人妻在线不人妻| 久久久国产成人免费| 成人18禁在线播放| 丝袜在线中文字幕| 国产不卡av网站在线观看| 在线观看免费午夜福利视频| 色综合婷婷激情| 欧美在线黄色| 国产精品偷伦视频观看了| 精品卡一卡二卡四卡免费| 亚洲专区中文字幕在线| 亚洲av电影在线进入| av片东京热男人的天堂| 美国免费a级毛片| 99re在线观看精品视频| 国产黄色免费在线视频| 国产99久久九九免费精品| 男女午夜视频在线观看| a在线观看视频网站| 在线观看免费高清a一片| 久久久国产欧美日韩av| 一级,二级,三级黄色视频| 欧美最黄视频在线播放免费 | 怎么达到女性高潮| 女人高潮潮喷娇喘18禁视频| 啪啪无遮挡十八禁网站| 久久青草综合色| 丁香欧美五月| 欧美乱妇无乱码| 咕卡用的链子| 在线永久观看黄色视频| 日本一区二区免费在线视频| 99久久99久久久精品蜜桃| 女人高潮潮喷娇喘18禁视频| 99精国产麻豆久久婷婷| 国产日韩一区二区三区精品不卡| 国产淫语在线视频| 欧美成人免费av一区二区三区 | 在线观看午夜福利视频| 黄色成人免费大全| 久久久久国内视频| 亚洲成人免费电影在线观看| 国产精品成人在线| 久久婷婷成人综合色麻豆| 99riav亚洲国产免费| 国产精品98久久久久久宅男小说| 亚洲精品自拍成人| 国产视频一区二区在线看| av超薄肉色丝袜交足视频| 美女国产高潮福利片在线看| 日韩精品免费视频一区二区三区| av在线播放免费不卡| 天天添夜夜摸| 成人三级做爰电影| www日本在线高清视频| 天天影视国产精品| 欧美乱妇无乱码| 午夜日韩欧美国产| 国产不卡一卡二| 高清毛片免费观看视频网站 | 精品久久久久久久毛片微露脸| 免费av中文字幕在线| 黑人巨大精品欧美一区二区蜜桃| 精品福利永久在线观看| 人人澡人人妻人| 搡老岳熟女国产| 一区在线观看完整版| 亚洲专区字幕在线| 国产一卡二卡三卡精品| 国产极品粉嫩免费观看在线| 免费在线观看视频国产中文字幕亚洲| 91麻豆精品激情在线观看国产 | 精品国产一区二区久久| 九色亚洲精品在线播放| 捣出白浆h1v1| 久久人妻熟女aⅴ| 少妇裸体淫交视频免费看高清 | 久久久久久免费高清国产稀缺| 日本a在线网址| 国产激情久久老熟女| 日本黄色视频三级网站网址 | 又黄又爽又免费观看的视频| 老鸭窝网址在线观看| 久久久久国产精品人妻aⅴ院 | 国产99白浆流出| 国产精华一区二区三区| 国产精品久久久久久精品古装| 亚洲熟女精品中文字幕| 国产精品综合久久久久久久免费 | 黑丝袜美女国产一区| 91九色精品人成在线观看| 极品教师在线免费播放| www日本在线高清视频| 大型av网站在线播放| 亚洲va日本ⅴa欧美va伊人久久| 久久精品国产亚洲av高清一级| 久久久久国产精品人妻aⅴ院 | 午夜精品国产一区二区电影| 日本撒尿小便嘘嘘汇集6| av天堂在线播放| 欧美黄色淫秽网站| avwww免费| 国产精品永久免费网站| 欧美黑人欧美精品刺激| 少妇猛男粗大的猛烈进出视频| 人人妻人人澡人人爽人人夜夜| 久久精品国产综合久久久| 中文字幕另类日韩欧美亚洲嫩草| 欧美国产精品va在线观看不卡| 亚洲aⅴ乱码一区二区在线播放 | 天堂动漫精品| 看黄色毛片网站| 国产一区二区三区在线臀色熟女 | 在线视频色国产色| √禁漫天堂资源中文www| av视频免费观看在线观看| 最近最新中文字幕大全电影3 | xxx96com| 国产精品.久久久| 亚洲欧美一区二区三区久久| 高清黄色对白视频在线免费看| 欧美精品亚洲一区二区| 欧美乱妇无乱码| 午夜精品国产一区二区电影| 十分钟在线观看高清视频www| 在线视频色国产色| 男女高潮啪啪啪动态图| 一二三四社区在线视频社区8| 欧美最黄视频在线播放免费 | a级毛片在线看网站| 亚洲成人免费电影在线观看| 久99久视频精品免费| 午夜免费成人在线视频| 熟女少妇亚洲综合色aaa.| 两个人免费观看高清视频| 丰满迷人的少妇在线观看| 亚洲熟妇熟女久久| av电影中文网址| 久久久久久久精品吃奶| 精品国产亚洲在线| 国产成人av教育| 久久国产乱子伦精品免费另类| 熟女少妇亚洲综合色aaa.