• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modeling and Kinetic Study on Absorption of CO2 by Aqueous Solutions of N-methyldiethanolamine in a Modified Wetted Wall Column*

    2009-05-15 00:25:32QianZhi錢智andGuoKai郭鍇

    Qian Zhi (錢智) and Guo Kai (郭鍇)

    ?

    Modeling and Kinetic Study on Absorption of CO2by Aqueous Solutions of-methyldiethanolamine in a Modified Wetted Wall Column*

    Qian Zhi (錢智) and Guo Kai (郭鍇)**

    Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China

    To get more accurate kinetic data of the absorption of CO2into aqueous solution of-methyldiethanolamine, a wetted wall column was modified to more uniformly distribute the liquid on the column surface and gas in the absorbing chamber and change the length of the column. The average liquid film thickness and the liquid-phase mass transfer coefficient were measured, and a correlation for the Sherwood number, Reynolds number and Schmidt number was obtained for the modified wetted wall column. The equilibrium concentrations in chemical reactions were calculated with a minor absolute error for calculating the rate constant more accurately. A mathematical model for the CO2absorption was established based on the diffusional mass transfer accompanied with parallel reversible reactions, and the partial differential equation was solved by Laplace transform. An analytical expression for the concentration of carbon dioxide as a function of time and penetration depth in liquid film and the average interphase mass transfer rate was obtained. This model was also used to calculate the rate constant for a second-order reaction, which was in good agreement with reported data.

    absorption, carbon dioxide,-methyldiethanolamine, kinetics, mass transfer

    1 Introduction

    The removal of carbon dioxide (CO2) and hydrogen sulphide (H2S) from natural and refinery gases is frequently accomplished by using aqueous alkanolamine solutions. Among the alkanolamines,-methyldiethanolamine (MDEA) is widely used as an absorption solvent for acid gases because of its higher H2S selectivity, larger absorption capacity, lower regeneration energy, less hot-degradation and littler corrosion. Since the rate of reaction of MDEA with H2S is instantaneous and the rate of reaction of this alkanolamine with CO2is finite, the selectivity of H2S is controlled by the rate of reaction of the amines with CO2[1]. Gas treatment using alkanolamines has been practiced in industry for over a half century, but it is only recently that substantial progress has been made to understand the processes.

    Many studies have been performed on the kinetics of the reaction of CO2with aqueous MDEA solutions [1-9]. However, there are still some discrepancies in the literature on the interpretation of the kinetic data. Some of the discrepancies may come from the differences in the absorbers used, reaction mechanism or the model for absorption process.

    The purpose of this study is to present an improved approach for calculating the kinetic data more accurately. A modified wetted-wall column is developed and used to determine the liquid film thickness, liquid-phase mass transfer coefficient and absorption rate. The reaction is assumed as a fast reversible reaction of CO2and OH-in parallel with another rapid pseudo-first-order reversible reaction between CO2and MDEA. A rigorous dynamic-state model is adopted. The mathematical model is solved for the concentration of carbon dioxide as a function of time and penetration depth in liquid film, and then a kinetic equation for this reactive absorption is to be obtained. The dichotomy is employed to solve the equilibrium equations for calculating the equilibrium concentration more accurately.

    2 Modified wetted wall column and experiments

    2.1 The modified wetted wall column

    The distribution of liquid and gas plays an important role in gas-liquid reaction. In this work, a wetted wall column is modified to improve the distribution of liquid and gas. The apparatus is similar to the wetted wall units used in many previous studies on CO2-alkanolamine kinetics, such as those in literature [8, 10-12]. In this work, the conventional design is modified as follows.

    a) Instead of entering into the absorption chamberdirectly, the gas flows through an annular porous metaltray with aperture of 20mm at the bottom of the column. The tray produces a pressure difference because of the resistance at the gas inlet, which is helpful to distribute the gas more uniformly in the absorption chamber.

    b) Instead of passing a conventional liquid distributor, the liquid is distributed by overflowing on a vertically polished absorption column to avoid channeling and crossing streams, so that the liquid is distributed uniformly.

    c) The absorption column is located in the center of two homocentric glass tubes and the water circulates between the tubes to keep the absorption temperature constant. The liquid distribution on the absorption column can be easily observed through the transparent glass.

    d) The absorption column is fixed over a socket, so that the length of the column can be adjusted to meet the requirements of the experiment.

    Figure 1 depicts the main features of the modified wetted wall column. The column consists of a stainless steel tube inserted by a solid cylinder, forming a uniform annular gap of 1 mm. The outer surface of the tube is 108 mm in height and 25 mm in diameter. The tube is fixed on a socket, so that the column height can be varied between 20 and 200 mm.

