• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    First-Principles Study: the Structural Stability and Sulfur Anion Redox of Li1?xNiO2?ySy

    2018-01-10 01:22:35YANHuiJunLIBiaoJIANGNingXIADingGuo
    物理化學(xué)學(xué)報 2017年9期
    關(guān)鍵詞:第一性物理化學(xué)熱穩(wěn)定性

    YAN Hui-Jun LI Biao JIANG Ning XIA Ding-Guo

    ?

    First-Principles Study: the Structural Stability and Sulfur Anion Redox of Li1?xNiO2?yS

    YAN Hui-Jun LI Biao JIANG Ning XIA Ding-Guo*

    ()

    Ni-rich layered oxides are the preferred cathode materials for high-energy-density lithium-ion batteries currently used in electric vehicles. In this paper, we present a systematic first-principles evaluation of the deintercalation process in the Li1?NiO2?yS. The partial density of states (PDOS) characters of the electrons near the Fermi level, redox behaviors, and thermal stability have been investigated within the GGA +scheme. The results show that the introduction of sulfur alleviates the lattice distortion during charging, suppresses nickel migration, and enhances the stability of oxygen according to the contribution of sulfur anion redox to the charge compensation for the overcharged Li1?NiO2?S. This study provides a new insight on improving the stability of Ni-rich cathode materials by tuning of the electrochemical behaviors based on sulfur anion redox.

    Anion doping; Sulfur redox; Structural stability; Thermal stability; Transition metal migration

    1 Introduction

    Ni-rich layered oxides with high energy density and low cost are the preferred cathode material for the high energy density lithium-ion batteries used in electric vehicle1,2. For instance, lithium-ion batteries with LiNi0.8Co0.15Al0.05O2have been successfully applied in Tesla. However, Ni-rich layered cathodes suffer from the serious safety concern, related to the structural instability and oxygen release in their overcharged states3,4. Numerous works were done to improve the electrochemical performance of the layered Ni-rich cathodes. Cation doping is a good strategy to enhance the safety of layered Ni-rich oxides and have been extensively verified by experiments5?7. Most cation doping improves structural stability and safety of Ni-rich cathodes through the increased bonding strength of TM―O bond and the decreased oxygen evolution8. Anion doping also attracts researchers' attention9,10. The cycling stability of layered Ni-rich oxides was enhanced by fluorine substitution, which protected the electrode from HF-acid attack11. Park.12suggested that sulfur doping in LiNiO2enhanced the capacity retention by improving the structural stability. Kongstudied the conflicting roles of anion doping (F, Cl and S) in LiNiO2by the first-principles calculations13. However, these works were done by assuming that the electrochemical behaviors of this conventional layered oxide are mainly from the contribution of cation redox during charge-discharge process. By contrast, the abnormally high capacities delivered by lithium-rich oxide cathodes are a result of contributions from both cationic and anionic redox processes14?16. This phenomenon has invoked us to design high capacity cathode materials with help of anionic redox. Previous research based on Li2FeS2indicated that anion sulfur participated in redox reaction in charge and discharge process17. Sulfur redox may present higher reversibility than oxygen redox since S22?is commonly adopted in some familiar sulfides, such as FeS2and CoS2. On the other hand, Li1?NiO2, the basis system of a series of Ni-rich layered oxides, undergoes phase transitions accompanied by oxygen evolution3,4. And the extent of oxygen release increases with more lithium extracted18. The irreversible phase transitions with oxygen loss are responsible for the capacity fading and safety concerns of batteries3.

    Therefore, in present work, we investigated the delithiation process of LiNiO2doped by sulfur anions. We first found that anion sulfur participated the redox process prior to oxygen during the delithiation process. The introduction of sulfur favors the structural and thermal stability of delithiated Li1?NiO2?Sby alleviating the lattice distortion, suppressing nickel migration and mitigating oxygen release.

    2 Computational details

    All the structures are optimized using the ViennaSimulation Package (VASP)19with a 520 eV energy cutoff. The generalized gradient approximation Perdew-Burke- Ernzerhof (GGA-PBE) exchange and correlation functional are selected for all the calculations20. We use the GGA +method to localize the Ni-3electrons21. The value of Hubbard U is set to be 6.3 eV for Ni-3electrons according to previous work22,23. Besides, the spin polarization is also considered. The structure optimization is carried out with convergence of 10?4eV for the total energy and 0.5 eV·nm?1for the forces acting on each atom. A supercell that contains 108 atoms is used and the 2 × 2 × 1-points in the Brillouin zone are applied24.

    The LiNiO2supercell contains 27 Ni atoms, 27 Li atoms and 54 O atoms. As the anion sulfur doping was very dilute in previous reported experiments12,13, the sulfur redox maybe difficult to be observed. In order to explore the anion sulfur redox in LiNiO2-yS, a larger doping concentration is applied in our calculated model, as exemplified by LiNiO1.89S0.11(Li27Ni27O51S3).

    3 Results and discussion

    3.1 Rational choice of the doping concentration

    In order to rationalized the sulfur doping concentration for DFT prediction, LiNiO2?ySsystems with= 0.11, 0.22, 0.33 and 0.55 were calculated and discussed. For all the simulations, sulfur dopants are uniformly distributed in the systems. The lowest energy structures of the systems with different sulfur concentration are shown in Fig.1. It is shown that LiNiO2?ySwith= 0.11, 0.22, and 0.33 all present well organized layered structure as LiNiO2(Fig.1(a?c)). However, the structure with= 0.55 (Fig.1d) is distorted due to the formation of S―S bonding, which denotes a unstable structure with large sulfur doping concentration that can exist only with S―S bonds forming to lower the total energy. Therefore, the doping concentration larger than 0.55 will not be considered any more in the following. Table 1 compares the theoretical capacity, the average delithiated voltage and the reaction enthalpy of the LiNiO2?ySsystems. The reaction enthalpy is calculated according to the reaction:

    LiNiO2 + y/8 S8→ LiNiO2?ySy + y/2 O2(1)

    (a)= 0.11, (b)= 0.22, (c)= 0.33, (d)= 0.55. The structure of LiNiO1.45S0.55is distorted due to the formation of S―S bonding.

