• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Terahertz Metamaterial Sensor Based on Electromagnetically Induced Transparency Effect

    2015-11-18 10:11:37ShaoXianLiHongWeiZhaoandJiaGuangHan

    Shao-Xian Li, Hong-Wei Zhao, and Jia-Guang Han

    Terahertz Metamaterial Sensor Based on Electromagnetically Induced Transparency Effect

    Shao-Xian Li, Hong-Wei Zhao, and Jia-Guang Han

    —A terahertz metamaterial sensor adopting the metamaterial-based electromagnetically induced transparency (EIT) effect is presented for determining the 1,4-dioxane concentration in its aqueous solution. The metamaterial sensor, which consists of an EIT element unit with a cut-wire metallic resonator and two split-ring metallic resonators fabricated on a 490-μm thick silicon substrate, operates in a transmission geometry. The EIT peak was red-shifted and decreased with the increase of the water volume. A maximum redshift about 54 GHz of the EIT peak was detected between the 1,4-dioxane and water. The presented linear behavior and high sensitivity of the EIT peak depending on the water concentration pave a novel avenue for sensor applications.

    Index Terms—Chemical and biological sensors,metamaterials, mode coupling, terahertz.

    1. Introduction

    Metamaterials are artificially structured media with unit cells much smaller than the operating wavelengths and exhibit exotic properties that are difficult to achieve with natural materials[1]-[4]. With the rapid expansion of research into metamaterials, enormous interest has been attracted to their practical applications from microwave, infrared to optical frequency regions. In the terahertz (THz) regime,developing novel metamaterial-based practical devices is also of great interest. Terahertz filters[5],[6], amplitude modulator[7],[8], phase controller[9],[10], switch[11],[12],lens[13],[14], waveplates[15], and polarization rotators[16]have been proposed and demonstrated well. Electromagnetically induced transparency (EIT) is an important phenomenon in atomic physics and has many interesting properties, such as high dispersion in the narrow transparency window[17],[18]. In 2008, a plasmonic metamaterial analogue of EIT was theoretically suggested by using coupled optical resonators[19]. Since then, many different structures exhibiting similar behavior with EIT have been designed[20]-[26]. In fact, the metamaterial-based EIT effect is the coupling results of bright modes and dark modes, and those modes are sensitive to the surrounding dielectric condition[27]. Here we propose a terahertz metamaterial liquids sensor based on EIT effect. Unlike many solid chemical compounds that possess characteristic THz fingerprint spectra, liquids always show broad and smooth feature in THz range, which makes it difficult for identification and quantitative analysis. Our approach can convert the characterless dielectric information of liquid into the frequency shift and amplitude change of the transmission peak and dips, which is easy for probing and tracking the difference among liquids. The proposed method is easy-to-fabrication, high efficient, fast, direct,and non-destructive.

    2. Experiment

    The unit cell of EIT sensor consists of a pair of split-ring metallic resonators (SRRs) symmetrically placed on the left and right sides of a cut wire (CW) and its geometry parameters are shown in Fig. 1. The 200-nm-thick aluminum metamaterial samples were fabricated on a 490-μm-thick N-type silicon substrate by conventional optical lithography. Taking a widely used solvent 1,4-dioxane as one example, we could show that how the proposed sensor worked at terahertz frequencies.

    The 1,4-dioxane is a heterocyclic organic compound classified as an ether. It is used as a solvent in a wide range of industrial organic products (e.g., paints, varnishes, inks,and dyes) and is also present as a byproduct in many consumer products (e.g., cleaning products, cosmetics,shampoos, and laundry detergents). The 1,4-dioxane is a weak genotoxin[28]. It is miscible with water in all proportions, moderately volatile, and also resistant to hydrolysis and microbial degradation[29]. Those properties make 1,4-dioxane easily release into environments andcause harm to humans and other creatures. Hence, efficient detection of 1,4-dioxane in water is necessary and important.

    The 1,4-dioxane (99.5% and super dry) was purchased from J&K and used without further purified. The 1,4-dioxane was mixed with distilled water in different water volume fraction (0%, 20%, 40%, 60%, 80%, and 100%) thoroughly before measurement. A home-built photoconductive switch-based 8-F confocal terahertz time-domain spectroscopy (THz-TDS) system was employed to study the performance of the EIT sensor. A mode-locked Ti:sapphire laser (800 nm, 100 MHz, <35 fs,Mantis, Coherent, Inc.) was used as the light source to generate and detect the THz waves. The THz-TDS system was equipped with a GaAs photoconductive transmitter and a silicon-on-sapphire photoconductive receiver, covering the spectral range from 0.2 THz to 3.0 THz. Four parabolic mirrors were aligned in an 8-F confocal geometry, enabling excellent THz beam coupling between the transmitter and the receiver with a THz beam waist diameter less than 6 mm and a signal to noise ratio (SNR) about 10000:1. Samples were placed in the THz beam waist. The entire THz beam pathway was purged with dry air to keep a relative humidity below 2.0%. All experiments were performed at about 297.6 K.