    Figure 1 The modified wetted wall column 1—absorption column (SS 316); 2—porous metal tray (SS 316); 3—inner cylinder (Pyrex glass); 4—out cylinder(Pyrex glass); 5—threaded rod (carbon steel); 6—top flange (SS 316); 7—bottom flange (SS 316); 8—resistance socket (SS 316); 9—steadier (SS 316)

    The gas-liquid contact region is enclosed by a 59 mm ID Pyrex glass tube, which is separated from the circulating water with the same temperature as absorption chamber. The outermost region of the column accommodates the circulating bath of water in an 84 mm OD Pyrex glass annulus. The glass permits the observation of liquid film during the experiment, which should be distributed uniformly and no surface rippling occurs. Two stainless steel flanges, the upper one in 16 mm thickness and 150 mm diameter and the bottom one in 58 mm thickness and 150 mm diameter, and Teflon O-rings provide the seal on both ends of the absorption chamber. The top flange is pressed on the glass cylinders by means of four equally spaced bolts with 14 mm diameter attached to the bottom flange.

    The solution passes through the annular gap inside of the column, and overflows on the outer surface of the column (see Fig. 1). The liquid flows as a uniform liquid film on the surface and is collected by the annular draining tunnel at the bottom of the column. The liquid level in the draining tunnel is maintained by controlling the discharge velocity. The gas enters the absorption chamber through an annular porous metal tray with aperture of 20mm, and contacts the liquid counter-currently.

    2.2 Experimental procedure

    As shown in Fig. 2, the MDEA solution was from the overhead tank, through the rotameter and into a coil submerged in a thermostat. After heated, the chemical solvent entered the absorption column. Having contacted with the gas stream, the solvent was sampled for analysis and then discharged to a liquid saver for recovery at the bottom of the column. The CO2loading of the amine solution was determined by standard titration and conversion methods.

    The gas from the cylinder passed the gas rotameter through a surge flask to ensure a stable gas flow. Then the gas was saturated with water by bubbling through the water in the heating tank. After absorption, the gas flowed up to the gas outlet and its flow rate was measured by a soap-film meter. The absorption rate of CO2was determined from the product of the liquid flow rate and the difference in CO2flow rate at the inlet and outlet.

    All experiments were carried out under atmospheric pressure and with pure CO2. The temperature was maintained constant to within±0.2K. The MDEA was a commercial product from Jiangsu province, China, with a purity of 99.2% (by mass). The aqueous solutions of MDEA were prepared by distilled-deionized water and the concentration of MDEA was determined by titration with HCl.

    Figure 2 Experimental setup

    3 THEORY

    3.1 Equilibrium reaction of CO2 in aqueous MDEA solutions

    When CO2is absorbed into an aqueous solution of MDEA (R3N), several equilibrium reactions occur in the solution, which are as follows:

    MDEA is easily protonized and the corresponding reaction in the solution is expressed by Eq. (2).

    3.2 Reaction mechanism

    Among the reactions, Eq. (5) is the rate-limiting step, which is independent of and in parallel with the main reaction that follows the zwitterion mechanism,

    Combining Eqs. (8) and (9), we have Eq. (1).

    3.3 Modeling of CO2 absorption in aqueous MDEA solutions

    Among the six reactions (1)-(6), reactions (1), (3) and (5) have influence on the absorption of carbon dioxide. However, it is well known that the rate of reaction (3) is very slow and may usually be neglected.

    For the absorption of CO2in MDEA aqueous solutions, the overall reaction rate of CO2can be expressed in term of reversible reactions and we have the generally accepted expression:

    The reaction rate for a reverse reaction can be evaluated by considering the equilibrium condition and the net forward rate of reaction can be deduced from Eq. (10).

    The overall reaction rate constantovhas the following expression

    The apparent reaction rate constantappis defined as

    The partial differential equation describing the diffusion of CO2into a liquid film accompanied by a pseudo-first-order reversible chemical reaction is

    The solution to Eq. (16) is

    Using Laplace inverse transform with shifting theorem and replacing the variables to Eq. (17), we obtain an analytical expression for the concentration distribution of carbon dioxide as a function of time and penetration depth in liquid film.

    where erfc() is the excess error function. The interphase mass transfer rate is calculated from the first Fick law.

    where erf() is the error function. For the smooth liquid film with constant contact time on the wetted wall column, we can define the Higbie age distribution function of mass transfer in the liquid film as

    wherecis the contact time. It is well known from the hydrodynamics for wetted wall columns that

    With Eqs. (19) and (20), we have the expression for the average interphase mass transfer rate

    To obtain the value ofov, we have to solve Eq. (22) using dichotomy, in which the parameters are acquired from experimental data, physical and chemical properties, and the solution of equilibrium equations.

    3.4 Equilibrium model for bulk liquid

    In order to solve Eqs. (11), (12), (13) and (22), the equilibrium concentrations of all chemical species, namely, the bulk concentrations, are needed, which can be obtained from the initial concentration of MDEA, the CO2loading of the aqueous MDEA solution and the assumption that all reactions are at equilibrium.

