• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Complete mitochondrial genome of the Five-dot Sergeant Parathyma sulpitia (Nymphalidae: Limenitidinae) and its phylogenetic implications

    2013-12-25 01:02:50TIANLiLiSUNXiaoYanCHENMeiGAIYongHuaHAOJiaShengYANGQun
    Zoological Research 2013年3期
    關(guān)鍵詞:富集區(qū)鱗翅目蛺蝶

    TIAN Li-Li, SUN Xiao-Yan, CHEN Mei, GAI Yong-Hua, HAO Jia-Sheng,,*, YANG Qun,*

    (1. College of Life Sciences, Anhui Normal University, Wuhu 241000, China; 2. LPS, Institute of Geology and Palaeontology, the Chinese Academy of Sciences, Nanjing 210008, China)

    Complete mitochondrial genome of the Five-dot SergeantParathyma sulpitia(Nymphalidae: Limenitidinae) and its phylogenetic implications

    TIAN Li-Li1, SUN Xiao-Yan2, CHEN Mei1, GAI Yong-Hua2, HAO Jia-Sheng1,2,*, YANG Qun2,*

    (1.College of Life Sciences,Anhui Normal University,Wuhu241000,China; 2.LPS, Institute of Geology and Palaeontology,the Chinese Academy of Sciences,Nanjing210008,China)

    The complete mitochondrial genome of theParathyma sulpitia(Lepidoptera, Nymphalidae, Limenitidinae) was determined. The entire mitochondrial DNA (mtDNA) molecule was 15 268 bp in size. Its gene content and organization were the same as those of other lepidopteran species, except for the presence of the 121 bp long intergenic spacer betweentrnS1(AGN) andtrnE. The 13 protein-coding genes (PCGs) started with the typical ATN codon, with the exception of thecox1gene that used CGA as its initial codon. In addition, all protein-coding genes terminated at the common stop codon TAA, except thenad4gene which used a single T as its terminating codon. All 22 tRNA genes possessed the typical clover leaf secondary structure except fortrnS1(AGN), which had a simple loop with the absence of the DHU stem. Excluding the A+T-rich region, the mtDNA genome ofP. sulpitiaharbored 11 intergenic spacers, the longest of which was 121 bp long with the highest A+T content (100%), located betweentrnS1(AGN) andtrnE. As in other lepidopteran species, there was an 18-bp poly-T stretch at the 3'-end of the A+T-rich region, and there were a few short microsatellite-like repeat regions without conspicuous macro-repeats in the A+T-rich region. The phylogenetic analyses of the published complete mt genomes from nine Nymphalidae species were conducted using the concatenated sequences of 13 PCGs with maximum likelihood and Bayesian inference methods. The results indicated that Limenitidinae was a sister to the Heliconiinae among the main Nymphalidae lineages in this study, strongly supporting the results of previous molecular data, while contradicting speculations based on morphological characters.

    Parathyma sulpitia; Lepidoptera; Nymphalidae; Limenitidinae; Mitochondrial genome

    Insect mitochondrial DNA (mtDNA) is a circular DNA molecule 14-20 kb in size with 13 protein-coding genes (PCGs), two ribosomal RNA genes, 22 tRNA genes, and one A+T-rich region which contains the initiation sites for transcription and replication (Boore, 1999; Clayton, 1992; Wolstenholme, 1992). In recent years, owing to its maternal inheritance, lack of recombination and accelerated nucleotide substitution rates compared to those of the nuclear DNA, the mitochondrial genome has been popularly used in studies on phylogenetics, comparative and evolutionary genomics, population genetics, and molecular evolution.

    The Nymphalidae is one of the largest groups of butterflies, comprising about 7 200 described species throughout the world. Its systematic and evolutionary process has long been a matter of controversy (Ackery, 1984, 1999; de Jong et al, 1996; Ehrlich, 1958; Harvey, 1991). Until recently, however, only eight complete or nearly complete mt genome sequences have been determined from Nymphalidae among some forty sequences for Lepidoptera. That is, two from Heliconiinae, two from Satyrinae, and one each from Calinaginae, Apaturinae, Danainae, and Libytheinae.

    Limenitidinae is a subfamily of Nymphalidae that includes the admirals and its close relatives. This butterfly group has long been the subject of scientific curiosity, serving as the model organism in diverse fields such as genetics, developmental biology, and evolutionary ecology (Fiedler, 2010; Platt & Maudsley, 1994). However, its sub-group classifications and phylogenetic relationships with the other Nymphalidae groups remains unresolved based on morphological and molecular criteria (Freitas & Brown, 2004; Wahlberg et al, 2003, 2005; Wahlberg & Wheat, 2008; Zhang et al, 2008).

    Parathyma sulpitiais a representative species of the subfamily Limenitidinae (Lepidoptera: Nymphalidae) and it is widely distributed in Southeastern Asian areas, such as Vietnam, Burma, India, and China. We determined its complete mitochondrial genome sequence and compared this sequence with those of the other eight-nymphalid butterfly species available. Additionally, we performed phylogenetic analyses using maximum likelihood and Bayesian inference methods based on the concatenated 13 protein coding gene (PCG) sequences. The new sequence data and related analyses may provide useful information about the systematics and evolution of Nymphalidae at the genomic level.

    1 Materials and Methods

    1.1 Specimen collection

    Adult butterflies ofP. sulpitiawere collected from the Jiulianshan National Nature Reserve, Jiangxi Province, China. The specimens were preserved immediately in 100% ethanol and then stored at -20 °C before genomic DNA extraction.

    1.2 DNA extraction, PCR amplification and sequencing

    Whole genomic DNA was extracted from thoracic muscle tissue with the DNeasy Tissue Kit (Qiagen) after the protocol of Hao et al (2005). Some universal PCR primers for short fragment amplifications of thecox1,cobandrrnLgenes were synthesized (Simon et al, 1994). The remaining short and long primers were designed based on the sequence alignment of the available complete lepidopteran mitogenomes using Primer Premier 5.0 software (Singh et al, 1998).

    The entire mitogenome ofP. sulpitiawas amplified in six fragments (cox1-cox3,cox3-nad5,nad5-nad4,nad4-cob,cob-rrnL,rrnL-cox1) using long-PCR techniques with TaKaRa LATaq polymerase under the following cycling conditions: initial denaturation for five minutes at 95 °C, followed by 30 cycles of 95 °C for 50 s, 45-50 °C for 50 s, 68 °C for 2 min and 30 s; and a final extension step of 68 °C for 10 min. The PCR products were visualized by electrophoresis on 1.2% agarose gel, then purified using a 3S Spin PCR Product Purification Kit and sequenced directly with an ABI–377 automatic DNA sequencer. For each long PCR product, the full, double-stranded sequence was determined by primer walking. The mitogenome sequence data were deposited into the GenBank database under the accession number JQ347260.

    1.3 Sequence analysis and annotation

    The tRNA genes and their secondary structure were predicted using tRNAscan-SE software v.1.21 (Lowe & Eddy, 1997) and the putative tRNA genes, which were not found by tRNAscan-SE, were determined by sequence comparison ofP. sulpitiawith other lepidopterans. The PCGs and rRNAs were confirmed by sequence comparison with ClustalX1.8 software and NCBI BLAST search function (Altschul et al, 1990). Nucleotide composition and codon usage were calculated with DAMBE software (Xia & Xie, 2001).

    1.4 Phylogenetic analysis

    Multiple sequence alignments of the concatenated sequences the 13 PCGs of the nine nymphalid species with available mitogenomes (Tab. 2) were conducted using Clustal X 1.8 software and then proofread manually (Thompson et al,1997). The phylogenetic trees were constructed using maximum likelihood (ML) (Abascal et al, 2007) and Bayesian inference (BI) (Yang & Rannala, 1997) methods with moth speciesManduca sexta(Cameron & Whiting, 2008) (Tab. 2) used as outgroup. The ML analysis for the nucleotide and amino acid sequences were implemented in the PAUP* software (version 4.0b8) (Swofford, 2002) with TBR branch swapping (10 random addition sequences), the best fitting nucleotide substitution model (GTR+I+Γ) was selected using Modeltest version 3.06 (Posa & Krandall, 1998), and the confidence values of the ML tree were evaluated via the bootstrap test with 100 iterations. The Bayesian analyses were performed using MrBayes 3.1.2 (Ronquist & Huelsenbeck, 2003) with the partitioned strategy, the best fitting substitution model was selected as in the ML analysis; the MCMC analyses (with random starting trees) were run with one cold and three heated chains simultaneously for 1 000 000 generations sampled every 100 generations; Bayesian posterior probabilities were calculated from the sample points after the MCMC algorithm started to converge.