    Table 1 Comparison of the theoretical capacity, the average delithiated voltage and the reaction enthalpy in LiNiO2?ySy.

    3.2 Deintercalation of Li1?xNiO1.89S0.11

    Firstly, we determined the delithiation sequence of different lithium sites in the configuration, as depicted in Fig.2(a). All of the lithium ions can be classified as three types: closest to the sulfur ions, next-closest to the sulfur ions, and others far away from sulfur ions. We found that the lithium ions closest to the sulfur ions are extracted prior to other lithium ions in LiNiO1.89S0.11as indicated from the calculated energy with single lithium vacancy created (see Fig.2(b)). After that, the structural stability of delithiated Li1?xNiO1.89S0.11is discussed from the perspective of thermodynamics. The formation energy of Li1-xNiO1.89S0.11is defined as:

    Fig.2 (a) Nine Li sites in Li layer of Li27Ni27O51S3 (LiNiO1.89S0.11), (b) the energy of system with one Li vacancy site.

    The lithium atoms closest to the sulfur atom are labeled sites 1–3, the lithium atoms next-closest to the sulfur atom are labeled sites 4–6, and other lithium atoms far away from sulfur atom are labeled sites 7–9. The single Li vacancy was created by extracting the corresponding Li atom according to Fig.2(a).

    ΔEf(x) = E(Li1?xNiO1.89S0.11) ? xE(NiO1.89S0.11) ?(1?x) E(LiNiO1.89S0.11)(2)

    in which(Li1?xNiO1.89S0.11),(LiNiO1.89S0.11) and(NiO1.89S0.11) are the energies of systems withlithium delithiated, zero lithium delithiated and all lithium delithiated. Various Li-vacancy configurations in Li1?xNiO1.89S0.11were considered, and the evolution of corresponding formation energies was plotted in Fig.3(a). The negative formation energies indicate that the delithiated structure Li1?xNiO1.89S0.11is stable, rather than phase separation with a portion of LiNiO1.89S0.11and a portion of NiO1.89S0.11coexisting. The lowest formation energies points with different lithium contents are connected, forming the convex hull. The points on the convex hull represent the most stable phases in different lithium concentrations. For a comparison, the formation energies and the convex hull in Li1?xNiO2are also plotted in Fig.3(a). Interestingly, the formation energies of the convex hull in Li1?xNiO1.89S0.11are lower than that in Li1?xNiO2. It means that anion sulfur doping will enhance the structural stability during the delithiation process.

    The charging voltages as a function of Li concentration in Li1?xNiO1.89S0.11are calculated using the following equation:

    Fig.3 (a) Formation energies with different Li concentrations, (b) the calculated charging curves.

    V = {E(LiaNiO1.89S0.11) ? E(LibNiO1.89S0.11) ?(b ? a)E(Li)}/(b ? a)e(3)

    (a) LiNiO2, (b) LiNiO1.89S0.11.

    3.3 Redox behavior of Li1-xNiO1.89S0.11

    To further investigate sulfur redox behavior, the evolution of the average projected density of states (PDOS) during the charge process in Li1?xNiO2(Fig.S2 in Supporting Information) and Li1?xNiO1.89S0.11(Fig.S3 in Supporting Information) were calculated. In order to provide quantitative analysis, the integral of the electron density between 0 and 4 eV in conduction band was applied to study the contribution of each atom to the redox (see Fig.5). In delithiation process of Li1?xNiO2, the electron holes of nickel in conduction band increase withincreases. The electron holes of oxygen in conduction band also increases, which is attributed to the strong interaction between nickel and oxygen. Previous works also reported that the charge compensation during deintercalation was located on oxygen in LiNiO232. For Li1?xNiO1.89S0.11, the evolution of electron density of states in conduction band on nickel and oxygen are similar to Li1?xNiO2, while the electron holes on sulfur increase from 0.60 to 1.00 in initial charging process when< 0.4, and then it basically remains unchanged in the following charging process. This suggested that sulfur ions provide electrons for charge compensation during delithiation process. Moreover, we plotted the charge density differences between the LiNiO1.89S0.11and Li1?xNiO1.89S0.11(Fig.6) to determine whether sulfur is involved in redox. The charge density difference Δ1and Δ2are determined by the following definition:

    Fig.5 Evolution of integral conduction band electrons on each atom during charging process of Li1?xNiO2 and Li1?xNiO1.89S0.11.

    Δρ1 = ρ(LiNiO1.89S0.11) ? ρ(Li0.67NiO1.89S0.11)(4) Δρ2 = ρ(Li0.67NiO1.89S0.11) ? ρ(NiO1.89S0.11)(5)

    In 0 << 0.33, sulfur ions provide electrons to compensate the charge during lithium extraction (Fig.6(a)), but are not involved in redox furthermore in the following process (Fig.6(b)). This is in agreement with the integral DOS analysis. Sulfur redox will result in less electron holes on oxygen at some extent, which will enhance the stability of the overcharged Li1?xNiO1.89S0.11, since we believe sulfur redox is more stable than oxygen redox due to the existence of polysulfides.

    3.4 Structural stability and safety

    Li1?xNiO2, especially in high delithiated phase, exhibits a poor structural and thermal stability. The structural and thermal instability are related to particle crack and phase transition. The particle crack is attributed to the lattice distortion during cycling33. The phase transition is resulted from Ni migration at elevated temperature, accompanied with oxygen gas release4. Therefore, the effect of sulfur doping on structural stability was examined from the view of the lattice distortion and thermodynamic phase transition.

    It is shown previously that the structure of LiNiO1.89S0.11remains layered after sulfur substitution (see Fig.1). Sulfur doping in LiNiO2leads to the lattice parameter expansion due to the larger size of sulfur ions (see Table 2). Moreover, the/ratio, which is the characteristic of layered structure, increases after doping, and this is favorable for the structural reversibility during charging and discharging processes34. The evolution of the lattice parameters during charging in Li1?NiO1.89S0.11is plotted in Fig.7. For Li1?NiO2, lattice parametersandgradually decrease, whileincreases. But there is a turning point for parameterin= 0.8, indicating a shrinkage of the lattice alongdirection occurs at the end of charging process, which agrees well with experiments30. The latticeparameter increases with the deintercalationincreases due to the increscent repulsion between NiO6layers. The lattice shrinkage alongdirection will introduce inner strain in the structure, leading to particle micro cracks finally. After sulfur doping, the effect on the evolution ofandlattice parameters is small, whilelattice parameter is prominent. Firstly, the increasing amplitude ofis smaller than that in undoped system due to larger latticeparameter caused by sulfur substitution will reduce the repulsion between NiO6layers, and this will decrease the introduced inner strain during charging of Li1?NiO1.89S0.11. Furthermore, theparameter presents a monotonous ascending trend without any tuning points, implying that there is no lattice shrinkage at the end of charging, which will reduce particle cracks. Therefore, sulfur doping will reduce the lattice distortion and improve the structural stability during charging.