    The overall balance for MDEA is

    The charge balance is

    In the reaction scheme (2)-(6), four equilibrium constants,2,3,4and6, are independent. The other can be obtained by an appropriate combination of these independent equilibrium constants. The equilibrium constants of reaction (2)-(4) and (6) are as follows,

    For convenience, the concentrations of chemical species are renamed as follows:

    An implicit function for7was obtained by solving Eqs. (23)-(29),

    3.5 Properties

    In order to interpret the kinetic model and obtain the reaction rate constants, the densities and viscosities of the MDEA solution, Henry’s constants and diffusion coefficient of CO2in the aqueous MDEA solution are needed. These properties are well known and have been determined [6, 15-19], as presented in Table 1.

    Table 1 Physical properties of CO2/MDEA system

    Table 2 Equilibrium data calculated using dichotomy

    4 Results and discussion

    All the experiments were conducted in the mass concentration range from 10% to 30% MDEA without the initial CO2loading, at 300 (room temperature), 303, 308 and 313 K under atmospheric pressure.

    4.1 Liquid film thickness on column surface

    Overflowing is an effective way to distribute the liquid uniformly on the surface of column. Furthermore, as shown in Fig. 3, the column surface was polished to avoid channeling and crossing streams.

    Figure 3 Absorbing column without (left) and with (right) liquid film

    With the correlation for experimental data, the average liquid film thickness is calculated by

    In addition, the average liquid film thickness can be calculated theoretically as follows.

    The values of the average film thickness calculated by Eqs. (32) and (33) are listed in Table 3, with an average relative deviation of 4.6%. The results indicate that the MDEA solution is uniformly distributed on the column surface and these values can be used for further correlation. Moreover, the interfacial area can be calculated with the mean liquid film thickness and the kinetic data can be obtained more accurately.

    Table 3 Experimental data for the absorption of CO2 in initially unloaded aqueous solutions of MDEA

    Table 4 The reaction rate constants and liquid film mass transfer coefficient

    4.2 Liquid film mass transfer coefficient

    where the subscript 0 indicates condition in the bulk.

    Figure 4 Comparison of liquid-phase mass transfer coefficient between calculated and experimental data

    4.3 CO2 absorption in aqueous MDEA solutions

    Figure 5 Concentration profile of CO2as a function of time and penetration depth in liquid film for absorption of CO2in 10% MDEA solution at 300 K

    A comparison of the second-order rate constant2,MDEAfrom this study with the literature values is shown in Fig. 6, indicating that the apparatus and model developed in this work can be used to obtain2,MDEA. The temperature dependence of the rate constants is fitted by the Arrhenius equation

    whereis in K, and2,MDEAis in m3·kmol-1·s-1. The activation energy determined from Eq. (36) is 43.15 kJ·mol-1, which can be compared with the reported values of 71.5 kJ·mol-1[2], 42.4 kJ·mol-1[1], 42.7 kJ·mol-1[3], 48.0 kJ·mol-1[4], 47.9 kJ·mol-1[5], 38.07 kJ·mol-1[6], 45.4 kJ·mol-1[7], 44.9 kJ·mol-1[8], and 48.2 kJ·mol-1[9].

    5 Conclusions

    A mathematical model based on the equilibrium of fast reversible reactions is developed. The calculated kinetic parameters are in good agreement with literature values, so that the model is satisfactory to represent CO2absorption rates. The modified experimental apparatus and the mathematical method provide a useful template to our further studies on the absorption with fast reactions.

    NOMENCLATURE

    diffusivity of a gas in liquid, m2·s-1

    gravitational constant, m·s-2

    solubility of gas in solution, kPa·m3·kmol-1

    height of absorbing column measured from the top, m

    equilibrium constant

    appapparent reaction rate constant, s-1

    ovoverall pseudo first order reaction rate constant, s-1

    2,MDEAsecond-order reaction rate constant, m3·kmol-1·s-1

    total length of absorbing column, m

    dliquid film thickness, m

    volumetric flow rate of liquid, m3·s-1

    radius of tube, m

    reaction rate, kmol·m-3·s-1

    LSherwood number

    temperature, K

    ccontact time, s

    mliquid flow rate, kg·m-1

    loading of CO2in amine, kmol·kmol-1

    viscosity, Pa·s

    density, kg·m-3

    Superscripts

    0 pure carbon dioxide-water system

    Subscripts

    eq equilibrium state

    exp experimental value

    L liquid phase

    mod model calculation value

    1 Versteeg, G.F., van Swaaij, W.P.M., “On the kinetics between CO2and alkanolamines both in aqueous and non-aqueous solutions-II. Tertiary amines”,..., 43 (3), 587-591 (1988).