    2 Results

    2.1 Genome organization

    The mitogenome ofP. sulpitiawas a circular molecule 15 268 bp long and consisted of 13 PCGs [cytochrome oxidase subunits 1-3 (cox1-3), NADH dehydrogenase subunits 1-6 and 4L (nad1-6andnad4L), cytochrome oxidase b (cob), ATP synthase subunits 6 and 8 genes (atp6andatp8)], two ribosomal RNA genes for small and large subunits (rrnSandrrnL), 22 transfer RNA genes (one for each amino acid and two for leucine and serine) and a non-coding A+T-rich region. The gene orientation and order of theP. sulpitiamitogenome were identical to those of the other available lepidopteran mitogenomes, except for the presence of the 121 bp long intergenic spacer betweentrnS1(AGN) andtrnE(Tab. 1, Fig. 1). As is the case in many insect mitogenomes, the major strand coded for more genes (nine PCGs and 14 tRNAs) and the A+T-rich region, whereas less genes were coded in the minor strand (four PCGs, eight tRNAs and two rRNA genes).

    Fig. 1 Circular map of the mitochondrial genome of Parathyma sulpitia

    2.2 Protein-coding genes, tRNA and rRNA genes and A+T-rich region

    All PCGs in theP. sulpitiamitogenome were initiated by typical ATN codons (seven with ATG, four with ATT, one with ATA), except thecox1gene which was tentatively designated by the CGA codon (Tab. 1). Twelve PCGs ofP. sulpitiahad a common stop codon (TAA), except for thenad4gene which harbored a single T.

    The 22 tRNAs varied from 61 [trnCandtrnS1(AGN)] to 71 bp (trnK) in size, and presented typical clover-leaf structure, with the unique exception oftrnS1(AGN), which lacked the dihydrouridine (DHU) stem (Fig. 2). TheP. sulpitiatRNAs harbored a total of 24 pair mismatches in their stems, including six pairs in the DHU stems, eight pairs in the amino acid acceptor stems, two pairs in the TΨC stems and eight pairs in the anticodon stems, respectively. Among these 24 mismatches, 18 were G·U pairs which formed a weak bond in the secondary structure, and the other six were U·U (Fig. 2).

    Tab. 1 Summary of the mitogenome of Parathyma sulpitia

    As with other insect mitogenome sequences, two rRNA genes (rrnLandrrnS) were detected inP. sulpitia, located betweentrnL1(CUN) andtrnV, and betweentrnVand A+T region, respectively (Fig. 1). The lengths of therrnLand therrnSwere determined as 1 319 bp and 779 bp, respectively.

    The A+T-rich region ofP. sulpitiawas 349 bp in size. There was an 18-bp poly-T stretch at the 3'end of the A+T-rich region, and some short microsatellite-like repeat regions without conspicuous macro-repeats throughout the A+T-rich region.

    2.3 Phylogenetic analysis

    The resultant tree topologies of the ML and Bayesian analyses based on the nucleotide and amino acid sequences were the same, only with a slight difference in their bootstrap support or posterior probability values. For the paper length limit, we have only showed trees based on the nucleotide sequences (Fig. 4) in this paper.

    Fig. 2 Predicted secondary clover leaf structures for the 22 tRNA genes of Parathyma sulpitia

    3 Discussion

    3.1 Genome structure, organization and composition

    TheP. sulpitiamitogenome size (15 268 bp) was well within the range detected in the completely sequenced lepidopteran insects, from 15 140 bp inArtogeia melete(GenBank accession no. NC_010568; Hong et al, 2009) to 16 094 bp inAgehana maraho(GenBank accession no. NC_014055; Wu et al, 2010). The nucleotide composition of A+T for theP. sulpitiamitogenome major strand was 81.9%, showing a strongly biased value, which was the highest of all the nymphalid species determined to date (Tab. 2).

    Tab. 2 Mitogenomes of the nymphalids used in this study and their partial characteristics

    To evaluate the degree of base bias for theP. sulpitiamitogenome, base-skewness was also measured in this study. The results showed that AT and GC-skewness values of the whole genome (measured from the major strand) were -0.048 and -0.178, respectively. This indicated that T and C were more frequently used than A and G in the genome, similar to results found in other nymphalid species used in this study (Tab. 3). However, when the two skewness values were considered separately, it was clear that the AT skew was the highest and the GC skew was the lowest of all the nymphalids in this study.

    Tab. 3 Nucleotide composition and skewness of the nymphalid mitogenomes

    3.2 Protein-coding genes

    Twelve PCGs ofP. sulpitiamitogenome were initiated by typical ATN codons, except for thecox1gene. For theP. sulpitiaCOI gene, no typical ATN initiator was found in its starting region or in its neighboringtrnYsequences. As for thecox1initiation codon in animals, significantly different cases have been reported, for example, tetranucleotides such as TTAG inCoreana raphaelis(Kim et al, 2006), ATAA inDrosophila yakuba(Clary & Wolstenholme, 1985) are used, while hexanucleotides such as TATTAG inOstrinia nubilalisandOstrinia furnicalis(Coates et al, 2005), TTTTAG inBombyx mori(Yukuhiro et al, 2002), TATCTA inPenaeus monodon(Wilson et al, 2000), ATTTAA inAnopheles gambiae(Beard et al, 1993),Anopheles quadrimaculatus(Mitchell et al, 1993), andCeratitis capitata(Spanos et al, 2000) are used. Generally, the trinucleotide TTG was assumed to be thecox1start codon for some invertebrate taxa including insect species, such asPyrocoelia rufa(Bae et al, 2004),Caligula boisdnvalii(Hong et al, 2008), andAcraea issoria(Hu et al, 2010). In this study, however, according to sequence homologies with other available relevant insect species, the codon CGA was hypothesized to be thecox1initiator synapomorphically characteristic of most lepidopteran species (Kim et al, 2009, 2010).

    Thenad4gene ofP. sulpitiaharbored a single T, rather than the common stop codon TAA. Incomplete termination codons are frequently observed in most insect mitogenomes including all the sequenced lepidopteran insects to date (Kim et al, 2009), which has been interpreted in terms of post-transcriptional polyadenylation, in which two A residues are added to create the TAA terminator (Anderson et al, 1981; Ojala et al, 1981).

    The value of A+T content for all PCGs was 80.6%, whereas, the corresponding values for the major and minor strands were 79.2% and 83.1%, respectively. Both values were the highest of all the nymphalids analysed in this study (Tab. 4). Furthermore, the A+T content of the PCG third codon position was calculated to be 96.7%, which was significantly higher than those of the first (74.8%) and the second (70.5%) codon positions. This value was the highest of all the corresponding values among the nymphalids (Tab. 4). With regard to AT-skew, the degree of A+T bias was calculated in different strands of theP. sulpitiamitogenome PCGs: the major strand evidenced a value of -0.172, whereas the minor strand exhibited a value of -0.154. In contrast, for the GC-skew, the major and minor strands showed values of -0.100 and 0.266, respectively (Tab. 3). Additionally, the A+T bias of the PCG codon usage for theP. sulpitiamitogenome (the relative synonymous codon frequencies, RSCU) revealed that codons harboring A or T in the third position were frequently used compared to other synonymous codons (Tab. 5).