    It is also known that the thermal stability of Li1?NiO2is very terrible. Here, we also investigated the thermal stability of the Li1?NiO1.89S0.11. As we know, the layered Li1?NiO2will undergo the phase transition to spinel LiNi2O4, rocksalt NiO and O2gas3,4. The phase transition requires the migration of Ni ion from the Ni layer to Li layer, passing through the intermediate tetrahedral sites33. Ni4+ion is inclined to occupy the octahedral site due to its filled2gstate, while Ni3+with an additional electron inglevel is possible to migrate to tetrahedral site35. But the migration is not easy to happen at room temperature and slightly above36. Since it requires elevated temperature to induce the migration, it is possible that the spinel LiNi2O4becomes thermodynamically unstable before it is generated kinetically from the layered phase. As temperature increases, LiNi2O4becomes unstable and will convert to LiNiO2, NiO, and O2according to the temperature evolution of ternary phase diagram of Li-Ni-O236. Hence, the phase transition reaction could be described as:

    Li1–xNiO2 (layered) → (1 – x) LiNiO2 (layered) +x NiO (rocksalt) + x/2 O2(6) Li1–xNiO1.89S0.11 (layered) → (1 – x) LiNiO1.89S0.11(layered) + x NiO0.89S0.11 (rocksalt) + x/2 O2(7)

    (a) Δ1, (b) Δ2. The positive isosurface is in grey. The isosurface level is 0.07. The sulfur atoms (yellow) in Li1?xNiO1.89S0.11are marked by the dotted circle. color online.

    Fig.7 Evolution of lattice constants.

    (a), (b)andduring delithiation of Li1–xNiO2and Li1–xNiO1.89S0.11.

    We calculated the reaction enthalpies for> 0.5 according to the equation (6) or (7) (See Fig.8). The negative reaction enthalpy represents the exothermic reaction. The more the heat release, the more unstable the delithiated phase is. For Li1?NiO2, the released heat increases asincreases. It means that the delithiated phase is more and more unstable upon delithiation and will release oxygen gas finally, which is not conducive for thermal stability. However, after sulfur doping, the delithiated phase Li1?NiO1.89S0.11are more stable than Li1?NiO2due to the less heat release. Therefore, sulfur doping will enhance the thermal stability of the overcharged phase. We think the enhanced thermal stability is related to the sulfur redox. Sulfur provides a small amount of electrons to charge compensation, with less electron holes located on oxygen, thus retarding the oxygen generation. This further proves the superiority of sulfur doping in LiNiO2system.

    Fig.8 Reaction enthalpies of Li1?xNiO2 and Li1?xNiO1.89S0.11 with x > 0.5.

    Previous study indicated that oxygen vacancy would assist TM migration in layered structures37. Given that sulfur redox will reduce the oxygen participation on charge compensation, we evaluated the doping effect on Ni migration. The delithiated supercells Li9Ni27O54(Li0.33NiO2) and Li9Ni27O51S3(Li0.33NiO1.89S0.11) were used to study Ni migration, considering that they both possess some Ni3+ions and sufficient space to allow the Ni3+ion to hop between layers. The first step of phase transition is normally regarded as Ni3+ions migrating from the octahedral sites in Ni layer to neighboring tetrahedral sites in Li layer. We compared the energy differences Δoct→tetbetween the Li9(Nitet)(Nioct)26O54[Li9(Nitet)(Nioct)26O51S3] and Li9(Nioct)27O54[Li9(Nioct)27O51S3] (See Table 3). The possible structures of Li9(Nitet)(Nioct)26O54and Li9(Nitet)(Nioct)26O51S3are shown in Fig.9. We considered three types of Ni3+with tetrahedral sites in Li9(Nitet)(Nioct)26O51S3: the tetrahedral Ni3+ion are the nearest neighbor to dopant (labeled tet-1 in Fig.9(b)), next nearest neighbor to dopant (labeled tet-2 in Fig.9(b)) and distant to dopant (labeled tet-3 in Fig.9(b)), respectively. The positive energy difference represents an endothermic character of Ni migration to tetrahedral site. The smaller the value of positive energy difference is, the more likely Ni3+ion occupys tetrahedral site. As shown in Table 3, the energy difference Δoct→tetin undoped system is about 1.24 eV, which is lower than that in all cases of sulfur doped system. Therefore, Ni3+ions have a strong preference for octahedral site after sulfur doping, which will inhibit Ni3+ion migration. From this view, sulfur doping can suppress the phase transition and enhance the structural stability.

    Table 3 Energy differences of the system with and without tetrahedral Ni3+ ion.

    Fig.9 Configurations of Li9(Nitet)(Nioct)26O54 and Li9(Nitet)(Nioct)26O51S3.

    (a) Li9(Nitet)(Nioct)26O54, (b)Li9(Nitet)(Nioct)26O51S3, the migrated Ni3+ions are divided into the nearest neighbor to dopant (tet-1), (b) next nearest neighbor to dopant (tet-2) and distant to dopant (tet-3), respectively.

    4 Conclusions

    The mechanism of redox chemistry in Li1?xNiO1.89S0.11during delithiation is discussed in details. Due to the introduction of sulfur, the electron density is drew closer to the Fermi energy, which results in the lowered delithiated voltage. Moreover, sulfur ions contribute electrons to charge compensation upon initial deintercalation, which will reduce electron holes on oxygen. Sulfur doping will also alleviate the change of lattice parameter upon delithiation, which is beneficial for structural stability. From the thermodynamics view, sulfur doping will suppress Ni migration and retard the oxygen evolution, which is favor of the thermodynamic stability during delithiation. This work will open up a new view in designing the Ni-rich cathode materials with multiple anions redox.