    Fig. 1. Schematic diagram of the EIT metamaterial senor with geometrical parameters: Px=106 μm, Py=125 μm, L=110 μm, w=10 μm, R=19.5 μm, r=14.5 μm, g=5 μm, δx=27.5 μm, and δy=28 μm.

    3. Discussions

    3.1 Sensor Characterization

    Fig. 2 shows the measured and simulated THz transmission spectra of the EIT sensor, the sole pair of SRRs, and the CW. The simulation was carried on the CST microwave studio. The CW can be excited by the polarized electric field along the y axis (Ey). It shows a resonance at 0.52 THz, serving as a bright mode. The SRRs cannot directly be excited by Eydue to its structural symmetry with respect to the y axis. While interacting with Ex, the SRRs are resonant at the same frequency as the CW, thus acting as a dark mode under Eyexcitation. Upon the excitation by Ey, the coupling between the bright modes and dark modes results in a “W” shape spectrum with a transmission peak at 0.52 THz. The experiments and simulations agree well as shown in Fig. 2. The amplitude differences can be attributed to the deviation in fabrication of the sample and short scans of THz time signal to avoid including reflective echoes.

    Fig. 2. Experimental and simulated THz transmission spectra of EIT sensor and its two components: the CW and a pair of SRRs.

    3.2 Sensing Performance

    The sensor was inserted into a quartz cell filled with water/dioxane mixture. The water volume fractions were 100%, 80%, 60%, 40%, 20%, and 0%, respectively. The light path of the cell was 1 mm. An identical silicon inserted into the cell filled with the same solution was set as a reference. The experimentally measured transmission spectra are shown in Figs. 3 (a), (b), and (c). The red-shift of the EIT peak occurred when the volume fraction of water increased. At the same time, the amplitude of the transmission peak decreased. The two transmission dips of EIT became less absorptive, which weakened the EIT effect. The CST simulation results in Figs. 3 (a’), (b’), and (c’)exhibit a similar trend. It should be noted that the difference between the experiment and the simulation probably came from the deviation of fabrication of the sensor and the clearness of the sensor.

    The red-shift of the transmission peak was due to the increase of the refractive index around the metamaterial. As shown in Fig. 4, the refractive index and absorption coefficient of the mixture increase when the water volume fraction increases.

    The EIT phenomenon was induced by the coupling of bright modes and dark modes. To explain the weakening of EIT effect, the transmission spectra of bright modes (CW)and dark modes (a pair of SRRs) in different water/dioxane mixtures were measured, respectively, as shown in Fig. 5.

    Equally, the red-shift of the absorption was due to the increase of the ambient refractive index. The increased amplitude of the transmission dip showed a detuning of the original resonance and the diminution of Q value which resulted from the absorption of the water. The red-shift of the original resonance of the bright mode and dark mode led to the red-shift of the EIT transmission peak. The weakening of both modes resulted in the weakening of the EIT phenomenon.As shown in Fig. 6, the frequencies at the EIT peak and two transmission dips decrease almost linearly with the increase of water concentration. Accordingly, the water concentration of water/dioxane mixture can be deduced from the frequency shift of the EIT peak and the two transmission dips with the following derived formulas:

    Fig. 3. Experimental (a), (b), and (c) and simulated (a’), (b’), and(c’) results of the EIT sensor in different water/dioxane mixtures.

    Fig. 4. Experimentally measured refractive index and absorption coefficients of different water/dioxane mixtures.

    Fig. 5. Experimentally measured THz transmission spectra in different water/dioxane mixtures: (a) CW and (b) a pair of SRRs.

    Experiment: Simulation:

    EIT peak: f=0.524-0.054c EIT peak: f=0.498-0.046c

    Left foot: f=0.455-0.050c Left foot: f=0.426-0.041c

    Right foot: f=0.566-0.059c Right foot f=0.569-0.043c,

    where f is the frequency in unit THz and c is the volume fraction of water. A maximum red-shift about 54 GHz of the EIT peak was detected between 1,4-dioxane and water.

    Fig. 6. Experimentally measured (full symbols) and simulated(half full symbols) frequencies at the EIT peak and two transmission dips in different concentration of water/dioxane mixtures.

    4. Conclusions

    In summary, a THz metamaterial sensor based on the EIT peak shift was presented. A maximum red-shift about 54 GHz of the EIT peak was detected between 1,4-dioxane and water. The linear dependence of frequency shift of the EIT peak on the water concentration makes the EIT sensor be a useful tool to fast determine the water concentration of unknown water/dioxane mixtures.

    [1] K. Fan and W. J. Padilla, “Dynamic electromagnetic metamaterials,” Materials Today, vol. 18, no. 1, pp. 39-50,2015.

    [2] K. Yao and Y.-M. Liu, “Plasmonic metamaterials,”Nanotechnology Reviews, vol. 3, no. 2, pp. 177-210, 2014.

    [3] N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nature Photonics, vol. 8, no. 12, pp. 889-898, 2014.