    Tab. 4 Summary of base composition at each codon* position of the 13 PCGs in the nymphalid mitogenomes used in this study

    Tab. 5 Codon usage of the protein coding genes of the Parathyma sulpitia mitogenome

    3.3 Transfer RNA and ribosomal RNA genes

    TheP. sulpitiamitogenome harbored 22 tRNA genes, which were scattered throughout its whole region as is typically observed in metazoans including insects (Cha et al, 2007; Crozier & Crozier, 1993; Hong et al, 2008; Kim et al, 2010; Wilson et al, 2000; Yukuhiro et al, 2002). All tRNAs presented typical clover-leaf structure, with the unique exception oftrnS1(AGN), which lacked the dihydrouridine (DHU) stem (Fig. 2). TheP. sulpitiatRNAs harbored a total of 22 pair mismatches in their stems, with the number of mismatches inP. sulpitiaroughly the same as those detected in other lepidopteran species such asAntheraea pernyi(Liu et al, 2008) andEriogyna pyretorum(Jiang et al, 2009), but less than those inOchrogaster lunifer(Salvato et al, 2008). These tRNAs mismatches can be corrected through RNA-editing mechanisms, which are well known for arthropod mtDNA (Lavrov et al, 2000).

    As in all other insect mitogenome sequences, two rRNA genes (rrnLandrrnS) were detected inP. sulpitia. They were located betweentrnL1(CUN) andtrnV, and betweentrnVand the A+T region, respectively (Fig. 1). The length of therrnLwas determined to be 1 319 bp, which was within the size range observed in the other available sequenced insects, from 470 bp inBemisia tabaci(Thao et al, 2004) to 1 426 bp inHyphantria cunea(Liao et al, 2010). The length of therrnSwas determined to be 779 bp, which was well within the size range observed in other completely sequenced insects, from 434 bp inOstrinia nubilalis(Clary & Wolstenholme, 1985) to 827 bp inLocusta migratoria(Flook et al, 1995).

    3.4 Intergenic spacers and overlapping regions

    The mtDNA genome ofP. sulpitiaincluded a total of 213 bp intergenic spacer sequences which were spread over 11 regions ranging in size from one to 121 bp. The largest spacer sequence (121 bp) was located between thetrnS1(AGN) and thetrnE, rather than between thetrnQand thenad2gene as found in other lepidopteran mitogenomes (Tab. 1). This spacer contained the highest A+T nucleotide (100%) of all the corresponding regions in all other lepidopterans determined. The sequence alignment of this spacer with partial A+T-rich region revealed a sequence homology of 74.4% (Fig. 3), suggesting that this spacer may have originated from a partial duplication of the A+T-rich region.

    Fig. 3 Alignment of the largest spacer located between trnS1(AGN) and trnE and the partial A+T region

    The second largest intergenic spacer was 52 bp long, located between thetrnQandnad2genes. This spacer is present in all lepidopteran mitogenomes sequenced, but absent in all non-lepidopteran insects (Hong et al, 2008). The sequence alignment of this spacer with the neighboringnad2gene revealed a sequence homology of 62%, and thus, this spacer was proposed to have been originated from a partial duplication of thenad2gene (Kim et al, 2009), with similar cases presented in other sequenced lepidopterans, such asArtogeia melete(70%) (Hong et al, 2009),C. raphaelis(62%) (Kim et al, 2006),Parnassius bremeri(70%) (Kim et al, 2009), andPhthonandria atrilineata(70%) (Yang et al, 2009). The other nine smaller intergenic spacers ranged in size from one to 11 bp were dispersed throughout the whole genome, and their details are listed in Tab. 1.

    A total of 92 bp were identified as overlapping sequences varying from one to 35 bp in 15 regions of the genome (Tab. 2). The longest overlap was 35 bp located between thecox2andtrnKgenes, and the second largest was 20 bp long located betweentrnFandnad5. The third longest was 8 bp betweentrnWandtrnC, with similarly sized overlaps also detected in other lepidopteran species (Hong et al, 2008). As expected, the 7 bp overlap within theatp8andatp6reading frames, which is characteristic of many animal mitogenomes (Boore, 1999; Hong et al, 2008), was also detected in this study. In addition, a 5 bp and a 3 bp overlap were located betweencox1andtrnL(UUR), and betweentrnIandtrnQ, respectively. As for the remaining nine overlaps of 1 or 2 bp in size, their detailed cases are shown in Tab. 1.

    3.5 A+T-rich region

    The A+T-rich region ofP. sulpitiawas 349 bp in size, located betweenrrnSandtrnM(Fig. 1). This region showed the second highest A+T content (94.6%), slightly lower than the largest intergenic spacer (100%). This region included the ON(origin of minority or light strand replication), which was identified by the motif ATAGA located 20 bp downstream fromrrnS. Additionally, a motif ATAGA followed by 19 bp poly-T, which has been suggested as the structural signal for the recognition of proteins in the replication initiation of minor-strand mtDNA, was detected, which is similar to that observed in other lepidopteran species such as theBombyx mori(Yukuhiro et al, 2002). Finally, a few of multiple short microsatellite-like repeat regions, such as the (AT)7located 195 bp upstream fromrnnSand preceded by the ATTTA motif, were present, which was as expected as they are also detected in the majority of other sequenced lepidopterans (Hong et al, 2008; Hu et al, 2010; Kim et al, 2009; Mao et al, 2010; Pan et al, 2008; Wang et al, 2011; Xia et al, 2011). As for the tRNA-like sequences and the tandemly repeated elements often reported in other lepidopteran species (Kim et al, 2009; Pan et al, 2008), no relevant structures were detected in theP. sulpitiaA+T-rich region.

    3.6 Phylogenetic analysis

    An up-to-date and comprehensive classification of Nymphalidae was made by Ackery et al (1999) based on morphological characters, while work on molecular systematics of various lineages within Nymphalidae is beginning to clarify their relationships with interesting results (Brower et al, 2000; Wahlberg et al, 2003, 2005). Though the twelve subgroups of Nymphalidae (Libytheinae, Danainae, Charaxinae, Morphinae, Satyrinae, Calinaginae, Heliconiinae, Limenitidinae, Cyrestinae, Biblidinae, Apaturinae, and Nymphalinae) are widely accepted at the subfamily level, some relationships within this group remain unresolved. For example, the phylogenetic positions of Danainae, Libytheinae, and Limenitidinae within Nymphalidae are still controversial.

    As for the Limenitidinae, its sister group within the Nymphalidae has been the subject of substantial debate (Freitas & Brown, 2004; Harvey, 1991). From a morphological view, the close relationships of Limenitidinae, Heliconiinae, Nymphalinae, and Apaturinae have never been suggested (de Jong et al, 1996; Freitas & Brown, 2004; Harvey, 1991). For example, Freitas & Brown (2004) conducted a cladistic analysis of Nymphalidae based on immature and adult morphological characters, and the results showed that Limenitidinae is sister to the grouping of (Apaturinae + (Calinaginae + Satyrinae)), exclusive of the remaining nymphalidae taxa (Freitas & Brown, 2004). However, phylogenetic analyses based on molecular sequence data have convincingly suggested that Limenitidinae is the sister group of Heliconiinae (Brower, 2000; Wahlberg et al, 2003, 2005; Zhang et al, 2008). In this study, the ML and BI phylogenetic analyses based on the mitogenomic data of the nine available nymphalids, including that ofP. sulpitiaand other unpublished species, revealed the following relationships: (Danainae + ((Libytheinae + ((Satyrinae + Calinaginae) + (Apaturinae + (Heliconiinae + Limenitidinae) + Nymphalinae))))) with high support values (Fig. 4), which is congruent with those reported by Wahlberg et al (2003, 2005) and Brower (2000).

    Fig. 4 ML (A) and BI (B) trees of the nymphalid species based on nucleotide sequences of the 13 protein-coding genes Numbers at nodes are bootstrap values/posterior probabilities.

    In conclusion, the complete mitogenome ofP. sulpitiaharbored nearly the same characters as those of other nymphalids. Phylogenetic analysis on a mitogenomic level indicated that Limenitidinae was most closely related to Heliconiinae than other groups of Nymphalidae in this study, strongly supporting the results of former molecular studies, while contradicting the prevailing speculations based on morphological characters.