    Acknowledgment: The work was carried out at National Supercomputer Center in Tianjin, and the calculations were performed on TianHe-1(A).

    Supporting Information: available free of chargethe internet at http://www.whxb.pku.edu.cn.

    (1) Liu, W.; Oh, P.; Liu, X.; Lee, M. J.; Cho, W.; Chae, S.; Kim, Y.; Cho, J.2015,, 4440. doi: 10.1002/anie.201409262

    (2) Kim, D.; Lim, J. M.; Lim, Y. G.; Yu, J. S.; Park, M. S.; Cho, M.; Cho, K.2015,, 6450. doi: 10.1021/acs.chemmater.5b02697

    (3) Wu, L.; Nam, K. W.; Wang, X.; Zhou, Y.; Zheng, J. C.; Yang, X. Q.; Zhu, Y.2011,, 3953. doi:10.1021/cm201452q

    (4) Nam, K. W.; Bak, S. M.; Hu, E.; Yu, X.; Zhou, Y.; Wang, X.; Wu, L.; Zhu, Y.; Chung, K. Y.; Yang, X. Q.2013,, 1047. doi:10.1002/adfm.201200693

    (5) Yang, Z. G.; Hua, W. B.; Zhang, J.; Chen, J. H.; He, F. R.; Zong, B. H.; Guo, X. D.2016,(5), 1056. [楊祖光, 滑緯博, 張 軍, 陳九華, 何鳳榮, 鐘本和, 郭孝東. 物理化學(xué)學(xué)報, 2016,(5), 1056.] doi: 10.3866/PKU.WHXB201603092

    (6) Huang, Y. Y.; Zhou, H. H.; Chen, J. T.; Gao, D. S.; Su, G. Y.2005,(7), 725. [黃友元, 周恒輝, 陳繼濤, 高德淑, 蘇光耀. 物理化學(xué)學(xué)報, 2005,(7), 725.] doi: 10.3866/PKU.WHXB20050706

    (7) Hou, X. Q.; Jiang, W. J.; Qi, L.; Han, L. J.2007,(Supp), 40. [侯憲全, 江衛(wèi)軍, 其 魯, 韓立娟. 物理化學(xué)學(xué)報, 2007,(Supp), 40.] doi: 10.3866/PKU.WHXB2007Supp10

    (8) Tatsumi, K.; Sasano, Y.; Muto, S.; Yoshida, T.; Sasaki, T.; Horibuchi, K.; Takeuchi, Y.; Ukyo, Y.2008,, 045108. doi: 10.1103/PhysRevB.78.045108

    (9) Woo, S. U.; Park, B. C.; Yoon, C. S.; Myung, S. T.; Prakash, J.; Sun, Y. K.2007,, A649. doi: 10.1149/1.2735916

    (10) Yan, H.; Li, B.; Yu, Z.; Chu, W.; Xia, D.2017,(13), 7155. doi: 10.1021/acs.jpcc.7b01168

    (11) Yue, P.; Wang, Z.; Guo, H.; Xiong, X.; Li, X.2013,, 1. doi: 10.1016/j.electacta.2013.01.018

    (12) Park, S. H.; Sun, Y. K.; Park, K. S.; Nahm, K. S.; Lee, Y. S.; Yoshio, M.2002,, 1721. doi: 10.1016/S0013-4686(02)00023-3

    (13) Kong, F.; Liang, C.; Longo, R. C.; Yeon, D. H.; Zheng, Y.; Park, J. H.; Doo, S. G.; Cho, K.2016,, 6942. doi: 10.1021/acs.chemmater.6b02627

    (14) Li, B.; Yan, H.; Zuo, Y.; Xia, D.2017,(7), 2811. doi: 10.1021/acs.chemmater.6b04743

    (15) Li, B.; Shao, R.; Yan, H.; An, L.; Zhang, B.; Wei, H.; Ma, J.; Xia, D.; Han, X.2016,, 1306. doi: 10.1002/adfm.201670054

    (16) Li, B.; Yan, H.; Ma, J.; Yu, P.; Xia, D.; Huang, W.; Chu, W.; Wu, Z.2014,, 5112. doi: 10.1002/adfm.201400436

    (17) Barker, J.; Kendrick, E.2011,, 6960.

    (18) Lee, K. K.; Yoon, W. S.; Kim, K. B.; Lee, K. Y.; Hong, S. T.2001,, 321. doi: 10.1016/S0378-7753(01)00548-1

    (19) Kresse, G.; Furthmüller, J.1996,, 11169. doi: 10.1103/PhysRevB.54.11169

    (20) Kresse, G.; Joubert, D.1999,, 1758. doi: 10.1103/PhysRevB.59.1758

    (21) Anisimov VI, V. I.; Zaanen, J.; Andersen, O. K.1991,, 943. doi: 10.1103/PhysRevB.44.943

    (22) Zhou, F.; Cococcioni, M.; Marianetti, C. A.; Morgan, D.; Ceder, G.2004,, 35. doi: 10.1103/PhysRevB.70.235121

    (23) Ma, J.; Yan, H.; Li, B.; Xia, Z.; Huang, W.; An, L.; Xia, D.2016,, 13421. doi:10.1021/acs.jpcc.6b04338

    (24) Monkhorst, H. J.1976,, 5188. doi: 10.1103/PhysRevB.13.5188

    (25) Chen, H.; Freeman, C. L.; Harding, J. H.2011,, 085108. doi: 10.1103/PhysRevB.84.085108

    (26) Rougier, A.; Delmas, C.; Chadwick, A. V.1995,, 123. doi: 10.1016/0038-1098(95)00020-8

    (27) Chung, J. H.; Proffen, T.; Shamoto, S.; Ghorayeb, A. M.; Croguennec, L.; Tian, W.; Sales, B. C.; Jin, R.; Mandrus, D.; Egami, T.2005,, 064410. doi: 10.1103/PhysRevB.71.064410

    (28) Marianetti, C. A.; Morgan, D.; Ceder, G.2001,, 224304. doi: 10.1103/PhysRevB.63.224304