| 国产一卡二卡三卡精品| 黄色毛片三级朝国网站| 男女之事视频高清在线观看| 精品少妇一区二区三区视频日本电影| 如日韩欧美国产精品一区二区三区| 亚洲性夜色夜夜综合| netflix在线观看网站| 黄频高清免费视频| 久久国产精品影院| 在线观看免费午夜福利视频| 国产成人系列免费观看| 久久ye,这里只有精品| 亚洲成av片中文字幕在线观看| 一级毛片高清免费大全| 男女免费视频国产| 丰满饥渴人妻一区二区三| 在线观看免费午夜福利视频| 在线视频色国产色| 搡老乐熟女国产| 亚洲av成人av| 久久精品亚洲精品国产色婷小说| 国产精品久久视频播放| 中文字幕制服av| 亚洲精品乱久久久久久| 热99久久久久精品小说推荐| 日日摸夜夜添夜夜添小说| 欧美日韩亚洲综合一区二区三区_| 欧美不卡视频在线免费观看 | 人人妻人人添人人爽欧美一区卜| 成在线人永久免费视频| 手机成人av网站| 欧美精品一区二区免费开放| av中文乱码字幕在线| 国产男女内射视频| 欧美黑人欧美精品刺激| 女人爽到高潮嗷嗷叫在线视频| 精品福利永久在线观看| 国产成人欧美| 中文字幕色久视频| 亚洲视频免费观看视频| 色综合婷婷激情| 大型av网站在线播放| 激情视频va一区二区三区| 99久久国产精品久久久| 日韩精品免费视频一区二区三区| 黄色怎么调成土黄色| 丝袜美腿诱惑在线| 亚洲专区国产一区二区| 国产国语露脸激情在线看| 国产真人三级小视频在线观看| 久久国产精品人妻蜜桃| 精品久久久久久久毛片微露脸| 美女国产高潮福利片在线看| 黄色女人牲交| 91精品国产国语对白视频| 狠狠狠狠99中文字幕| 天堂俺去俺来也www色官网| 女警被强在线播放| 国产淫语在线视频| av国产精品久久久久影院| 午夜亚洲福利在线播放| 激情视频va一区二区三区| 性少妇av在线| 国产不卡av网站在线观看| 精品国产乱子伦一区二区三区| 国产精品av久久久久免费| 欧美日韩精品网址| 别揉我奶头~嗯~啊~动态视频| 欧美精品高潮呻吟av久久| 国产人伦9x9x在线观看| 日韩视频一区二区在线观看| 一级黄色大片毛片| 精品一区二区三区四区五区乱码| 两个人免费观看高清视频| 久久 成人 亚洲| 亚洲aⅴ乱码一区二区在线播放 | 老司机影院毛片| 又黄又粗又硬又大视频| 成人手机av| 亚洲美女黄片视频| xxx96com| 黄频高清免费视频| 欧美日韩黄片免| 欧美丝袜亚洲另类 | 久久亚洲精品不卡| 少妇猛男粗大的猛烈进出视频| 欧美在线一区亚洲| 国产欧美日韩一区二区三区在线| 精品午夜福利视频在线观看一区| 捣出白浆h1v1| 曰老女人黄片| 人人妻人人澡人人看| 国产精品香港三级国产av潘金莲| xxxhd国产人妻xxx| 在线看a的网站| 欧美 日韩 精品 国产| 成人三级做爰电影| 久久香蕉国产精品| 欧美精品亚洲一区二区| 久久久精品国产亚洲av高清涩受| 丰满的人妻完整版| 欧美乱码精品一区二区三区| 国产精品偷伦视频观看了| 国产野战对白在线观看| 亚洲情色 制服丝袜| 亚洲九九香蕉| 水蜜桃什么品种好| 视频在线观看一区二区三区| 又紧又爽又黄一区二区| 国产黄色免费在线视频| 亚洲专区国产一区二区| 1024视频免费在线观看| 女同久久另类99精品国产91| 超色免费av| 动漫黄色视频在线观看| 如日韩欧美国产精品一区二区三区| 老汉色∧v一级毛片| 国产熟女午夜一区二区三区| 亚洲专区中文字幕在线| 99热网站在线观看| 欧美在线黄色| 免费av中文字幕在线| 精品乱码久久久久久99久播| 欧美久久黑人一区二区| 男女床上黄色一级片免费看| 亚洲精品av麻豆狂野| 天天添夜夜摸| 亚洲va日本ⅴa欧美va伊人久久| 精品福利永久在线观看| 国产亚洲精品久久久久久毛片 | 老司机在亚洲福利影院| 麻豆av在线久日| 亚洲精品国产区一区二| 日本一区二区免费在线视频| 精品亚洲成a人片在线观看| 久久草成人影院| 欧美黑人欧美精品刺激| 欧美激情久久久久久爽电影 | 青草久久国产| 精品一区二区三卡| 热re99久久国产66热| 桃红色精品国产亚洲av| 国产又爽黄色视频| 一区二区三区国产精品乱码| 亚洲人成电影观看| 波多野结衣av一区二区av| 淫妇啪啪啪对白视频| 国产成人精品无人区| 日韩免费av在线播放| 国产片内射在线| 99国产综合亚洲精品| 美女视频免费永久观看网站| 夫妻午夜视频| 俄罗斯特黄特色一大片| 美女视频免费永久观看网站| 国产精品欧美亚洲77777| 国产精品自产拍在线观看55亚洲 | 国产单亲对白刺激| 亚洲精品粉嫩美女一区| 国产精品98久久久久久宅男小说| 夜夜夜夜夜久久久久| 日本黄色日本黄色录像| 国产乱人伦免费视频| 国产亚洲欧美98| 欧美日本中文国产一区发布| 老司机在亚洲福利影院| 久久久久久亚洲精品国产蜜桃av| 天堂√8在线中文| 久久国产精品影院| 老司机午夜福利在线观看视频| 女人久久www免费人成看片| 午夜两性在线视频| 久久久国产一区二区| 亚洲性夜色夜夜综合| 12—13女人毛片做爰片一| 欧美精品av麻豆av| 亚洲av熟女| 国产日韩欧美亚洲二区| 亚洲欧美日韩高清在线视频|