    Abascal F, Posada D, Zardoya R. 2007. MtArt: a new model of amino acid replacement for arthropoda[J].Mol Biol Evol,24(1): 1-5.

    Ackery PR. 1984. Systematic and faunistic studies on butterflies [M] //Vane-Wright RI, Ackery PR. (Eds.), Systematic and Faunistic Studies on Butterflies. Princeton, USA: Princeton University Press, 9-21.

    Ackery PR, de Jong R, Vane-Wright RI. 1999. The butterflies: Hedyloidea, Hesperoidea, and Papilionoidea [M] //Kristensen NP. (Ed.), Lepidoptera, Moths and Butterflies. Handbook of Zoology, Lepidoptera. Berlin: De Gruyter, 263-300.

    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool [J].J Mol Biol,215(3): 403-410.

    Anderson S, Bankier AT, Barrell BG, de Bruijin MHL, Coulson AR, Droujn J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG. 1981. Sequence and organization of the human mitochondrial genome [J].Nature,290(5806): 457-465.

    Bae JS, Kim I, Sohn HD, Jin BR. 2004. The mitochondrial genome of the firefly,Pyrocoelia rufa: complete DNA sequence, genome organization, and phylogenetic analysis with other insects [J].Mol Phylogenet Evol,32(3): 978-985.

    Beard CB, Hamm DM, Colllins FH. 1993. The mitochondrial genome of the mosquitoAnopheles gambiae: DNA sequence, genome organization, and comparisons with mitochondrial sequences of other insects [J].Insect Mol Biol,2(2): 103-124.

    Boore JL. 1999. Animal mitochondrial genomes [J].Nucleic Acids Res,27(8): 1767-1780.

    Brower AVZ. 2000. Phylogenetic relationships among the Nymphalidae (Lepidoptera) inferred from partial sequences of thewinglessgene [J].Proc R Soc Lond B,267(1449): 1201-1211.

    Cameron SL, Whiting MF. 2008. The complete mitochondrial genome of the tobacco hornworm,Manduca sexta, (Insecta: Lepidoptera: Sphingidae), and an examination of mitochondrial gene variability within butterflies and moths [J].Gene,408(1-2): 112-123.

    Cha SY, Yoon HJ, Lee EM, Yoon MH, Hwang JS, Jin BR, Han YS, Kim I. 2007. The complete nucleotide sequence and gene organization of the mitochondrial genome of the bumblebee,Bombus ignitus(Hymenoptera: Apidae) [J].Gene,392(1-2): 206-220.

    Clary DO, Wolstenholme DR. 1985. The mitochondrial DNA molecule ofDrosophila yakuba: nucleotide sequence, gene organization, and genetic code [J].J Mol Evol,22(3): 252-271.

    Clayton DA. 1992. Transcription and replication of animal mitochondrial DNA [J].Int Rev Cytol,141: 217-232.

    Coates BS, Sumerford DV, Hellmich RL, Lewis LC. 2005. Partial mitochondrial genome sequences ofOstrinia nubilalisandOstrinia furnicalis[J].Int J Biol Sci,1(1): 13-18.

    Crozier RH, Crozier YC. 1993. The mitochondrial genome of the honeybeeApis mellifera: complete sequence and genome organization [J].Genetics,133(1): 97-117.

    de Jong R, Vane-Wright RI, Ackery PR. 1996. The higher classification of butterflies (Lepidoptera): problems and prospects [J].Entomol Scand,27(1): 65-101.

    Ehrlich PR. 1958. The comparative morphology, phylogeny and higher classification of the butterflies (Lepidoptera) [J].Syst Entomol,10: 11-32.

    Fiedler K. 2010. The coming and going of Batesian mimicry in a Holarctic butterfly clade.BMC Biol, 8(1): 122.

    Flook PK, Rowell CHF, Grellissen G. 1995. The sequence organisation, and evolution of theLouocsta migratoriamitochondrial genome[J].J Mol Evol,41(6): 928-941.

    Freitas AVL, Brown KS Jr. 2004. Phylogeny of the Nymphalidae (Lepidoptera) [J].Syst Biol,53(3):363-383.

    Hao JS, Li CX, Sun XY, Yang Q. 2005. Phylogeny and divergence time estimation of cheilostome bryozoans based on mitochodrial 16S rRNA sequences [J].Chn Sci Bull,50(12): 1205-1211.

    Harvey DJ. 1991. Higher classification of the Nymphalidae, Appendix B [M] //Nijhout HF. (Ed.), The Development and Evolution of Butterfly Wing Patterns. Washington, DC: Smithsonian Institution Press, 255-273.

    Hong GY, Jiang ST, Yu M, Yang Y, Li F, Xue FS, Wei ZJ. 2009. The complete nucleotide sequence of the mitochondrial genome of the cabbage butterfly,Artogeia melete(Lepidoptera: Pieridae) [J].Acta Biochim Biophys Sin,41(6): 446-455.

    Hong MY, Lee EM, Jo YH, Park HC, Kim SR, Huang JS, Jin BR, Kang PD, Kim KG, Han YS, Kim I. 2008. Complete nucleotide sequence and organization of the mitogenome of the silk mothCaligula boisduvalii(Lepidoptera: Saturniidae) and comparison with other lepidopteran insects [J].Gene,413(1-2): 49-57.

    Hu J, Zhang DX, Hao JS, Huang DY, Cameron S, Zhu CD. 2010. The complete mitochondrial genome of the yellow coaster,Acraea issoria(Lepidoptera: Nymphalidae: Heliconiinae: Acraeini): sequence, gene organization and a unique tRNA translocation event [J].Mol Biol Rep,37(7): 3431-3438.

    Jiang ST, Hong GY, Yu M, Li N, Yang Y, Liu YQ, Wei ZJ. 2009. Characterization of the complete mitochondrial genome of the giant silkworm moth,Eriogyna pyretorum(Lepidoptera: Saturniidae) [J].Int J Biol Sci,5(4): 351-365.

    Kim I, Lee EM, Seol KY, Yun EY, Lee YB, Hwang JS, Jin BR. 2006. The mitochondrial genome of the Korean hairstreak,Coreana raphaelis(Lepidoptera: Lycaenidae) [J].Insect Mol Biol,15(2): 217-225.

    Kim MI, Beak JY, Kim MJ, Jeong HC, Kim KG, Bae CH, Han YS, Jin BR, Kim I. 2009. Complete nucleotide sequence and organization of the mitogenome of the red-spotted Apollo butterfly,Parnassius bremeri(Lepidoptera: Papilionidae) and comparison with other lepidopteran insects [J].Mol Cell,28(4): 347-363.

    Kim MJ, Wan XL, Kim KG, Hwang JS, Kim I. 2010. Complete nucleotide sequence and organization of the mitogenome of endangeredEumenis autonoe(Lepidoptera: Nymphalidae) [J].Afr J Biotechnol,9(5): 735-754.

    Lavrov DV, Brown WM, Boore JL. 2000. A novel type of RNA editing occurs in the mitochondrial tRNAs of the centipedeLithobius forficatus[J].Proc Natl Acad Sci USA,97(25): 13738-13742.

    Liao F, Wang L, Wu S, Li YP, Zhao L, Huang GM, Niu CJ, Liu YQ, Li MG. 2010. The complete mitochondrial genome of the fall webworm,Hyphantria cunea(Lepidoptera: Arctiidae) [J].Int J Biol Sci,6(2): 172-186.

    Liu Y, Li Y, Pan M, Dai F, Zhu X, Lu C, Xiang Z. 2008. The complete mitochondrial genome of the Chinese oak silkmoth,Antheraea pernyi(Lepidoptera: Saturniidae) [J].Acta Biochim Biophys Sin,40(8): 693-703.

    Lowe TM, Eddy SR. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence [J].Nucleic Acids Res,25(5): 955-964.