    2 Haimour, N., Bidarian, A., Sandall, O.C., “Kinetics of the reaction between carbon dioxide and methyldiethanolamine”,..., 42 (6), 1393-1398 (1987).

    3 Tomcej, R., Otto, F., “Absorption of CO2and N2O into aqueous solutions of methyldiethanolamine”,., 35 (5), 861-864 (1989).

    4 Littel, R.J., van Swaaij, W.P.M., Versteeg, G.F., “Kinetics of carbon dioxide with tertiary amines in aqueous solution”,., 36 (11), 1633-1640 (1990).

    5 Rangwala, H.A., Morrell, B.R., Mather, A.E., Otto, F.D., “Absorption of CO2into aqueous tertiary amine/MEA solutions”,...., 70 (3), 482-490 (1992).

    6 Rinker, E.B., Ashour, S.S., Sandall, O.C., “Kinetics and modeling of carbon dioxide absorption into aqueous solutions of-methyldiethanolamine”,..., 50 (5), 755-768 (1995).

    7 Pani, F., Gaunand, A., Cadours, R., Bouallou, C., Richon, D., “Kinetics of absorption of CO2in concentrated aqueous methyldiethanolamine solutions in the range 296 K to 343 K”,..., 42 (2), 353-359 (1997).

    8 Ko, J.J., Li, M.H., “Kinetics of absorption of carbon dioxide into solutions of-methyldiethanolamine+water”,..., 55, 4139-4147 (2000).

    9 Jamal, A., Meisen, A., Lim, C.J., “Kinetics of carbon dioxide absorption and desorption in aqueous alkanolamine solutions using a novel hemispherical contactor—II. Experimental results and parameter estimation”,..., 61, 6590-6603 (2006).

    10 Blanc, C., Demarais, G., “Reaction rate of CO2with diethanolamine”,..., 24, 43-52 (1984).

    11 Saha, A.K., Bandyopadhyay, S.S., Biswas A.K., “Kinetics of absorption of CO2into aqueous solutions of 2-amino-2-methyl-1-propanol”,..., 50 (22), 3587-3598 (1995).

    12 Mandal, B., Bandyopadhyay, S.S., “Simultaneous absorption of CO2and H2S into aqueous blends of-methyldiethanolamine and diethanolamine”,..., 40, 6076-6084 (2006).

    13 Donaldson, T.L., Nguyen, Y.N., “Carbon dioxide reaction kinetics and transport in aqueous amine membranes”,...., 19, 260-266 (1980).

    14 Yu, W.C., Astarita, G., Savage, D.W., “Kinetics of carbon dioxide absorption in solutions of methyldiethanolamine”,..., 40, 1585-1590 (1985).

    15 Haimour, N., Sandall, O.C., “Absorption of carbon dioxide into aqueous methyldiethanolamine”,..., 39 (12), 1791-1796 (1984).

    16 Versteeg, G.F., van Swaaij, W.P.M., “Solubility and diffusivity of acid gases (CO2, N2O) in aqueous alkanolamine solutions”,..., 33 (1), 29-34 (1988).

    17 Al-Ghawas, H.A., Hagewiesche, D.P., Ruiz-Ibanez, G., Sandall, O.C., “Physicochemical properties important for carbon dioxide absorption in aqueous methyldiethanolamine”,..., 34 (4), 385-391 (1989).

    18 Xu, S., Otto, F.D., Mather, A.E., “Physical properties of aqueous AMP solutions”,..., 36 (1), 71-75 (1991).

    19 Saha, A.K., Bandyopadhyay, S.S. and Biswas, A.K., “Solubility and diffusivity of N2O and CO2in aqueous solutions of 2-amino-2- methyl-1-propanol”,..., 38 (1), 78-82 (1993).

    20 Zhang, X., Zhang, C.F., Liu, Y., “Kinetics of absorption of CO2into aqueous solution of MDEA blended with DEA”,...., 41, 1135-1141 (2002).

    2008-12-10,

    2009-04-17.

    China Petroleum & Chemical Corporation (105044).