    [4] N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nature Materials, vol. 11, no. 11, pp. 917-924, 2012.

    [5] Z.-H. Zhu, X.-Q. Zhang, J.-Q. Gu, R. Singh, Z. Tian, J.-G. Han, et al., “A metamaterial-based terahertz low-pass filter with low insertion loss and sharp rejection,” IEEE Trans. Terahertz Science and Technology, vol. 3, no. 6, pp. 832-837, 2013.

    [6] Q. Li, X.-Q. Zhang, W. Cao, A. Lakhtakia, J. F. O'Hara, J.-G. Han, et al., “An approach for mechanically tunable, dynamic terahertz bandstop filters,” Applied Physics, vol. 107, no. 2,pp. 285-291, 2012.

    [7] Y.-M. Yang, R. Huang, L.-Q. Cong, Z.-H. Zhu, J.-Q. Gu, Z. Tian, et al., “Modulating the fundamental inductivecapacitive resonance in asymmetric double-split ring terahertz metamaterials,” Applied Physics Letters, vol. 98,no. 12, pp. 121114, 2011.

    [8] Q. Li, Z. Tian, X.-Q. Zhang, N.-N. Xu, R. Singh, J.-Q. Gu,et al., “Dual control of active graphene-silicon hybrid metamaterial devices,” Carbon, vol. 90, pp. 146-153, Aug. 2015.

    [9] L.-X. Liu, X.-Q. Zhang, M. Kenney, X.-Q. Su, N.-N. Xu,C.-M. Ouyang, et al., “Broadband metasurfaces with simultaneous control of phase and amplitude,” Advanced Materials, vol. 26, no. 29, pp. 5031-5036, 2014.

    [10] X.-Q. Zhang, Z. Tian, W.-S. Yue, J.-Q. Gu, S. Zhang, J.-G. Han, et al., “Broadband terahertz wave deflection based on c-shape complex metamaterials with phase discontinuities,”Advanced Materials, vol. 25, no. 33, pp. 4567-4572, 2013.

    [11] J.-Q. Gu, R. Singh, X.-J. Liu, X.-Q. Zhang, Y.-F. Ma, S. Zhang, et al., “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nature Communications, vol. 3, pp. 1151, Oct. 2012.

    [12] X.-Q. Su, C.-M. Ouyang, N.-N. Xu, S.-Y. Tan, J.-Q. Gu, Z. Tian, et al., “Broadband terahertz transparency in a switchable metasurface,” IEEE Photonics Journal, vol. 7, no. 1, pp. 5900108, 2015.

    [13] Q.-L. Yang, J.-Q. Gu, D.-Y. Wang, X.-Q. Zhang, Z. Tian,C.-M. Ouyang, et al., “Efficient flat metasurface lens for terahertz imaging,” Optics Express, vol. 22, no. 21, pp. 25931-25939, 2014.

    [14] Q. Wang, X.-Q. Zhang, Y.-H. Xu, Z. Tian, J.-Q. Gu, W.-S. Yue, et al., “A broadband metasurface-based terahertz flat-lens array,” Advanced Optical Materials, 2015, doi: 10.1002/adom.201400557

    [15] L.-Q. Cong, N.-N. Xu, J.-Q. Gu, R. Singh, J.-G. Han, and W.-L. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser & Photonics Reviews, vol. 8, no. 4, pp. 626-632, 2014.

    [16] L.-Q. Cong, W. Cao, X.-Q. Zhang, Z. Tian, J.-Q. Gu, R. Singh, et al., “A perfect metamaterial polarization rotator,”Applied Physics Letters, vol. 103, no. 17, pp. 171107, 2013.

    [17] K. J. Boller, A. Imamo?lu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Physical Review Letters, vol. 66, no. 20, pp. 2593-2596, 1991.

    [18] S. E. Harris, “Electromagnetically induced transparency,”Physics Today, vol. 50, no. 7, pp. 36-42, 1997.

    [19] S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang,“Plasmon-induced transparency in metamaterials,” Physical Review Letters, vol. 101, no. 4, pp. 047401, 2008.

    [20] Z.-Y. Li, Y.-F. Ma, R. Huang, R. J. Singh, J.-Q. Gu, Z. Tian,et al., “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Optics Express, vol. 19, no. 9, pp. 8912-8919, 2011.

    [21] X.-J. Liu, J.-Q. Gu, R. Singh, Y.-F. Ma, J. Zhu, Z. Tian, et al.,“Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Physical Review Letters, vol. 100, no. 13, pp. 131101, 2012.

    [22] Y.-R. He, H. Zhou, Y. Jin, and S.-L. He, “Plasmon induced transparency in a dielectric waveguide,” Applied Physics Letters, vol. 99, no. 4, pp. 043113, 2011.

    [23] Z.-G. Dong, H. Liu, J.-X. Cao, T. Li, S.-M. Wang, S.-N. Zhu,et al., “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Applied Physics Letters, vol. 97, no. 11, pp. 114101, 2010.

    [24] T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang,“Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Physical Review B, vol. 80, no. 19, pp. 195415, 2009.