    Mao ZH, Hao JS, Zhu GP, Hu J, Si MM, Zhu CD. 2010. Sequencing and analysis of the complete mitochondrial genome ofPieris rapaeLinnaeus (Lepidoptera: Pieridae) [J].Acta Entomol Sin,53(11): 1295-1304.

    Mitchell SE, Cockburn AF, Seawright JA. 1993. The mitochondrial genome ofAnopheles quadrimaculatusspecies A: complete nucleotide sequence and gene organization [J].Genome,36(6): 1058-1073.

    Ojala D, Montoya J, Attardi G. 1981. tRNA punctuation model of RNA processing in human mitochondria [J].Nature,290(5806): 470-474.

    Pan MH, Yu QY, Xia YL, Dai FY, Liu YQ, Lu C, Zhang Z, Xiang ZH. 2008. Characterization of mitochondrial genome of Chinese wild mulberry silkworm,Bomyx mandarina(Lepidoptera: Bombycidae) [J].Sci Chn: Ser C-Life Sci,51(8): 693-701.

    Platt AP, Maudsley JR. 1994. Continued interspecific hybridization betweenLimenitis(Basilarchia)arthemis astyanaxandL.(B.)archippusin the southeastern US (Nymphalidae) [J].J Lepidopt Soc,48(3): 190-198.

    Posa D, Krandall KA. 1998. Modeltest: testing the model of DNA substitution [J].Bioinformatics,14(9): 817-818.

    Ronquist F, Huelsenbeck JP. 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models [J].Bioinformatics,19(12): 1572-1574.

    Salvato P, Simonato M, Battisti A, Negrisolo E. 2008. The complete mitochondrial genome of the bag-shelter mothOchrogaster lunifer(Lepidoptera, Notodontidae) [J].BMC Genomics,9: 331.

    Simon C, Frati F, Bekenbach A, Crespi B, Liu H, Flook P. 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers [J].Ann Entomol Soc Am,87(6): 651-701.

    Singh VK, Mangalam AK, Dwivedi S, Naik S. 1998. Primer premier: Program for design of degenerate primers from a protein sequence [J].Biotechniques,24(2): 318-319.

    Spanos L, Koutroumbras G, Kotsyfakis M, Louis C. 2000. The mitochondrial genome of the Mediterranean fruit fly,Ceratitis capitata[J].Insect Mol Biol,9(2):139-144.

    Swofford DL. 2002. PAUP*: Phylogenetic analysis using parsimony (* and other methods), version 4.0 [M]. Sunderland: Sinauer Associates.

    Thao ML, Baumann L, Baumann P. 2004. Organization of the mitochondrial genomes of whiteflies, aphids, and psyllids (Hemiptera, Sternorrhyncha) [J].BMC Evol Biol,4: 25.

    Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. 1997. The Clustal X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools [J].Nucl Acids Res,25(24): 4876-4882.

    Wahlberg N, Braby M F, Brower AVZ, de Jong R, Lee MM, Nylin S, Pierce NF, Sperling FAH, Vila R, Warren AD, Zakharov E. 2005. Synergistic effects of combining morphological and molecular data in resolving the phylogeny of butterflies and skippers [J].Proc R Soc Lond B,272(1572): 1577-1586.

    Wahlberg N, Weingartner E, Nylin S. 2003. Towards a better understanding of the higher systematics of Nymphalidae (Lepidoptera: Papilionoidea) [J].Mol Phylogenet Evol,28(3): 473-484.

    Wahlberg N, Wheat CW. 2008. Genomic outposts serve the phylogenomic pioneers: designing novel nuclear markers for genomic DNA extractions of lepidoptera [J].Syst Biol,57(2): 231-242.

    Wang XC, Sun XY, Sun QQ, Zhang DX, Hu J, Yang Q, Hao JS. 2011. Complete mitochondrial genome of the laced fritillaryArgyreus hyperbius(Lepidoptera: Nymphalidae) [J].Zool Res,32(5): 465-475.

    Wilson K, Cahill V, Ballment E, Benzie J. 2000. The complete sequence of the mitochondrial genome of the crustaceanPenaeus monodon: are Malacostracan crustaceans more closely related to insects than to Branchiopods [J].Mol Biol Evol,17(6): 863-874.

    Wolstenholme DR. 1992. Animal mitochondrial DNA: structure and evolution [J].Int Rev Cytol,141: 173-216.

    Wu LW, Lees DC, Yen SH, Lu CC, Hsu YF. 2010. The complete mitochondrial genome of the near-threatened swallowtail,Agehana maraho(Lepidoptera: Papilionidae): evaluating sequence variability and suitable markers for conservation genetic studies [J].Entomol News,121(3): 267-280.

    Xia J, Hu J, Zhu GP, Zhu CD, Hao JS. 2011. Sequencing and analysis of the complete mitochondrial genome ofCalinaga davidisOberthür (Lepidoptera: Nymphalidae) [J].Acta Entomol Sin,54(5): 555-565.

    Xia X, Xie Z. 2001. DAMBE: Data analysis in molecular biology and evolution [J].J Hered,92(4): 371-373.

    Yang L, Wei ZJ, Hong GY, Jiang ST, Wen LP. 2009. The complete nucleotide sequence of the mitochondrial genome ofPhthonandria atrilineata(Lepidoptera: Geometridae) [J].Mol Biol Rep,36(6): 1441-1449.

    Yang Z, Rannala B. 1997. Bayesian phylogenetic inference using DNA sequences: A Markov chain Monte Carlo method [J].Mol Biol Evol,14(7): 717-724.

    Yukuhiro K, Sezutsu H, Itoh M, Shimizu K, Banno Y. 2002. Significant levels of sequence divergence and gene rearrangements have occurred between the mitochondrial genomes of the wild mulberry silkmoth,Bombyx mandarina, and its close relative, the domesticated silkmoth,Bombyx mori[J].Mol Biol Evol,19(8): 1385-1389.

    Zhang M, Zhong Y, Cao TW, Geng YP, Zhang Y, Jin K, Ren ZM, Zhang R, Guo YP, Ma EB. 2008. Phylogenetic relationship and morphological evolution in the subfamily Limenitidinae (Lepidoptera: Nymphalidae) [J].Prog Nat Sci,18(11): 1357-1364.

    殘鍔線蛺蝶線粒體基因組全序列及其系統(tǒng)學(xué)意義

    田麗麗1, 孫曉燕2, 陳 梅1, 蓋永華2, 郝家勝1,2,*, 楊 群2,*

    (1. 安徽師范大學(xué) 生命科學(xué)學(xué)院分子進(jìn)化與生物多樣性研究室, 安徽 蕪湖 241000; 2. 中國(guó)科學(xué)院南京地質(zhì)古生物研究所 現(xiàn)代古生物學(xué)與地層學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室, 南京 210008)

    對(duì)殘鍔線蛺蝶(Parathyma sulpitia)(鱗翅目:蛺蝶科)線粒體基因組全序列進(jìn)行了測(cè)定。結(jié)果表明:殘鍔線蛺蝶線粒體基因組全序列全長(zhǎng)為15 268 bp, 除了在trnS1(AGN) 和trnE基因之間有一段121 bp長(zhǎng)的基因間隔外, 其基因的排列順序及排列方向與大多數(shù)已測(cè)鱗翅目物種基本一致。在蛋白質(zhì)編碼基因中, 除cox1以CGA作為其起始密碼子之外, 其余12個(gè)蛋白質(zhì)編碼基因都以標(biāo)準(zhǔn)的ATN作為起始密碼子。此外, 除nad4基因以單獨(dú)的T為終止密碼子, 其余12個(gè)蛋白質(zhì)編碼基因都以TAA結(jié)尾。除trnS1(AGN) 缺少DHU臂之外, 22個(gè)tRNA基因都顯示典型的三葉草形二級(jí)結(jié)構(gòu)。除A+T富集區(qū)外的非編碼序列中, 線粒體基因組共含有11個(gè)基因間隔區(qū)。其中,最長(zhǎng)的一個(gè)121 bp的基因間隔區(qū)位于trnS1(AGN)和trnE之間, 其A+T含量高達(dá)100%。另外, 和其他鱗翅目物種一樣, 在其A+T富集區(qū)的3'端有一段長(zhǎng)達(dá)18 bp的poly-T結(jié)構(gòu)。A+T富集區(qū)內(nèi)部沒有明顯的小衛(wèi)星樣多拷貝重復(fù)序列, 而含有一些微衛(wèi)星樣的重復(fù)結(jié)構(gòu)。本研究基于 13種蛋白編碼基因序列的組合數(shù)據(jù), 用最大似然法和貝葉斯法對(duì)蛺蝶科幾個(gè)主要亞科間共 9個(gè)代表物種間的系統(tǒng)發(fā)生關(guān)系進(jìn)行了分析。結(jié)果表明, 本研究的結(jié)果與前人的分子系統(tǒng)學(xué)研究結(jié)論基本吻合(其中, 線蛺蝶亞科和釉蛺蝶亞科互為姐妹群), 而與形態(tài)學(xué)的研究結(jié)論不一致。