    ** To whom correspondence should be addressed. E-mail: guok@mail.buct.edu.cn

    国产成人av教育| 又黄又爽又免费观看的视频| 国产精品综合久久久久久久免费 | 国产激情久久老熟女| 看片在线看免费视频| 变态另类成人亚洲欧美熟女 | 日韩欧美国产一区二区入口| 99国产精品免费福利视频| 亚洲一区二区三区欧美精品| 欧美中文综合在线视频| 一级a爱视频在线免费观看| 午夜福利视频在线观看免费| 免费观看人在逋| 99久久国产精品久久久| 搡老熟女国产l中国老女人| 国产精品综合久久久久久久免费 | 少妇粗大呻吟视频| 久久久久久久午夜电影 | 看免费av毛片| 大型黄色视频在线免费观看| 女性生殖器流出的白浆| 日韩一卡2卡3卡4卡2021年| 亚洲精品久久午夜乱码| 亚洲国产欧美日韩在线播放| 国产一区二区激情短视频| 久久午夜亚洲精品久久| 欧美最黄视频在线播放免费 | 午夜精品国产一区二区电影| 欧美老熟妇乱子伦牲交| 欧美激情 高清一区二区三区| 久久久久久免费高清国产稀缺| 久久性视频一级片| 亚洲精品自拍成人| 日韩 欧美 亚洲 中文字幕| 久久人人97超碰香蕉20202| 亚洲成人国产一区在线观看| 人人妻人人爽人人添夜夜欢视频| 18禁裸乳无遮挡免费网站照片 | 性少妇av在线| 午夜91福利影院| 一进一出抽搐gif免费好疼 | 久久午夜亚洲精品久久| 午夜免费鲁丝| 亚洲 国产 在线| 国产精品免费一区二区三区在线 | 国产亚洲精品一区二区www | 中文字幕最新亚洲高清| 变态另类成人亚洲欧美熟女 | 精品人妻1区二区| 岛国毛片在线播放| 黄色片一级片一级黄色片| 黄色丝袜av网址大全| 又黄又爽又免费观看的视频| 国产精品99久久99久久久不卡| 美女午夜性视频免费| 欧美乱色亚洲激情| 国产精品秋霞免费鲁丝片| 91av网站免费观看| 80岁老熟妇乱子伦牲交| 成年人午夜在线观看视频| 777米奇影视久久| 国产一区二区激情短视频| 国产av精品麻豆| 国产欧美日韩一区二区三| 亚洲av第一区精品v没综合| 亚洲欧美激情综合另类| 日韩免费高清中文字幕av| 国产深夜福利视频在线观看| 国产伦人伦偷精品视频| 人人妻人人澡人人看| 一级毛片精品| av线在线观看网站| 欧美日韩乱码在线| 国产精品免费大片| 一边摸一边做爽爽视频免费| 男女床上黄色一级片免费看| 欧美日韩一级在线毛片| 黄色毛片三级朝国网站| av中文乱码字幕在线| 国产一区二区三区在线臀色熟女 | 成人国语在线视频| 国产亚洲精品一区二区www | 脱女人内裤的视频| 纯流量卡能插随身wifi吗| 日本精品一区二区三区蜜桃| 在线观看免费午夜福利视频| 王馨瑶露胸无遮挡在线观看| 精品久久久久久,| 国产精品av久久久久免费| 很黄的视频免费| 一区二区三区国产精品乱码| 欧美 日韩 精品 国产| 19禁男女啪啪无遮挡网站| 免费观看a级毛片全部| 怎么达到女性高潮| av中文乱码字幕在线| 国产精品av久久久久免费| 亚洲一区高清亚洲精品| 一二三四在线观看免费中文在| 精品一品国产午夜福利视频| 欧美亚洲 丝袜 人妻 在线| 久久ye,这里只有精品| 黑人巨大精品欧美一区二区mp4| 精品一品国产午夜福利视频| 在线观看免费日韩欧美大片| 免费在线观看日本一区| 丝瓜视频免费看黄片| 成在线人永久免费视频| 中出人妻视频一区二区| 午夜两性在线视频| 99在线人妻在线中文字幕 | 国产精品98久久久久久宅男小说| 99久久综合精品五月天人人| 丰满人妻熟妇乱又伦精品不卡| 国产主播在线观看一区二区| 国产亚洲一区二区精品| 亚洲国产欧美网| 在线国产一区二区在线| www.