    [25] R. D. Kekatpure, E. S. Barnard, W.-S. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Physical Review Letters, vol. 104, no. 24, pp. 243902, 2010.

    [26] D.-J. Meng, S.-Y. Wang, X.-L. Sun, R.-Z. Gong, and C.-H. Chen, “Actively bias-controlled metamaterial to mimic and modulate electromagnetically induced transparency,”Applied Physics Letters, vol. 104, no. 26, pp. 261902, 2014.

    [27] Y.-M. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine,“All-dielectric metasurface analogue of electromagnetically induced transparency,” Nature Communications, vol. 5, pp. 5753, Dec. 2014.

    [28] J. A. Stickney, S. L. Sager, J. R. Clarkson, L. A. Smith, B. J. Locey, M. J. Bock, et al., “An updated evaluation of the carcinogenic potential of 1,4-dioxane,” Regulatory Toxicology and Pharmacology, vol. 38, no. 2, pp. 183-195,2003.

    [29] J. H. Suh and M. Mohseni, “A study on the relationship between biodegradability enhancement and oxidation of 1,4-dioxane using ozone and hydrogen peroxide,” Water Research, vol. 38, no. 10, pp. 2596-2604, 2004.

    Shao-Xian Li was born in Zhejiang Province, China in 1990. He received the B.S. degree from Tianjin University, Tianjin in 2012 in electronic science and technology(optoelectronics) and the M.S. degree from Tianjin University in 2015, in optical engineering. He is currently pursuing the Ph.D. degree with the College of Precision Instrument and Opto-electronics Engineering, Tianjin University. His research interests include terahertz applications in biochemistry and terahertz metamaterial sensor.

    Hong-Wei Zhao received her M.S. and Ph.D. degrees in chemistry from Tongji University and Shanghai Institute of Applied Physics,Chinese Academy of Sciences (CAS) in 1998 and 2003, respectively. Since 2003 she has been with Shanghai Institute of Applied Physics, CAS as an associate professor. She was a visiting scholar at Rensselaer Polytechnic Institute Terahertz Center, USA during 2007 to 2008. Her current research interests include radiation biochemistry,terahertz technique and its applications.

    Jia-Guang Han received the B.S. degree in material physics from Beijing Normal University, Beijing in 2000 and the Ph.D. degree in applied physics from the Shanghai Institute of Applied Physics, CAS in 2006. respectively. He was a visiting researcher at the Japanese High Energy Accelerator Research Organization during 2004 to 2005. From 2006 to 2007, he was a postdoctoral researcher at the School of Electrical and Computer Engineering, Oklahoma State University, Stillwater. In 2007, he joined the Department of Physics, National University of Singapore, Singapore, where he was a Lee Kuan Yew Research Fellow. He is currently a full professor with the College of Precision Instruments and Optoelectronics Engineering, and a member of the Center for Terahertz Waves, Tianjin University. His current research interests include surface plasmon polaritons, metamaterials, and material studies in the terahertz regime.

    Manuscript received May 29, 2015; revised June 13, 2015. This work was supported by the National Basic Research Program of China under Grant No. 2014CB339800.

    S.-X. Li and J.-G. Han are with the Center for Terahertz wave, Key laboratory of Opto-electronic Information Science and Technology,Ministry of Education, College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China(e-mail: lishaoxian31415926@aliyun.com and jiaghan@tju.edu.cn).

    H.-W. Zhao is with the Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China (Corresponding author e-mail: zhaohongwei@sinap.ac.cn).