    2011-11-18;接受日期:2012-02-28

    殘鍔線蛺蝶; 鱗翅目; 蛺蝶科; 線蛺蝶亞科; 線粒體基因組

    Q969.42; Q969.439.2 ; Q754

    A

    0254-5853-(2012)02-0133-11

    10.3724/SP.J.1141.2012.02133

    date:2011-11-18; < class="emphasis_bold">Accepted date

    date: 2012-02-28

    s:This work was supported by the National Natural Science Foundation of China (41172004), the CAS/SAFEA International Partnership Program for Creative Research Teams, Chinese Academy of Sciences (KZCX22YW2JC104), the Provincial Key Project of the Natural Science Foundation from the Anhui Province, China (KJ2010A142), and the Open Funds from the State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences* Corresponding authors (通信作者), E-mail: jshaonigpas@sina.com; qunyang@nigpas.ac.cn

    猜你喜歡
    富集區(qū)鱗翅目蛺蝶
    上海嘉定區(qū)蠶豆新記錄蟲害——豆小卷蛾
    低階煤煤層氣富集區(qū)預(yù)測(cè)方法研究與應(yīng)用
    貓蛺蝶和黑脈蛺蝶
    幼兒100(2020年25期)2020-10-22 05:25:20
    礦床富集區(qū)的控礦規(guī)律與找礦勘查實(shí)踐
    金堇蛺蝶
    寶清東升自然保護(hù)區(qū)鱗翅目昆蟲資源及蝶類多樣性分析
    括蒼山自然保護(hù)區(qū)鱗翅目昆蟲數(shù)據(jù)庫(kù)的構(gòu)建
    鱗翅目昆蟲觸角感器研究進(jìn)展
    孔雀蛺蝶
    能源富集區(qū)資源紅利與民生問題——以晉、陜、蒙為例
    丁香六月欧美| 热99国产精品久久久久久7| 欧美日韩av久久| 乱人伦中国视频| 99国产精品免费福利视频| 亚洲精华国产精华精| 人人妻人人澡人人看| 久久久精品94久久精品| 色老头精品视频在线观看| 亚洲全国av大片| 欧美黄色片欧美黄色片| 欧美日韩成人在线一区二区| 成人18禁高潮啪啪吃奶动态图| 99国产精品一区二区三区| 天天躁夜夜躁狠狠躁躁| videosex国产| 国产成人一区二区三区免费视频网站| 国产99久久九九免费精品| av免费在线观看网站| 男女午夜视频在线观看| 91成年电影在线观看| 国产av又大| 色尼玛亚洲综合影院| av不卡在线播放| 成人国产一区最新在线观看| 国产一区二区激情短视频| 欧美日韩成人在线一区二区| 久久99热这里只频精品6学生| 国产精品1区2区在线观看. | 亚洲精品成人av观看孕妇| 亚洲全国av大片| 99re6热这里在线精品视频| 国产黄色免费在线视频| www.精华液| 老司机亚洲免费影院| 亚洲成人免费av在线播放| 国产免费现黄频在线看| av片东京热男人的天堂| 成人永久免费在线观看视频 | 欧美黄色淫秽网站| 欧美日韩国产mv在线观看视频| 日韩免费av在线播放| 亚洲精品美女久久久久99蜜臀| 汤姆久久久久久久影院中文字幕| 青青草视频在线视频观看| 在线观看免费视频日本深夜| 日韩欧美三级三区| 99香蕉大伊视频| 高潮久久久久久久久久久不卡| 黄网站色视频无遮挡免费观看| 80岁老熟妇乱子伦牲交| 国产精品偷伦视频观看了| 丰满人妻熟妇乱又伦精品不卡| 国产精品久久久久久精品电影小说| 天天躁狠狠躁夜夜躁狠狠躁| 欧美精品一区二区大全| 制服人妻中文乱码| 亚洲精品在线美女| 五月开心婷婷网| 中文字幕人妻熟女乱码| 黑人操中国人逼视频| 亚洲精品在线观看二区| 黄频高清免费视频| 免费av中文字幕在线| 手机成人av网站| 99re在线观看精品视频| 一边摸一边抽搐一进一小说 | 黄网站色视频无遮挡免费观看| 国产一卡二卡三卡精品| 久久香蕉激情| 9191精品国产免费久久| 天天躁狠狠躁夜夜躁狠狠躁| 一级,二级,三级黄色视频| 午夜成年电影在线免费观看| 国产精品亚洲一级av第二区| 欧美日本中文国产一区发布| 亚洲伊人久久精品综合| 欧美 亚洲 国产 日韩一| 国产又爽黄色视频| 一边摸一边抽搐一进一小说 | 建设人人有责人人尽责人人享有的| kizo精华| 亚洲人成电影免费在线| 亚洲午夜理论影院| 啦啦啦免费观看视频1| 久久人妻福利社区极品人妻图片| 免费久久久久久久精品成人欧美视频| 黄色成人免费大全| 亚洲精品美女久久久久99蜜臀| 99精品久久久久人妻精品| 一级毛片女人18水好多| 男人舔女人的私密视频| 一夜夜www| 狂野欧美激情性xxxx| 国产精品熟女久久久久浪| 国产xxxxx性猛交| 大型av网站在线播放| 美女扒开内裤让男人捅视频| 久久久久久免费高清国产稀缺| 人人妻人人爽人人添夜夜欢视频| 日本wwww免费看| netflix在线观看网站| 涩涩av久久男人的天堂| 啪啪无遮挡十八禁网站| 天堂8中文在线网| 黄色 视频免费看| 亚洲精品粉嫩美女一区| 亚洲成国产人片在线观看| 我要看黄色一级片免费的| 久久精品熟女亚洲av麻豆精品| 亚洲黑人精品在线| 久久午夜综合久久蜜桃| 久久人人97超碰香蕉20202| 国产男女超爽视频在线观看| 一级片'在线观看视频| 下体分泌物呈黄色| 日韩三级视频一区二区三区| 国产成人欧美| 极品教师在线免费播放| 法律面前人人平等表现在哪些方面| 黄色成人免费大全| 亚洲精品美女久久av网站| 日本wwww免费看| av不卡在线播放| 久久精品国产亚洲av香蕉五月 | 91大片在线观看| 在线观看www视频免费| 大香蕉久久网| 亚洲国产欧美在线一区| 亚洲精品成人av观看孕妇| 老汉色av国产亚洲站长工具| 成人黄色视频免费在线看| 日日爽夜夜爽网站| 美女午夜性视频免费| 久久免费观看电影| 丰满迷人的少妇在线观看| 黄色 视频免费看| 日韩视频一区二区在线观看| 美女扒开内裤让男人捅视频| 中文字幕制服av| 90打野战视频偷拍视频| 国产成人欧美在线观看 | 精品国产一区二区三区四区第35| 超色免费av| xxxhd国产人妻xxx| 人人妻,人人澡人人爽秒播| 