熟女人妻精品国产| 国产成人欧美| 国产aⅴ精品一区二区三区波| 国产高清国产精品国产三级| av网站在线播放免费| 操美女的视频在线观看| 免费在线观看亚洲国产| 色婷婷av一区二区三区视频| 国产欧美日韩一区二区精品| 亚洲五月婷婷丁香| 99国产精品一区二区蜜桃av | 欧美久久黑人一区二区| 久久久久久免费高清国产稀缺| 国产精品二区激情视频| x7x7x7水蜜桃| 亚洲精品一卡2卡三卡4卡5卡| 黄色女人牲交| 久99久视频精品免费| 精品高清国产在线一区| 天天影视国产精品| 十八禁人妻一区二区| 黑人欧美特级aaaaaa片| 自线自在国产av| 国产精品一区二区在线观看99| 十分钟在线观看高清视频www| 老司机亚洲免费影院| avwww免费| 久久精品91无色码中文字幕| 一级毛片精品| 免费少妇av软件| 高清黄色对白视频在线免费看| 亚洲国产中文字幕在线视频| 欧美亚洲日本最大视频资源| 日韩视频一区二区在线观看| 热99国产精品久久久久久7| 91精品国产国语对白视频| 国产视频一区二区在线看| 校园春色视频在线观看| 亚洲熟女毛片儿| 久久中文看片网| 午夜精品在线福利| 美国免费a级毛片| 欧美精品高潮呻吟av久久| 18禁美女被吸乳视频| 日本vs欧美在线观看视频| 亚洲午夜理论影院| 国产不卡一卡二| 黄片大片在线免费观看| 丁香六月欧美| 久久狼人影院| 两性夫妻黄色片| av国产精品久久久久影院| 婷婷成人精品国产| 国内毛片毛片毛片毛片毛片| 黑人猛操日本美女一级片| 日韩中文字幕欧美一区二区| 精品免费久久久久久久清纯 | 日韩精品免费视频一区二区三区| 亚洲色图 男人天堂 中文字幕| 99国产精品99久久久久| 精品国产一区二区三区四区第35| tocl精华| 在线十欧美十亚洲十日本专区| 丰满的人妻完整版| e午夜精品久久久久久久| 成年版毛片免费区| av有码第一页| 国产高清videossex| 热re99久久精品国产66热6| 午夜福利在线免费观看网站| 国产成人av教育| 男女高潮啪啪啪动态图| 欧美性长视频在线观看| 99久久人妻综合| 在线永久观看黄色视频| 国产精品影院久久| 午夜视频精品福利| 色在线成人网| 日韩欧美国产一区二区入口| 国产xxxxx性猛交| 久热这里只有精品99| 他把我摸到了高潮在线观看| 日韩欧美一区视频在线观看| 99精品欧美一区二区三区四区| 捣出白浆h1v1| 久久久国产精品麻豆| 啪啪无遮挡十八禁网站| 丝袜人妻中文字幕| bbb黄色大片| 日日夜夜操网爽| 国产精品亚洲一级av第二区| 免费少妇av软件| 精品国产一区二区三区四区第35| 国内久久婷婷六月综合欲色啪| 自拍欧美九色日韩亚洲蝌蚪91| 久久中文看片网| 国产精品 国内视频| 欧美精品av麻豆av| 激情在线观看视频在线高清 | a在线观看视频网站| 18禁裸乳无遮挡动漫免费视频| 免费不卡黄色视频| 啦啦啦在线免费观看视频4| 国产精品免费视频内射| 亚洲美女黄片视频| 美女高潮到喷水免费观看| 成人手机av| 亚洲情色 制服丝袜| 在线十欧美十亚洲十日本专区| 精品亚洲成国产av| 欧美激情极品国产一区二区三区| 1024视频免费在线观看| 丰满人妻熟妇乱又伦精品不卡| av国产精品久久久久影院| 麻豆成人av在线观看| 涩涩av久久男人的天堂| 国产成人系列免费观看| 日韩欧美免费精品| 日韩人妻精品一区2区三区| 黄色丝袜av网址大全| 欧美乱码精品一区二区三区| 欧美精品亚洲一区二区| 一级黄色大片毛片| 亚洲三区欧美一区| 婷婷精品国产亚洲av在线 | 很黄的视频免费| 亚洲avbb在线观看| 人人澡人人妻人| 久久 成人 亚洲| 热99国产精品久久久久久7| 久久国产精品影院| 三上悠亚av全集在线观看| 午夜免费成人在线视频| www.999成人在线观看| 欧美精品人与动牲交sv欧美| 精品欧美一区二区三区在线| 亚洲中文日韩欧美视频| 久久国产精品男人的天堂亚洲| 两性夫妻黄色片| 日韩免费高清中文字幕av| 亚洲,欧美精品.| 女人精品久久久久毛片| 亚洲精品中文字幕在线视频| 国产三级黄色录像| 老司机午夜十八禁免费视频| 九色亚洲精品在线播放| 久久久精品免费免费高清| 欧美日韩视频精品一区| 成年版毛片免费区| 久久中文字幕人妻熟女| 窝窝影院91人妻| 国产一区二区三区在线臀色熟女 | 99国产精品一区二区三区| 啦啦啦 在线观看视频| 亚洲国产中文字幕在线视频| 亚洲美女黄片视频| 女警被强在线播放| 一级黄色大片毛片| 男女免费视频国产| 一级毛片精品| 99热只有精品国产| 美女扒开内裤让男人捅视频| 午夜影院日韩av| 久久午夜亚洲精品久久| 亚洲成人免费电影在线观看| 日韩人妻精品一区2区三区| 国产亚洲精品一区二区www | 手机成人av网站| 女人久久www免费人成看片| svipshipincom国产片| 日韩制服丝袜自拍偷拍| 麻豆国产av国片精品| 色综合婷婷激情| 丰满的人妻完整版| 熟女少妇亚洲综合色aaa.