    (29) Ouyang, C. Y.; Shi, S. Q.; Lei, M. S.2009,, 370. doi: 10.1016/j.jallcom.2008.06.123

    (30) Ohzuku, T.; Ueda, A.; Nagayama, M.1993,, 1862. doi: 10.1149/1.2220730

    (31) Aydinol, M. K.; Kohan, A. F.; Ceder, G.; Cho, K.; Joannopoulos, J.1997,, 1354. doi: 10.1103/PhysRevB.56.1354

    (32) Uchimoto, Y.; Sawada, H.; Yao, T.2001,, 326. doi: 10.1016/S0378-7753(01)00624-3

    (33) Jung, S. K.; Gwon, H.; Hong, J.; Park, K. Y.; Seo, D.-H.; Kim, H.; Hyun, J.; Yang, W.; Kang, K.2014,, 1300787. doi: 10.1002/aenm.201300787

    (34) Naghash, A. R.; Lee, J. Y.2001,, 2293. doi: 10.1016/S0013-4686(01)00452-2

    (35) Reed, J.; Ceder, G.2004,, 4513. doi:10.1021/cr020733x

    (36) Wang, L.; Maxisch, T.; Ceder, G.2007,, 543. doi: 10.1021/cm0620943

    (37) Qian, D.; Xu, B.; Chi, M.; Meng, Y. S.2014,, 14665. doi: 10.1039/c4cp01799d

    陰離子硫氧化還原與Li1?xNiO2?yS的結(jié)構(gòu)穩(wěn)定性:第一性原理研究

    鄢慧君 李 彪 蔣 寧 夏定國*

    (北京大學(xué)工學(xué)院,先進(jìn)電池材料理論與技術(shù)北京市重點實驗室,北京 100871)

    高鎳層狀氧化物是電動汽車高能量密度鋰離子電池正極材料的首選。本文通過第一性原理計算模擬了Li1?NiO2?S材料的脫鋰過程。通過GGA +計算分析了體系費(fèi)米能級處的電子結(jié)構(gòu),充電過程中的氧化還原機(jī)制和熱穩(wěn)定性。在Li1?NiO2?S脫鋰過程中,首次發(fā)現(xiàn)硫參與電荷補(bǔ)償,抑制過渡金屬的遷移,降低晶格扭曲幅度和提高體系中氧的穩(wěn)定性。這種基于硫陰離子氧化還原對鋰離子電池陰極材料電化學(xué)行為的調(diào)制有助于設(shè)計高穩(wěn)定性的高鎳正極材料。

    陰離子摻雜;硫氧化還原;結(jié)構(gòu)穩(wěn)定性;熱穩(wěn)定性;過渡金屬遷移

    O641

    10.3866/PKU.WHXB201705041

    March 30, 2017;

    April 20, 2017;

    May 4, 2017.

    . Email: dgxia@pku.edu.cn; Tel: +86-10-62767962.

    The project was supported by the New Energy Project for Electric Vehicle of National Key Research and Development Program, China (2016YFB0100200) and National Natural Science Foundation of China (51671004).