极品教师在线免费播放| 久久热在线av| 国产亚洲精品第一综合不卡| 这个男人来自地球电影免费观看| 国产成人精品久久二区二区免费| 国产精品久久久av美女十八| 免费人妻精品一区二区三区视频| 亚洲精品av麻豆狂野| 丝瓜视频免费看黄片| 免费高清在线观看日韩| 国产成人欧美在线观看 | 欧美激情 高清一区二区三区| 后天国语完整版免费观看| 男男h啪啪无遮挡| 国产一区有黄有色的免费视频| 视频在线观看一区二区三区| 中文字幕高清在线视频| 国产免费av片在线观看野外av| 欧美乱妇无乱码| 男男h啪啪无遮挡| 精品一区二区三卡| 美女主播在线视频| 午夜激情av网站| 老汉色av国产亚洲站长工具| 精品午夜福利视频在线观看一区 | 亚洲av日韩在线播放| 国产成人啪精品午夜网站| 777久久人妻少妇嫩草av网站| 亚洲精品美女久久久久99蜜臀| 国产区一区二久久| 一二三四在线观看免费中文在| 91精品三级在线观看| 精品国产一区二区久久| 超碰成人久久| 亚洲精品美女久久av网站| 国产单亲对白刺激| 中文字幕av电影在线播放| 精品人妻1区二区| 纵有疾风起免费观看全集完整版| 亚洲 欧美一区二区三区| 免费看a级黄色片| 国产免费福利视频在线观看| 亚洲精品久久午夜乱码| 美女午夜性视频免费| 成年人黄色毛片网站| 一本综合久久免费| 日韩欧美三级三区| 熟女少妇亚洲综合色aaa.| 精品国产超薄肉色丝袜足j| 色94色欧美一区二区| 亚洲成a人片在线一区二区| 一级黄色大片毛片| 精品久久久久久久毛片微露脸| 多毛熟女@视频| 蜜桃国产av成人99| 人成视频在线观看免费观看| 精品少妇内射三级| 一进一出好大好爽视频| 18禁黄网站禁片午夜丰满| 9191精品国产免费久久| 99精品欧美一区二区三区四区| 午夜老司机福利片| 色综合婷婷激情| h视频一区二区三区| 亚洲天堂av无毛| 99久久99久久久精品蜜桃| 欧美黑人精品巨大| 亚洲国产av影院在线观看| 黄色成人免费大全| 一夜夜www| 亚洲精品久久午夜乱码| 少妇被粗大的猛进出69影院| 国产区一区二久久| 精品一区二区三区视频在线观看免费 | 日韩大片免费观看网站| 老汉色∧v一级毛片| 99国产综合亚洲精品| 高清在线国产一区| 国产精品麻豆人妻色哟哟久久| 国产成人影院久久av| 亚洲午夜理论影院| 亚洲精品粉嫩美女一区| 最近最新中文字幕大全电影3 | 精品国产一区二区三区四区第35| 日本vs欧美在线观看视频| 亚洲五月色婷婷综合| 90打野战视频偷拍视频| 脱女人内裤的视频| 两个人免费观看高清视频| 精品国产乱码久久久久久小说| 国产精品国产高清国产av | 在线观看免费午夜福利视频| 水蜜桃什么品种好| 久久中文字幕一级| 日日爽夜夜爽网站| 亚洲成av片中文字幕在线观看| 成年女人毛片免费观看观看9 | 91成人精品电影| 一区二区三区精品91| 色综合婷婷激情| 亚洲,欧美精品.| 国产区一区二久久| 老熟女久久久| 亚洲天堂av无毛| 黄色视频在线播放观看不卡| 一夜夜www| 久久 成人 亚洲| 久久精品aⅴ一区二区三区四区| 亚洲人成伊人成综合网2020| 中文字幕制服av| 视频在线观看一区二区三区| 一边摸一边抽搐一进一出视频| 日韩三级视频一区二区三区| 久久久久视频综合| 老汉色∧v一级毛片| 欧美精品人与动牲交sv欧美| 又黄又粗又硬又大视频| 久久精品人人爽人人爽视色| 啦啦啦在线免费观看视频4| 久久毛片免费看一区二区三区| 日本撒尿小便嘘嘘汇集6| 午夜两性在线视频| 免费看十八禁软件| 国产精品久久久久久精品电影小说| 亚洲av电影在线进入| 国产成人av激情在线播放| 久久国产精品男人的天堂亚洲| 欧美日韩一级在线毛片| 999精品在线视频| 日韩人妻精品一区2区三区| 亚洲av成人一区二区三| 亚洲男人天堂网一区| www.精华液| 无遮挡黄片免费观看| 日本一区二区免费在线视频| 另类精品久久| 18在线观看网站| 老司机深夜福利视频在线观看| 捣出白浆h1v1| 色尼玛亚洲综合影院| 国产精品久久久av美女十八| 日韩大片免费观看网站| 女人高潮潮喷娇喘18禁视频| 一进一出抽搐动态| 亚洲国产欧美日韩在线播放| 在线观看免费日韩欧美大片| 亚洲成人免费电影在线观看| 久久天躁狠狠躁夜夜2o2o| 一本综合久久免费| 人人妻人人澡人人爽人人夜夜| 黑人欧美特级aaaaaa片| 国产精品国产av在线观看| av又黄又爽大尺度在线免费看| 天天躁夜夜躁狠狠躁躁| 日韩有码中文字幕| 悠悠久久av| 久久精品成人免费网站| 国产精品一区二区精品视频观看| 欧美精品一区二区大全| 下体分泌物呈黄色| 国产精品久久久久久人妻精品电影 | 少妇被粗大的猛进出69影院| 亚洲欧洲日产国产| 一区二区日韩欧美中文字幕| 亚洲欧洲日产国产| 人妻 亚洲 视频| 成人国语在线视频| 999久久久国产精品视频| 久久午夜亚洲精品久久| 国产精品免费视频内射| 啪啪无遮挡十八禁网站| 国产精品一区二区精品视频观看| 亚洲国产欧美一区二区综合| av免费在线观看网站| 最近最新中文字幕大全免费视频| 美国免费a级毛片| 亚洲精品粉嫩美女一区| 国产1区2区3区精品| 精品乱码久久久久久99久播| 免费久久久久久久精品成人欧美视频| 一区福利在线观看| 国产亚洲欧美精品永久| 国产真人三级小视频在线观看| 夜夜夜夜夜久久久久| 纯流量卡能插随身wifi吗| 国产黄频视频在线观看| 麻豆乱淫一区二区| 国产精品久久久久久人妻精品电影 | 99国产精品免费福利视频| 一级片'在线观看视频| 国产精品麻豆人妻色哟哟久久| 99热网站在线观看| 97在线人人人人妻| 18禁裸乳无遮挡动漫免费视频| 成人国产一区最新在线观看| 久久久精品国产亚洲av高清涩受| 中文字幕制服av| 欧美精品一区二区免费开放| 久久婷婷成人综合色麻豆| 成年人黄色毛片网站| 黄网站色视频无遮挡免费观看| 亚洲av国产av综合av卡| 日本黄色视频三级网站网址 | 9色porny在线观看| h视频一区二区三区| 色综合欧美亚洲国产小说| 在线观看一区二区三区激情| 可以免费在线观看a视频的电影网站| 国产日韩欧美亚洲二区| 夜夜夜夜夜久久久久| 国产男靠女视频免费网站| 精品熟女少妇八av免费久了| 国产欧美日韩一区二区三区在线| 在线观看免费午夜福利视频| 中文字幕制服av| 99香蕉大伊视频| 老司机靠b影院| 嫁个100分男人电影在线观看| 国产亚洲av高清不卡| 国产黄色免费在线视频| 精品国产超薄肉色丝袜足j| 国产黄频视频在线观看| 欧美 日韩 精品 国产| 欧美人与性动交α欧美精品济南到| 亚洲精品在线美女| 欧美日韩一级在线毛片| 国产在线一区二区三区精| 亚洲国产av新网站| 日韩成人在线观看一区二区三区| 极品人妻少妇av视频| 精品国产超薄肉色丝袜足j| 国产黄频视频在线观看| 欧美日韩亚洲高清精品| 