    Digital Object Identifier: 10.3969/j.issn.1674-862X.2015.02.006

    国产1区2区3区精品| 日本一区二区免费在线视频| 91成年电影在线观看| 女人精品久久久久毛片| 精品电影一区二区在线| 如日韩欧美国产精品一区二区三区| 欧美日韩乱码在线| 国产精品一区二区三区四区久久 | 亚洲片人在线观看| 看片在线看免费视频| 啦啦啦在线免费观看视频4| 久久九九热精品免费| av网站免费在线观看视频| 亚洲av美国av| 久久天堂一区二区三区四区| 一本综合久久免费| 怎么达到女性高潮| 国产精品美女特级片免费视频播放器 | 国产无遮挡羞羞视频在线观看| 精品国产美女av久久久久小说| 青草久久国产| 黄色视频不卡| www.精华液| 国产男靠女视频免费网站| 在线观看66精品国产| 国产欧美日韩精品亚洲av| 超色免费av| 久久人人精品亚洲av| 韩国精品一区二区三区| 超碰97精品在线观看| 亚洲精品国产精品久久久不卡| 老司机亚洲免费影院| av国产精品久久久久影院| 亚洲精华国产精华精| 日本a在线网址| av天堂久久9| 日韩中文字幕欧美一区二区| 一级毛片精品| 在线观看午夜福利视频| 欧美老熟妇乱子伦牲交| 免费在线观看亚洲国产| 国产精品久久久久成人av| 成人黄色视频免费在线看| 在线免费观看的www视频| 午夜免费鲁丝| 男女床上黄色一级片免费看| 一边摸一边抽搐一进一出视频| av片东京热男人的天堂| 欧美色视频一区免费| 在线视频色国产色| 国产精品国产高清国产av| 国产成人精品在线电影| 高潮久久久久久久久久久不卡| 亚洲自拍偷在线| 午夜91福利影院| 人妻久久中文字幕网| 中亚洲国语对白在线视频| 欧美黑人欧美精品刺激| 一区福利在线观看| 午夜影院日韩av| 999久久久国产精品视频| 久久久久久免费高清国产稀缺| 窝窝影院91人妻| 免费一级毛片在线播放高清视频 | 国产精品一区二区在线不卡| 久久亚洲精品不卡| 高清黄色对白视频在线免费看| 国产精品一区二区三区四区久久 | 成年人免费黄色播放视频| 国产精品98久久久久久宅男小说| 精品人妻1区二区| 99riav亚洲国产免费| 两个人免费观看高清视频| 国产av在哪里看| 国产精品1区2区在线观看.| 午夜福利在线免费观看网站| 天天躁夜夜躁狠狠躁躁| xxxhd国产人妻xxx| 精品欧美一区二区三区在线| 亚洲一码二码三码区别大吗| 国产精品亚洲一级av第二区| aaaaa片日本免费| 不卡av一区二区三区| 99国产精品一区二区三区| 精品无人区乱码1区二区| 啦啦啦免费观看视频1| 在线国产一区二区在线| 伦理电影免费视频| 99久久综合精品五月天人人| 日本wwww免费看| 国产黄色免费在线视频| 黄色女人牲交| 一a级毛片在线观看| 男人舔女人下体高潮全视频| 丝袜在线中文字幕| 亚洲午夜精品一区,二区,三区| 精品久久久精品久久久| 国产精品野战在线观看 | 黄片大片在线免费观看| 国产亚洲精品第一综合不卡| 亚洲av熟女| 精品久久久久久久毛片微露脸| 亚洲av美国av| 国产精品影院久久| 无遮挡黄片免费观看| 欧美一区二区精品小视频在线| 亚洲熟女毛片儿| 老熟妇乱子伦视频在线观看| 一区二区三区国产精品乱码| 少妇的丰满在线观看| 午夜精品在线福利| 黄色视频不卡| 精品一品国产午夜福利视频| 婷婷精品国产亚洲av在线| 黄色a级毛片大全视频| 一个人观看的视频www高清免费观看 | 露出奶头的视频| 色在线成人网| 看片在线看免费视频| 免费在线观看日本一区| 人人妻人人添人人爽欧美一区卜| 精品久久久久久久久久免费视频 | 人人妻人人澡人人看| 日日干狠狠操夜夜爽| 99久久人妻综合| 色婷婷av一区二区三区视频| 久久人妻福利社区极品人妻图片| 香蕉丝袜av| 国产欧美日韩精品亚洲av| 国产主播在线观看一区二区| 免费观看精品视频网站| 国产亚洲精品第一综合不卡| 色婷婷久久久亚洲欧美| 我的亚洲天堂| 精品久久久久久成人av| 国产精品九九99| 精品国产国语对白av| 成年女人毛片免费观看观看9| 欧美黄色片欧美黄色片| 欧美日韩瑟瑟在线播放| 丝袜美腿诱惑在线| 中文字幕最新亚洲高清| 在线av久久热| 国产区一区二久久| 色综合欧美亚洲国产小说| 国产人伦9x9x在线观看| 十分钟在线观看高清视频www| 精品久久久久久久毛片微露脸| 日韩精品免费视频一区二区三区| 国产精品影院久久| 久久精品国产清高在天天线| 高清黄色对白视频在线免费看| 