    國家重點研發(fā)計劃“新能源汽車”重點專項(2016YFB0100200)和國家自然科學(xué)基金(51671004)資助項目

    猜你喜歡
    第一性物理化學(xué)熱穩(wěn)定性
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進(jìn)的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    AuBe5型新相NdMgNi4-xCox的第一性原理研究
    SO2和NO2在γ-Al2O3(110)表面吸附的第一性原理計算
    Chemical Concepts from Density Functional Theory
    W、Bi摻雜及(W、Bi)共摻銳鈦礦TiO2的第一性原理計算
    缺陷和硫摻雜黑磷的第一性原理計算
    PVC用酪氨酸鑭的合成、復(fù)配及熱穩(wěn)定性能研究
    中國塑料(2016年7期)2016-04-16 05:25:52
    提高有機(jī)過氧化物熱穩(wěn)定性的方法
    可聚合松香衍生物的合成、表征和熱穩(wěn)定性?
    国产精品.久久久| 最近中文字幕2019免费版| 天堂中文最新版在线下载| 精品一区二区免费观看| 国产高清有码在线观看视频| 乱人伦中国视频| av专区在线播放| 国产精品久久久久久久电影| 日本vs欧美在线观看视频 | 国产成人精品福利久久| 久久99精品国语久久久| 搡老乐熟女国产| 亚洲国产精品成人久久小说| 老熟女久久久| 国产成人精品福利久久| 九九久久精品国产亚洲av麻豆| av国产精品久久久久影院| 国产精品一二三区在线看| av视频免费观看在线观看| 国产女主播在线喷水免费视频网站| 一级毛片 在线播放| 国产成人a∨麻豆精品| 香蕉精品网在线| 国产精品99久久久久久久久| 婷婷色综合大香蕉| 男男h啪啪无遮挡| 免费在线观看成人毛片| 在线免费观看不下载黄p国产| 一区二区av电影网| 国产男女内射视频| 18禁在线无遮挡免费观看视频| 亚洲欧美日韩另类电影网站| 亚洲av不卡在线观看| 久久久久久久久久久丰满| 极品教师在线视频| 成年av动漫网址| 久久精品国产a三级三级三级| 亚洲av成人精品一区久久| 国产淫语在线视频| 日韩在线高清观看一区二区三区| 麻豆成人av视频| 亚洲在久久综合| 成人免费观看视频高清| 欧美最新免费一区二区三区| 国产免费福利视频在线观看| 哪个播放器可以免费观看大片| 最近最新中文字幕免费大全7| 六月丁香七月| 国产日韩欧美亚洲二区| 最近中文字幕2019免费版| 亚洲av男天堂| a 毛片基地| 日本欧美视频一区| 国产黄色免费在线视频| 免费av中文字幕在线| 美女xxoo啪啪120秒动态图| 麻豆成人午夜福利视频| 熟妇人妻不卡中文字幕| 欧美最新免费一区二区三区| 国产亚洲91精品色在线| 午夜激情福利司机影院| 人人妻人人爽人人添夜夜欢视频 | 91午夜精品亚洲一区二区三区| 国产亚洲欧美精品永久| 国产黄色视频一区二区在线观看| 成人午夜精彩视频在线观看| 边亲边吃奶的免费视频| 国产日韩一区二区三区精品不卡 | 黑人巨大精品欧美一区二区蜜桃 | 一个人看视频在线观看www免费| 国产真实伦视频高清在线观看| 国产精品女同一区二区软件| 一级av片app| 国产成人freesex在线| 69精品国产乱码久久久| 亚洲欧美清纯卡通| 国产av一区二区精品久久| 男女边摸边吃奶| 日韩强制内射视频| 丰满饥渴人妻一区二区三| 国产成人一区二区在线| 精品国产一区二区久久| 日本欧美国产在线视频| 亚洲欧美成人精品一区二区| 又大又黄又爽视频免费| 99久国产av精品国产电影| 亚洲第一av免费看| 汤姆久久久久久久影院中文字幕| 中文字幕av电影在线播放| 自线自在国产av| 美女脱内裤让男人舔精品视频| 久久久久视频综合| 日韩一区二区三区影片| 女性生殖器流出的白浆| 国产成人精品婷婷| 热re99久久精品国产66热6| 不卡视频在线观看欧美| 亚洲熟女精品中文字幕| 日韩精品有码人妻一区| 国产成人午夜福利电影在线观看| 免费看不卡的av| 欧美激情国产日韩精品一区| 精品国产露脸久久av麻豆| 只有这里有精品99| 日韩av免费高清视频| 成人漫画全彩无遮挡| 王馨瑶露胸无遮挡在线观看| 女性被躁到高潮视频| 国产淫片久久久久久久久| 欧美日韩亚洲高清精品| 国产精品麻豆人妻色哟哟久久| 亚洲精华国产精华液的使用体验| 国产成人一区二区在线| 精品熟女少妇av免费看| 日本av免费视频播放| 一级,二级,三级黄色视频| 国产成人免费观看mmmm| 人人澡人人妻人| 女性被躁到高潮视频| 久久99热6这里只有精品| 乱码一卡2卡4卡精品| 欧美+日韩+精品| av福利片在线| 亚洲四区av| 久久久精品免费免费高清| 18禁在线播放成人免费| 老熟女久久久| 婷婷色麻豆天堂久久| 天美传媒精品一区二区| 99热这里只有是精品50| 亚洲天堂av无毛| 国精品久久久久久国模美| 亚洲av在线观看美女高潮| 肉色欧美久久久久久久蜜桃| 国产精品女同一区二区软件| 亚洲国产毛片av蜜桃av| 亚洲真实伦在线观看| 久久青草综合色| 亚洲美女搞黄在线观看| 久久久亚洲精品成人影院| 9色porny在线观看| 亚洲国产精品国产精品| 汤姆久久久久久久影院中文字幕| 综合色丁香网| 亚洲欧美清纯卡通| 天天操日日干夜夜撸| 边亲边吃奶的免费视频| 亚洲怡红院男人天堂| 人人澡人人妻人| 亚洲精品第二区| 夜夜爽夜夜爽视频| 国产女主播在线喷水免费视频网站| 一级a做视频免费观看| 久久精品国产亚洲网站| 免费看光身美女| 日韩精品有码人妻一区| 99九九在线精品视频 | 日本av免费视频播放| 日日爽夜夜爽网站| 国产乱来视频区| 精品亚洲成a人片在线观看| 18+在线观看网站| 伦理电影大哥的女人| 国产av精品麻豆| 国产精品嫩草影院av在线观看| 99热这里只有是精品在线观看| 免费少妇av软件| 少妇精品久久久久久久| 看免费成人av毛片| 国产免费一级a男人的天堂| 亚洲美女视频黄频| 亚洲欧洲精品一区二区精品久久久 | 久久久久久久久久久久大奶| 国产成人免费无遮挡视频| 免费少妇av软件| 国产精品福利在线免费观看| 