亚洲人成电影免费在线| 国产在线一区二区三区精| 日本vs欧美在线观看视频| 免费看a级黄色片| 亚洲免费av在线视频| 97在线人人人人妻| 欧美成人免费av一区二区三区 | a级片在线免费高清观看视频| 高清在线国产一区| 99精品欧美一区二区三区四区| 精品一区二区三区av网在线观看 | 自拍欧美九色日韩亚洲蝌蚪91| 欧美在线黄色| 伦理电影免费视频| 十八禁网站免费在线| 亚洲精品av麻豆狂野| 国产免费现黄频在线看| 我要看黄色一级片免费的| 久久精品国产亚洲av高清一级| 一本综合久久免费| 久久久水蜜桃国产精品网| 午夜久久久在线观看| 亚洲伊人色综图| 99riav亚洲国产免费| 欧美国产精品va在线观看不卡| 捣出白浆h1v1| 亚洲国产中文字幕在线视频| 久久婷婷成人综合色麻豆| 日本a在线网址| 脱女人内裤的视频| 久久久精品免费免费高清| 老司机午夜十八禁免费视频| 亚洲成人免费电影在线观看| 日本a在线网址| 中文字幕高清在线视频| 午夜福利,免费看| 亚洲avbb在线观看| 黑人巨大精品欧美一区二区蜜桃| 亚洲五月婷婷丁香| 久久精品亚洲熟妇少妇任你| 国产欧美日韩精品亚洲av| 婷婷丁香在线五月| 亚洲 国产 在线| 汤姆久久久久久久影院中文字幕| www日本在线高清视频| 国产免费现黄频在线看| 久久99热这里只频精品6学生| 在线永久观看黄色视频| 两人在一起打扑克的视频| 国产成人欧美| 国产色视频综合| 国产日韩欧美视频二区| 久久人妻熟女aⅴ| 在线观看免费高清a一片| 80岁老熟妇乱子伦牲交| 亚洲专区字幕在线| 久久久久网色| 狠狠婷婷综合久久久久久88av| 99九九在线精品视频| 欧美激情高清一区二区三区| 国产精品熟女久久久久浪| av超薄肉色丝袜交足视频| 亚洲精品成人av观看孕妇| 制服诱惑二区| 99久久人妻综合| 两人在一起打扑克的视频| 啦啦啦免费观看视频1| www.熟女人妻精品国产| www.999成人在线观看| 精品少妇内射三级| 国产深夜福利视频在线观看| 波多野结衣一区麻豆| 美国免费a级毛片| 999久久久精品免费观看国产| 精品国产一区二区三区久久久樱花| 人妻久久中文字幕网| 色在线成人网| 亚洲国产av新网站| 精品一区二区三区视频在线观看免费 | 中文字幕另类日韩欧美亚洲嫩草| 精品亚洲成国产av| 热99国产精品久久久久久7| 两个人免费观看高清视频| 日本wwww免费看| 一边摸一边做爽爽视频免费| 叶爱在线成人免费视频播放| av国产精品久久久久影院| 久久亚洲精品不卡| 99香蕉大伊视频| 麻豆乱淫一区二区| 91av网站免费观看| 一级毛片女人18水好多| 91麻豆精品激情在线观看国产 | 九色亚洲精品在线播放| 欧美日本中文国产一区发布| h视频一区二区三区| 两性夫妻黄色片| 国产精品98久久久久久宅男小说| av有码第一页| 免费av中文字幕在线| 国产亚洲精品第一综合不卡| 久久香蕉激情| 亚洲熟女毛片儿| 交换朋友夫妻互换小说| 免费日韩欧美在线观看| 国产伦人伦偷精品视频| 丝袜美足系列| 国产伦理片在线播放av一区| 国产男女内射视频| 在线观看人妻少妇| 亚洲国产av新网站| 亚洲 国产 在线| 亚洲人成电影观看| 操出白浆在线播放| 成年人午夜在线观看视频| 大香蕉久久网| 欧美大码av| 国产男靠女视频免费网站| 别揉我奶头~嗯~啊~动态视频| 在线十欧美十亚洲十日本专区| 香蕉丝袜av| 手机成人av网站| 色精品久久人妻99蜜桃| 国产精品.久久久| 久久热在线av| 一区二区日韩欧美中文字幕| 大片电影免费在线观看免费| 国产真人三级小视频在线观看| 国产成人免费观看mmmm| 亚洲成人免费av在线播放| 精品国产一区二区久久| 丝袜在线中文字幕| 最近最新免费中文字幕在线| 国产精品99久久99久久久不卡| 久久精品亚洲av国产电影网| 自线自在国产av| 中文字幕色久视频| 久久精品国产亚洲av香蕉五月 | 亚洲成a人片在线一区二区| 日韩视频在线欧美| 国产高清国产精品国产三级| 亚洲男人天堂网一区| 精品国内亚洲2022精品成人 | 国产精品麻豆人妻色哟哟久久| 午夜成年电影在线免费观看| 精品人妻熟女毛片av久久网站| 国产在视频线精品| 中国美女看黄片| 久久婷婷成人综合色麻豆| 性少妇av在线| 国产又色又爽无遮挡免费看| 青青草视频在线视频观看| 露出奶头的视频| av电影中文网址| 国产一区二区三区在线臀色熟女 | 99国产极品粉嫩在线观看| 精品欧美一区二区三区在线| 亚洲视频免费观看视频| 国产成人免费无遮挡视频| 成人亚洲精品一区在线观看| 水蜜桃什么品种好| 久久久国产成人免费| 亚洲美女黄片视频| 黄色丝袜av网址大全| 国产精品二区激情视频| 无限看片的www在线观看| 成年人黄色毛片网站| 国产在线观看jvid| av国产精品久久久久影院| 69av精品久久久久久 | 极品人妻少妇av视频| 国产欧美日韩一区二区三| 成人精品一区二区免费| 91成年电影在线观看| 精品少妇一区二区三区视频日本电影| 免费不卡黄色视频| 他把我摸到了高潮在线观看 | 午夜福利在线观看吧| 久久久久久久国产电影| 色综合欧美亚洲国产小说| 19禁男女啪啪无遮挡网站| 中文字幕高清在线视频| 丝袜人妻中文字幕| 女人高潮潮喷娇喘18禁视频| 久久影院123| 国产av精品麻豆| 一级a爱视频在线免费观看| 黄色片一级片一级黄色片| 另类亚洲欧美激情| 亚洲午夜理论影院| 国产精品成人在线| 99re在线观看精品视频| 美女福利国产在线| 色精品久久人妻99蜜桃| 精品亚洲成a人片在线观看| 国产在线精品亚洲第一网站| 久久99一区二区三区| 欧美日韩亚洲高清精品| 色尼玛亚洲综合影院| 极品教师在线免费播放| 亚洲精品中文字幕在线视频| 国产精品久久电影中文字幕 | 欧美中文综合在线视频| 午夜福利在线免费观看网站| 成人特级黄色片久久久久久久 | av线在线观看网站| 9色porny在线观看| 国产福利在线免费观看视频| 久久久久久久大尺度免费视频| 熟女少妇亚洲综合色aaa.| 人人妻人人澡人人爽人人夜夜| 建设人人有责人人尽责人人享有的| 老司机午夜福利在线观看视频 | 国产一区二区 视频在线| 亚洲七黄色美女视频| 亚洲全国av大片| 国产aⅴ精品一区二区三区波| 国内毛片毛片毛片毛片毛片| 每晚都被弄得嗷嗷叫到高潮| 久久久精品94久久精品| 少妇裸体淫交视频免费看高清 | 亚洲精品久久午夜乱码| 亚洲国产欧美一区二区综合| videos熟女内射| 国产在线精品亚洲第一网站| cao死你这个sao货| 97在线人人人人妻| 日本av手机在线免费观看| 久久久久久久久久久久大奶| 精品亚洲成a人片在线观看| 久久99热这里只频精品6学生| 亚洲精华国产精华精| 久久久国产欧美日韩av| 中文字幕av电影在线播放| 高清毛片免费观看视频网站 | 曰老女人黄片|