最近最新中文字幕大全免费视频| 操出白浆在线播放| 老司机福利观看| cao死你这个sao货| 99热国产这里只有精品6| 黑人欧美特级aaaaaa片| 国产精品亚洲一级av第二区| 999久久久国产精品视频| 亚洲熟妇中文字幕五十中出 | 99国产极品粉嫩在线观看| 老熟妇乱子伦视频在线观看| 国产97色在线日韩免费| 国产97色在线日韩免费| 日本三级黄在线观看| av天堂久久9| 两个人看的免费小视频| svipshipincom国产片| 多毛熟女@视频| 性少妇av在线| 操出白浆在线播放| a在线观看视频网站| 亚洲男人天堂网一区| 啦啦啦 在线观看视频| 狠狠狠狠99中文字幕| 两人在一起打扑克的视频| 脱女人内裤的视频| 麻豆久久精品国产亚洲av | 久久狼人影院| 男女午夜视频在线观看| av中文乱码字幕在线| 村上凉子中文字幕在线| 乱人伦中国视频| 好男人电影高清在线观看| 身体一侧抽搐| 国产人伦9x9x在线观看| 丰满的人妻完整版| 丁香欧美五月| av在线播放免费不卡| 日韩精品免费视频一区二区三区| 国产欧美日韩一区二区三| 精品乱码久久久久久99久播| 欧美一区二区精品小视频在线| 国产三级在线视频| 神马国产精品三级电影在线观看 | 久久久久亚洲av毛片大全| 国产主播在线观看一区二区| 欧美日本中文国产一区发布| 免费人成视频x8x8入口观看| 国产精品秋霞免费鲁丝片| 校园春色视频在线观看| 国产成人av激情在线播放| 在线观看免费高清a一片| 免费久久久久久久精品成人欧美视频| 啪啪无遮挡十八禁网站| 黑人猛操日本美女一级片| 久久久久国产一级毛片高清牌| 99热国产这里只有精品6| 老司机午夜十八禁免费视频| 久9热在线精品视频| 色精品久久人妻99蜜桃| 在线看a的网站| a级片在线免费高清观看视频| 精品一品国产午夜福利视频| 婷婷六月久久综合丁香| 18禁国产床啪视频网站| 成年版毛片免费区| 日本黄色视频三级网站网址| 伊人久久大香线蕉亚洲五| 亚洲激情在线av| 国产欧美日韩精品亚洲av| 视频在线观看一区二区三区| 国产亚洲精品久久久久5区| 男女床上黄色一级片免费看| 久久人人97超碰香蕉20202| 亚洲色图 男人天堂 中文字幕| 巨乳人妻的诱惑在线观看| 精品国产一区二区三区四区第35| 国产又爽黄色视频| 日韩欧美国产一区二区入口| 亚洲国产精品sss在线观看 | 亚洲久久久国产精品| 在线免费观看的www视频| 亚洲片人在线观看| 日韩欧美一区二区三区在线观看| 99久久久亚洲精品蜜臀av| 性色av乱码一区二区三区2| 无遮挡黄片免费观看| 人人妻人人爽人人添夜夜欢视频| 欧美日韩亚洲综合一区二区三区_| 久久性视频一级片| 欧美黑人欧美精品刺激| 90打野战视频偷拍视频| а√天堂www在线а√下载| 99香蕉大伊视频| 亚洲avbb在线观看| av天堂久久9| 91九色精品人成在线观看| 侵犯人妻中文字幕一二三四区| 久热爱精品视频在线9| 国产亚洲精品第一综合不卡| 中文字幕人妻丝袜一区二区| 免费人成视频x8x8入口观看| 亚洲精品美女久久久久99蜜臀| 久久香蕉精品热| 在线观看日韩欧美| 亚洲欧美精品综合一区二区三区| 熟女少妇亚洲综合色aaa.| 在线观看舔阴道视频| 久久人人精品亚洲av| 国产有黄有色有爽视频| 两人在一起打扑克的视频| 99久久99久久久精品蜜桃| 免费少妇av软件| 亚洲黑人精品在线| 两个人看的免费小视频| 欧美+亚洲+日韩+国产| 90打野战视频偷拍视频| 国产极品粉嫩免费观看在线| 免费观看精品视频网站| 成人av一区二区三区在线看| 欧美午夜高清在线| 亚洲五月天丁香| 国产日韩一区二区三区精品不卡| 在线观看66精品国产| 深夜精品福利| 国产av又大| 欧美 亚洲 国产 日韩一| 黄色视频不卡| 一级毛片女人18水好多| 亚洲激情在线av| 亚洲人成电影免费在线| 亚洲精品一卡2卡三卡4卡5卡| 美女高潮到喷水免费观看| 国产精品久久久久成人av| 午夜a级毛片| 操出白浆在线播放| 丝袜在线中文字幕| 91国产中文字幕| 超碰成人久久| 91成年电影在线观看| xxx96com| 午夜福利一区二区在线看| 性少妇av在线| av天堂在线播放| 真人一进一出gif抽搐免费| 无限看片的www在线观看| 十八禁网站免费在线| 国产精品久久电影中文字幕| 最好的美女福利视频网| 亚洲人成伊人成综合网2020| 成人国产一区最新在线观看| 欧美乱妇无乱码| a级毛片黄视频| 久久久国产精品麻豆| 国产精品一区二区在线不卡| 国产免费av片在线观看野外av| 首页视频小说图片口味搜索| 嫩草影视91久久| 亚洲av成人av| 久9热在线精品视频| 黄频高清免费视频| x7x7x7水蜜桃| 亚洲一区高清亚洲精品| 无限看片的www在线观看| 在线观看免费视频网站a站| 男女下面插进去视频免费观看| 国产激情久久老熟女| 一区二区三区激情视频| 国产欧美日韩精品亚洲av| 亚洲一卡2卡3卡4卡5卡精品中文| 精品国内亚洲2022精品成人| www.