| 老熟妇仑乱视频hdxx| 免费人成视频x8x8入口观看| 91九色精品人成在线观看| 久久精品国产清高在天天线| 久久精品国产99精品国产亚洲性色 | 午夜福利,免费看| 亚洲精品乱久久久久久| 91字幕亚洲| 亚洲人成电影观看| 国产精品久久久久成人av| 亚洲熟妇中文字幕五十中出 | 亚洲精品一卡2卡三卡4卡5卡| 国产男女超爽视频在线观看| 免费观看精品视频网站| 天堂动漫精品| 最新美女视频免费是黄的| 丁香欧美五月| 十分钟在线观看高清视频www| 国产高清视频在线播放一区| 国产精品成人在线| 建设人人有责人人尽责人人享有的| 在线看a的网站| 一区二区三区国产精品乱码| 五月开心婷婷网| 黑人欧美特级aaaaaa片| 久久中文看片网| 欧美中文综合在线视频| 国产xxxxx性猛交| x7x7x7水蜜桃| 好男人电影高清在线观看| 亚洲五月婷婷丁香| 亚洲精品成人av观看孕妇| 18禁美女被吸乳视频| 真人做人爱边吃奶动态| 日本精品一区二区三区蜜桃| 成人18禁高潮啪啪吃奶动态图| 欧美av亚洲av综合av国产av| 国产亚洲欧美98| 国产精品综合久久久久久久免费 | 黑人巨大精品欧美一区二区蜜桃| 久久人妻熟女aⅴ| 真人做人爱边吃奶动态| 日韩精品免费视频一区二区三区| 国产av又大| 一级a爱视频在线免费观看| 丝袜美腿诱惑在线| 成人永久免费在线观看视频| 亚洲av第一区精品v没综合| 黑人操中国人逼视频| 亚洲精品国产精品久久久不卡| 国产片内射在线| 久久精品熟女亚洲av麻豆精品| e午夜精品久久久久久久| 男人舔女人的私密视频| 青草久久国产| 身体一侧抽搐| 亚洲熟女精品中文字幕| 中文亚洲av片在线观看爽 | 黄网站色视频无遮挡免费观看| 老鸭窝网址在线观看| 色老头精品视频在线观看| 亚洲国产精品一区二区三区在线| 女性被躁到高潮视频| 国产精品一区二区在线观看99| 99国产精品99久久久久| 91成年电影在线观看| 久久国产精品人妻蜜桃| 高清视频免费观看一区二区| 亚洲 欧美一区二区三区| 黄片小视频在线播放| 校园春色视频在线观看| 丰满的人妻完整版| 国产aⅴ精品一区二区三区波| 日韩欧美一区二区三区在线观看 | 在线观看一区二区三区激情| 首页视频小说图片口味搜索| 国产亚洲精品第一综合不卡| 欧美黄色淫秽网站| 搡老岳熟女国产| 18禁裸乳无遮挡动漫免费视频| videos熟女内射| 热99re8久久精品国产| 欧美 日韩 精品 国产| av福利片在线| 韩国精品一区二区三区| 亚洲成a人片在线一区二区| 91成人精品电影| 久久这里只有精品19| 国产无遮挡羞羞视频在线观看| 亚洲精华国产精华精| 亚洲午夜精品一区,二区,三区| 免费人成视频x8x8入口观看| 久热爱精品视频在线9| 国产精品久久久久久人妻精品电影| 色婷婷久久久亚洲欧美| 久久久久久久久久久久大奶| 女同久久另类99精品国产91| 亚洲色图 男人天堂 中文字幕| 精品一区二区三区视频在线观看免费 | 捣出白浆h1v1| av天堂久久9| a级片在线免费高清观看视频| 国内久久婷婷六月综合欲色啪| av视频免费观看在线观看| 国产人伦9x9x在线观看| 久久中文看片网| xxx96com| 女人久久www免费人成看片| 在线观看免费高清a一片| 啦啦啦 在线观看视频| 一级毛片精品| 国产有黄有色有爽视频| 757午夜福利合集在线观看| 久久99一区二区三区| 亚洲欧美一区二区三区久久| 性色av乱码一区二区三区2| av不卡在线播放| 免费女性裸体啪啪无遮挡网站| 757午夜福利合集在线观看| 99国产精品一区二区蜜桃av | 别揉我奶头~嗯~啊~动态视频| 成人av一区二区三区在线看| 日本wwww免费看| av线在线观看网站| 精品欧美一区二区三区在线| 另类亚洲欧美激情| 精品一区二区三区av网在线观看| 久久精品人人爽人人爽视色| 国产成人精品久久二区二区免费| 香蕉丝袜av| 丁香六月欧美| 国产伦人伦偷精品视频| 变态另类成人亚洲欧美熟女 | 国产精品久久视频播放| 999精品在线视频| 99久久国产精品久久久| 