在线 av 中文字幕| 精品人妻熟女毛片av久久网站| 亚洲av.av天堂| 亚洲精品成人av观看孕妇| 免费看光身美女| 黑人高潮一二区| 国产视频内射| 天天操日日干夜夜撸| 久久99热这里只频精品6学生| 国产日韩欧美亚洲二区| av免费观看日本| 亚洲四区av| 欧美+日韩+精品| 18禁裸乳无遮挡动漫免费视频| 国产日韩欧美视频二区| 肉色欧美久久久久久久蜜桃| 一二三四中文在线观看免费高清| 国产成人午夜福利电影在线观看| 亚洲自偷自拍三级| 午夜精品国产一区二区电影| 亚洲真实伦在线观看| 精品久久久精品久久久| 亚洲欧美日韩东京热| 777米奇影视久久| 热re99久久精品国产66热6| 插逼视频在线观看| 国产高清国产精品国产三级| av在线老鸭窝| 少妇人妻一区二区三区视频| 最近2019中文字幕mv第一页| 全区人妻精品视频| 日日摸夜夜添夜夜爱| 久久狼人影院| 日本vs欧美在线观看视频 | 草草在线视频免费看| 亚洲欧美中文字幕日韩二区| 99精国产麻豆久久婷婷| 国精品久久久久久国模美| 美女中出高潮动态图| 国产熟女午夜一区二区三区 | 在线观看免费视频网站a站| 亚洲天堂av无毛| 亚洲精品日本国产第一区| 人妻制服诱惑在线中文字幕| 狂野欧美激情性xxxx在线观看| 久久精品国产鲁丝片午夜精品| 一级,二级,三级黄色视频| 亚洲婷婷狠狠爱综合网| 国产成人freesex在线| 久久人人爽人人爽人人片va| 伊人久久国产一区二区| 日本午夜av视频| 亚洲国产精品成人久久小说| 国产精品久久久久久久电影| 精品少妇内射三级| 欧美+日韩+精品| 亚洲国产欧美在线一区| 伊人久久国产一区二区| 看非洲黑人一级黄片| 国产 精品1| av福利片在线观看| 一区二区三区四区激情视频| 国产伦理片在线播放av一区| 看非洲黑人一级黄片| 久久99热这里只频精品6学生| 国产成人精品无人区| 亚洲精品乱久久久久久| 一本久久精品| 午夜影院在线不卡| 久久热精品热| 国产精品一区二区在线不卡| 国产精品嫩草影院av在线观看| 99久久精品一区二区三区| 精华霜和精华液先用哪个| 亚洲精品久久午夜乱码| 久久精品国产亚洲网站| 亚洲人成网站在线观看播放| 看十八女毛片水多多多| 日本色播在线视频| 久久久国产一区二区| 99九九在线精品视频 | 我的老师免费观看完整版| 深夜a级毛片| 丰满乱子伦码专区| 三级国产精品片| 一个人看视频在线观看www免费| 国产极品天堂在线| 搡老乐熟女国产| 日韩一区二区三区影片| 国产欧美亚洲国产| 欧美性感艳星| 亚洲欧美成人精品一区二区| 国产欧美另类精品又又久久亚洲欧美| av在线app专区| 少妇人妻一区二区三区视频| 日本黄色片子视频| 久久久午夜欧美精品| 久久国内精品自在自线图片| 亚洲av二区三区四区| 欧美性感艳星| 日韩在线高清观看一区二区三区| a级毛片免费高清观看在线播放| 中文在线观看免费www的网站| 精品久久久久久久久亚洲| 51国产日韩欧美| 免费观看av网站的网址| 插阴视频在线观看视频| 国产男女超爽视频在线观看| 在线观看免费高清a一片| 人妻一区二区av| 免费久久久久久久精品成人欧美视频 | 亚洲av男天堂| 久久精品国产鲁丝片午夜精品| 成人黄色视频免费在线看| 午夜激情福利司机影院| 亚洲精品视频女| 国产精品熟女久久久久浪| 久久女婷五月综合色啪小说| av卡一久久| a级一级毛片免费在线观看| 亚州av有码| 亚洲图色成人| 亚洲av成人精品一二三区| 国产无遮挡羞羞视频在线观看| 男的添女的下面高潮视频| 久久国内精品自在自线图片| 免费观看av网站的网址| 免费观看的影片在线观看| 女人久久www免费人成看片| 欧美日韩视频高清一区二区三区二| 亚洲丝袜综合中文字幕| 午夜激情久久久久久久| 国产日韩欧美在线精品| 精品午夜福利在线看| 涩涩av久久男人的天堂| 99久久中文字幕三级久久日本| 三上悠亚av全集在线观看 | 国产亚洲av片在线观看秒播厂| 又大又黄又爽视频免费| 自线自在国产av| 哪个播放器可以免费观看大片| 日韩一区二区三区影片| 亚洲精品,欧美精品| 狂野欧美白嫩少妇大欣赏| 永久免费av网站大全| 国产亚洲精品久久久com| 欧美日韩综合久久久久久| av国产精品久久久久影院| 人妻一区二区av| 噜噜噜噜噜久久久久久91| 99久久精品一区二区三区| 啦啦啦在线观看免费高清www| 99久久人妻综合| 欧美bdsm另类| 亚洲av不卡在线观看| 久久国产乱子免费精品| 国产精品蜜桃在线观看| 少妇丰满av| 一级av片app| 街头女战士在线观看网站| 少妇熟女欧美另类| 一区二区三区精品91| 久久精品夜色国产| 欧美区成人在线视频| 夫妻午夜视频| 欧美日韩av久久| 久久久国产欧美日韩av| 色94色欧美一区二区| 69精品国产乱码久久久| 黑人猛操日本美女一级片| 水蜜桃什么品种好| 欧美激情国产日韩精品一区| 婷婷色综合大香蕉| 日本av手机在线免费观看| 国产精品久久久久久久久免| 99视频精品全部免费 在线| 日韩三级伦理在线观看| 2021少妇久久久久久久久久久| 丝瓜视频免费看黄片| 插逼视频在线观看| 精品午夜福利在线看| 免费观看的影片在线观看| 80岁老熟妇乱子伦牲交| 69精品国产乱码久久久| 2021少妇久久久久久久久久久| 日本黄色日本黄色录像| 国产高清国产精品国产三级| 国产又色又爽无遮挡免| 在线观看国产h片| 熟女av电影| 青春草亚洲视频在线观看| 国产午夜精品一二区理论片| 9色porny在线观看| 亚洲国产日韩一区二区| 精品少妇久久久久久888优播| 高清视频免费观看一区二区| 亚洲精品久久午夜乱码| h日本视频在线播放| 国产高清有码在线观看视频| 色94色欧美一区二区| 亚洲婷婷狠狠爱综合网| 欧美三级亚洲精品| 人妻少妇偷人精品九色| av在线观看视频网站免费| 三级国产精品片| av播播在线观看一区| 婷婷色av中文字幕| 视频区图区小说| 亚洲美女搞黄在线观看| 十分钟在线观看高清视频www | av福利片在线| 高清在线视频一区二区三区| 亚洲精品乱久久久久久| h视频一区二区三区| 国产亚洲午夜精品一区二区久久| 18+在线观看网站| 丰满迷人的少妇在线观看| 午夜福利,免费看| 人人澡人人妻人| 亚洲欧美日韩东京热| 日日摸夜夜添夜夜爱| 色94色欧美一区二区| 国模一区二区三区四区视频| 天堂中文最新版在线下载| 成年人午夜在线观看视频| 美女大奶头黄色视频| 最近的中文字幕免费完整| 午夜日本视频在线| 国产精品久久久久久久久免| www.