自偷自拍.com| 亚洲av熟女| 美女扒开内裤让男人捅视频| 午夜日韩欧美国产| 国产男靠女视频免费网站| 午夜福利在线观看吧| 日日摸夜夜添夜夜添小说| 少妇被粗大的猛进出69影院| 极品人妻少妇av视频| 女同久久另类99精品国产91| av超薄肉色丝袜交足视频| 国产成人免费无遮挡视频| 国产一区二区三区视频了| 国产成人精品久久二区二区91| 夜夜躁狠狠躁天天躁| 久久人人97超碰香蕉20202| 嫁个100分男人电影在线观看| 久久精品亚洲精品国产色婷小说| 亚洲狠狠婷婷综合久久图片| 香蕉久久夜色| 亚洲人成77777在线视频| 亚洲精品国产色婷婷电影| 超碰97精品在线观看| av超薄肉色丝袜交足视频| 国产免费男女视频| 叶爱在线成人免费视频播放| 高清av免费在线| 国产精品乱码一区二三区的特点 | 久久午夜综合久久蜜桃| 久久天躁狠狠躁夜夜2o2o| 视频区图区小说| 亚洲午夜理论影院| 波多野结衣av一区二区av| 成人免费观看视频高清| 操出白浆在线播放| 97超级碰碰碰精品色视频在线观看| 丁香六月欧美| 天天影视国产精品| 日韩欧美一区二区三区在线观看| 免费人成视频x8x8入口观看| 久久国产精品人妻蜜桃| 神马国产精品三级电影在线观看 | 99热只有精品国产| 久久这里只有精品19| 麻豆成人av在线观看| 日韩欧美三级三区| 国产激情久久老熟女| 99re在线观看精品视频| 美女扒开内裤让男人捅视频| 精品国产美女av久久久久小说| 成熟少妇高潮喷水视频| 一区福利在线观看| 高清av免费在线| 精品国产一区二区三区四区第35| 欧美另类亚洲清纯唯美| av欧美777| 亚洲第一欧美日韩一区二区三区| 色在线成人网| 欧美一级毛片孕妇| av欧美777| 国产激情久久老熟女| 在线观看一区二区三区| av网站在线播放免费| 国产又爽黄色视频| 日本三级黄在线观看| 久热这里只有精品99| 男女高潮啪啪啪动态图| 另类亚洲欧美激情| 天堂影院成人在线观看| 无遮挡黄片免费观看| 亚洲一区高清亚洲精品| 一级a爱片免费观看的视频| 色综合欧美亚洲国产小说| 亚洲国产毛片av蜜桃av| 成人国语在线视频| 午夜福利欧美成人| 精品久久久久久电影网| 女人高潮潮喷娇喘18禁视频| 可以免费在线观看a视频的电影网站| 亚洲少妇的诱惑av| 狂野欧美激情性xxxx| 亚洲成人精品中文字幕电影 | 天堂俺去俺来也www色官网| 免费看十八禁软件| 999久久久精品免费观看国产| 满18在线观看网站| netflix在线观看网站| 国产精品日韩av在线免费观看 | 国产精品综合久久久久久久免费 | 亚洲欧美精品综合久久99| 成人三级黄色视频| 精品午夜福利视频在线观看一区| 亚洲国产看品久久| 欧洲精品卡2卡3卡4卡5卡区| 午夜福利一区二区在线看| 中文字幕最新亚洲高清| 十八禁网站免费在线| 国产成人免费无遮挡视频| 成人亚洲精品一区在线观看| 美国免费a级毛片| 丝袜美腿诱惑在线| 午夜激情av网站| 中亚洲国语对白在线视频| 麻豆成人av在线观看| 桃红色精品国产亚洲av| 国产精品综合久久久久久久免费 | 欧美中文综合在线视频| 国产不卡一卡二| 熟女少妇亚洲综合色aaa.| 80岁老熟妇乱子伦牲交| 精品久久久久久久久久免费视频 | 多毛熟女@视频| 91麻豆精品激情在线观看国产 | 叶爱在线成人免费视频播放| 日韩精品中文字幕看吧| 别揉我奶头~嗯~啊~动态视频| 亚洲三区欧美一区| 亚洲人成电影免费在线| 亚洲国产毛片av蜜桃av| 国产欧美日韩一区二区精品| 欧美成人午夜精品| 欧美色视频一区免费| 少妇 在线观看| 久久久精品欧美日韩精品| 窝窝影院91人妻| 99国产综合亚洲精品| 一本综合久久免费| 久久精品91无色码中文字幕| 一区二区三区激情视频| 黄片小视频在线播放| 国产麻豆69| 涩涩av久久男人的天堂| 亚洲免费av在线视频| 亚洲国产精品999在线| 亚洲一区高清亚洲精品| 亚洲精品久久成人aⅴ小说| 中文字幕最新亚洲高清| 一二三四社区在线视频社区8| 50天的宝宝边吃奶边哭怎么回事| 淫秽高清视频在线观看| 韩国av一区二区三区四区| 亚洲av第一区精品v没综合| 九色亚洲精品在线播放| 超色免费av| 曰老女人黄片| www.www免费av| 国产成人欧美| 久久精品国产99精品国产亚洲性色 | 搡老熟女国产l中国老女人| 亚洲av成人av| 国内久久婷婷六月综合欲色啪| 久久人妻av系列| 国产成人欧美| 99riav亚洲国产免费| 老熟妇乱子伦视频在线观看| 琪琪午夜伦伦电影理论片6080| 91大片在线观看| 亚洲第一av免费看| 97超级碰碰碰精品色视频在线观看| 国产99白浆流出| 国产精品久久久久久人妻精品电影| 脱女人内裤的视频| 午夜免费观看网址| 人妻久久中文字幕网| 在线观看一区二区三区| 久久久久久久久免费视频了| 国产精品日韩av在线免费观看 | 亚洲熟女毛片儿| 在线观看日韩欧美| 亚洲国产精品sss在线观看 | 超碰成人久久| av视频免费观看在线观看| 国产精品一区二区三区四区久久 | 欧美性长视频在线观看| 国产xxxxx性猛交| bbb黄色大片| 欧美亚洲日本最大视频资源| 在线观看午夜福利视频| 757午夜福利合集在线观看| 国产黄色免费在线视频| 自线自在国产av| 亚洲avbb在线观看| 美女高潮喷水抽搐中文字幕| 精品卡一卡二卡四卡免费| 啪啪无遮挡十八禁网站| 精品国产亚洲在线| 日韩有码中文字幕| 精品一区二区三卡| 夜夜躁狠狠躁天天躁| 嫩草影院精品99| 一级a爱视频在线免费观看| 超色免费av| 日韩精品青青久久久久久| 免费不卡黄色视频| 少妇被粗大的猛进出69影院| 国产99久久九九免费精品| 久久香蕉国产精品| 搡老熟女国产l中国老女人| 亚洲精华国产精华精| 亚洲一区二区三区色噜噜 | 久久婷婷成人综合色麻豆| 免费在线观看亚洲国产| 国产欧美日韩一区二区三| 真人做人爱边吃奶动态| 久久久久久久精品吃奶| 每晚都被弄得嗷嗷叫到高潮| 久久久久久亚洲精品国产蜜桃av| 国产av一区二区精品久久| 日日摸夜夜添夜夜添小说| 亚洲av熟女| 午夜视频精品福利| 国产成人欧美在线观看| 国产91精品成人一区二区三区| 热re99久久国产66热| 啪啪无遮挡十八禁网站| 久久人人97超碰香蕉20202| 国产亚洲欧美精品永久| 亚洲成av片中文字幕在线观看| 99久久99久久久精品蜜桃| 国产黄色免费在线视频| av天堂在线播放| 黑人猛操日本美女一级片| 天堂√8在线中文| 亚洲午夜理论影院| 久久久久国内视频| 老司机靠b影院| 老司机午夜十八禁免费视频| 免费av毛片视频| 咕卡用的链子| 视频区欧美日本亚洲| 丁香六月欧美| av网站免费在线观看视频| 国产99白浆流出| 少妇的丰满在线观看| 国产高清激情床上av| 天堂影院成人在线观看| 91成年电影在线观看| 美女国产高潮福利片在线看| 久久久国产成人免费| 欧美亚洲日本最大视频资源| bbb黄色大片| 女人被躁到高潮嗷嗷叫费观| 国产国语露脸激情在线看| 亚洲精品一区av在线观看| 亚洲第一欧美日韩一区二区三区| 婷婷六月久久综合丁香| 久久人人爽av亚洲精品天堂| 亚洲精品美女久久久久99蜜臀| 热re99久久国产66热| 国产伦人伦偷精品视频| 国产精品一区二区精品视频观看| 大香蕉久久成人网| 三上悠亚av全集在线观看| 高清毛片免费观看视频网站 | 香蕉丝袜av| 国产精品99久久99久久久不卡| a在线观看视频网站| 三上悠亚av全集在线观看| e午夜精品久久久久久久| 国产一区在线观看成人免费| 国产亚洲欧美精品永久| 一区二区日韩欧美中文字幕| 性少妇av在线| 久久精品aⅴ一区二区三区四区| 欧美日韩亚洲国产一区二区在线观看| 精品国产一区二区三区四区第35| 法律面前人人平等表现在哪些方面| 日本 av在线| 亚洲avbb在线观看| 18禁国产床啪视频网站| 国内久久婷婷六月综合欲色啪| 新久久久久国产一级毛片| 精品久久久久久电影网| 男人舔女人下体高潮全视频| 国产av一区在线观看免费| 欧美日本中文国产一区发布| 亚洲国产欧美网| 精品国产乱码久久久久久男人| 国产精品国产高清国产av| 一边摸一边抽搐一进一小说| 国产高清视频在线播放一区| 老司机午夜十八禁免费视频| 波多野结衣av一区二区av| svipshipincom国产片| 亚洲久久久国产精品| 正在播放国产对白刺激| 亚洲熟妇中文字幕五十中出 | 久久久国产精品麻豆| 欧美 亚洲 国产 日韩一| 久久天躁狠狠躁夜夜2o2o| 欧美亚洲日本最大视频资源| 三级毛片av免费|