色视频.com| 丝袜喷水一区| 亚洲欧洲日产国产| 亚洲国产精品999| 日韩成人av中文字幕在线观看| 欧美日本中文国产一区发布| 99九九在线精品视频 | 建设人人有责人人尽责人人享有的| 日本与韩国留学比较| 亚洲精品中文字幕在线视频 | 国产乱来视频区| 成人黄色视频免费在线看| 国产91av在线免费观看| 色吧在线观看| 99久久精品一区二区三区| 中国国产av一级| 国产成人freesex在线| 国产精品久久久久久av不卡| 制服丝袜香蕉在线| 99热全是精品| 国产一区二区在线观看日韩| 观看免费一级毛片| 97在线视频观看| 午夜福利,免费看| 中文字幕av电影在线播放| 国产高清不卡午夜福利| 久久久久网色| 日产精品乱码卡一卡2卡三| 另类精品久久| 九九久久精品国产亚洲av麻豆| 一个人免费看片子| √禁漫天堂资源中文www| 中文资源天堂在线| 精品少妇内射三级| 两个人的视频大全免费| 色视频www国产| 久久久久精品久久久久真实原创| 国产色爽女视频免费观看| 亚洲欧洲日产国产| 国产av一区二区精品久久| 99九九线精品视频在线观看视频| 日韩熟女老妇一区二区性免费视频| 亚洲综合精品二区| 亚洲精品亚洲一区二区| 女的被弄到高潮叫床怎么办| 免费不卡的大黄色大毛片视频在线观看| 美女中出高潮动态图| 啦啦啦啦在线视频资源| av免费观看日本| 高清在线视频一区二区三区| 午夜久久久在线观看| 日韩成人伦理影院| 美女内射精品一级片tv| 人妻夜夜爽99麻豆av| 国产精品国产三级国产专区5o| 69精品国产乱码久久久| 国产高清三级在线| 中国国产av一级| 岛国毛片在线播放| 色婷婷久久久亚洲欧美| 汤姆久久久久久久影院中文字幕| 熟妇人妻不卡中文字幕| 国产国拍精品亚洲av在线观看| 国产伦理片在线播放av一区| 好男人视频免费观看在线| 成人毛片60女人毛片免费| 99热这里只有是精品在线观看| 日韩精品有码人妻一区| 男人添女人高潮全过程视频| 少妇裸体淫交视频免费看高清| 人人妻人人澡人人爽人人夜夜| 国产精品熟女久久久久浪| 日日啪夜夜撸| 亚洲美女搞黄在线观看| 有码 亚洲区| 麻豆成人av视频| 一区二区三区免费毛片| 国产永久视频网站| 丝袜在线中文字幕| 日韩三级伦理在线观看| 午夜福利,免费看| 18禁在线无遮挡免费观看视频| a级毛片在线看网站| 热99国产精品久久久久久7| 欧美亚洲 丝袜 人妻 在线| 成年av动漫网址| 欧美精品国产亚洲| 精品少妇黑人巨大在线播放| 能在线免费看毛片的网站| 久久免费观看电影| 精品99又大又爽又粗少妇毛片| 国产一区亚洲一区在线观看| 亚洲无线观看免费| 美女内射精品一级片tv| 91午夜精品亚洲一区二区三区| 狠狠精品人妻久久久久久综合| 国产伦精品一区二区三区视频9| 精品久久久噜噜| 少妇裸体淫交视频免费看高清| 精品国产露脸久久av麻豆| 99热6这里只有精品| 搡女人真爽免费视频火全软件| 国产色婷婷99| 嫩草影院新地址| 天堂中文最新版在线下载| 日本黄色片子视频| 亚洲精品乱久久久久久| 欧美人与善性xxx| 夜夜骑夜夜射夜夜干| 免费高清在线观看视频在线观看| 十八禁高潮呻吟视频 | 欧美激情国产日韩精品一区| 一本大道久久a久久精品| 只有这里有精品99| 久久久国产欧美日韩av| 久久综合国产亚洲精品| 精品国产露脸久久av麻豆| 久久人人爽人人片av| 免费播放大片免费观看视频在线观看| 国产欧美日韩精品一区二区| 国产免费视频播放在线视频| 在线观看av片永久免费下载| 中文字幕制服av| 一级片'在线观看视频| 国产成人freesex在线| 在现免费观看毛片| 美女主播在线视频| 国产淫语在线视频| 在线观看免费高清a一片| av网站免费在线观看视频| 中文字幕制服av| 午夜久久久在线观看| 国产精品.久久久| 国产精品99久久99久久久不卡 | 六月丁香七月| 国产黄色免费在线视频| videos熟女内射| 国产日韩一区二区三区精品不卡 | 免费观看在线日韩| 国产精品一区www在线观看| 熟女电影av网| 少妇被粗大猛烈的视频| 久久久久网色| 日韩人妻高清精品专区| 亚洲人与动物交配视频| 欧美精品一区二区免费开放| 国产精品蜜桃在线观看| 美女国产视频在线观看| 一个人免费看片子| 一级片'在线观看视频| h视频一区二区三区| 啦啦啦在线观看免费高清www| 18+在线观看网站| 国精品久久久久久国模美| 成人亚洲精品一区在线观看| 亚洲精品久久午夜乱码| 欧美日本中文国产一区发布| 男男h啪啪无遮挡| 国产高清不卡午夜福利| 插阴视频在线观看视频| 欧美日韩一区二区视频在线观看视频在线| 成人18禁高潮啪啪吃奶动态图 | 男人和女人高潮做爰伦理| 久久99一区二区三区| 51国产日韩欧美| 亚洲美女黄色视频免费看| 久久久久久久国产电影| 日本vs欧美在线观看视频 | 亚洲自偷自拍三级| 80岁老熟妇乱子伦牲交| 人人妻人人添人人爽欧美一区卜| av有码第一页| 99久久精品国产国产毛片| av网站免费在线观看视频| 韩国高清视频一区二区三区| 日韩伦理黄色片| 涩涩av久久男人的天堂| 少妇的逼好多水| 18+在线观看网站| 国精品久久久久久国模美| 国产熟女欧美一区二区| 精品人妻熟女av久视频| 中文欧美无线码| 在线亚洲精品国产二区图片欧美 | 国产精品欧美亚洲77777| 欧美人与善性xxx| 国模一区二区三区四区视频| 国产精品无大码| 在线观看免费视频网站a站| 一区二区三区免费毛片| 深夜a级毛片| 久久久精品免费免费高清| 一本久久精品| 最黄视频免费看| 亚洲人成网站在线观看播放| 国产精品久久久久成人av| 国产欧美日韩综合在线一区二区 | 一级片'在线观看视频| 人人妻人人澡人人爽人人夜夜| 久久精品久久久久久久性| 午夜激情久久久久久久| 免费av不卡在线播放| 性色av一级| 国产精品三级大全| 高清午夜精品一区二区三区| 久久久久久久大尺度免费视频| 欧美国产精品一级二级三级 | 日本黄色片子视频| 日本猛色少妇xxxxx猛交久久| 美女脱内裤让男人舔精品视频|