国产精品久久久av美女十八| 国产精品免费大片| 欧美黑人欧美精品刺激| 99国产精品99久久久久| 亚洲七黄色美女视频| 黑人操中国人逼视频| 极品教师在线免费播放| 亚洲一区二区三区不卡视频| 狠狠狠狠99中文字幕| 97人妻天天添夜夜摸| 91国产中文字幕| 纯流量卡能插随身wifi吗| 国产高清激情床上av| 一边摸一边抽搐一进一出视频| 国内毛片毛片毛片毛片毛片| 在线十欧美十亚洲十日本专区| av超薄肉色丝袜交足视频| 欧美成人午夜精品| 免费在线观看黄色视频的| 成人国产一区最新在线观看| 热99re8久久精品国产| 精品久久久久久,| √禁漫天堂资源中文www| 精品乱码久久久久久99久播| 看片在线看免费视频| 免费观看人在逋| 亚洲午夜精品一区,二区,三区| 18在线观看网站| 国产一区二区三区视频了| x7x7x7水蜜桃| 亚洲片人在线观看| 国产在线精品亚洲第一网站| 他把我摸到了高潮在线观看| 黑人猛操日本美女一级片| 国产激情久久老熟女| 99国产精品99久久久久| 国产不卡一卡二| 午夜精品久久久久久毛片777| a级毛片黄视频| 国产精品一区二区在线观看99| 人人妻人人添人人爽欧美一区卜| 国产精品香港三级国产av潘金莲| 日本vs欧美在线观看视频| 三上悠亚av全集在线观看| 欧美乱妇无乱码| 精品少妇一区二区三区视频日本电影| 国产伦人伦偷精品视频| 午夜日韩欧美国产| 久久久久久久午夜电影 | 老司机福利观看| tube8黄色片| 无人区码免费观看不卡| 成人av一区二区三区在线看| 黄片大片在线免费观看| 国产精品99久久99久久久不卡| 亚洲国产精品一区二区三区在线| 香蕉久久夜色| 91精品三级在线观看| 国产在线精品亚洲第一网站| 色老头精品视频在线观看| 亚洲av欧美aⅴ国产| 水蜜桃什么品种好| 久9热在线精品视频| 久久久国产欧美日韩av| 久久人妻av系列| 精品久久久久久久毛片微露脸| 激情在线观看视频在线高清 | 久久久国产欧美日韩av| 最近最新中文字幕大全电影3 | 黄片播放在线免费| 国产成人精品在线电影| 亚洲欧美精品综合一区二区三区| 欧美色视频一区免费| 日韩成人在线观看一区二区三区| 国产精品一区二区在线不卡| 午夜福利在线免费观看网站| av免费在线观看网站| 99精品久久久久人妻精品| 国产一区有黄有色的免费视频| 最新美女视频免费是黄的| 90打野战视频偷拍视频| 老司机在亚洲福利影院| 精品熟女少妇八av免费久了| tube8黄色片| 亚洲情色 制服丝袜| 大陆偷拍与自拍| 老司机在亚洲福利影院| 国产欧美日韩综合在线一区二区| 国产不卡一卡二| 精品国内亚洲2022精品成人 | 美女福利国产在线| 欧美在线一区亚洲| 老熟妇仑乱视频hdxx| 成熟少妇高潮喷水视频| 亚洲精品美女久久av网站| 国产免费男女视频| 高清毛片免费观看视频网站 | 精品一品国产午夜福利视频| 亚洲精品av麻豆狂野| 91av网站免费观看| 久久久精品区二区三区| 狂野欧美激情性xxxx| 一本一本久久a久久精品综合妖精| 国产成人精品久久二区二区免费| 国产精品久久视频播放| 日韩制服丝袜自拍偷拍| 伦理电影免费视频| 免费高清在线观看日韩| 一边摸一边做爽爽视频免费| 最新在线观看一区二区三区| 欧美黄色片欧美黄色片| 午夜福利影视在线免费观看| 在线观看免费日韩欧美大片| 国产成人系列免费观看| xxxhd国产人妻xxx| 国产成人精品无人区| 丝袜在线中文字幕| 亚洲第一欧美日韩一区二区三区| 天堂√8在线中文| 免费在线观看视频国产中文字幕亚洲| 91国产中文字幕| tube8黄色片| 91老司机精品| 少妇裸体淫交视频免费看高清 | 午夜影院日韩av| 精品第一国产精品| 国产亚洲精品久久久久5区| 亚洲熟女毛片儿| 久久久久久亚洲精品国产蜜桃av| 91麻豆精品激情在线观看国产 | 免费黄频网站在线观看国产| 91老司机精品| 满18在线观看网站| 女人被躁到高潮嗷嗷叫费观| 午夜久久久在线观看| 视频区欧美日本亚洲| 女同久久另类99精品国产91| 亚洲免费av在线视频| 亚洲,欧美精品.| 高清欧美精品videossex| 国产精华一区二区三区| 亚洲欧美色中文字幕在线| 99精品在免费线老司机午夜| 久久久久久久久久久久大奶| 婷婷精品国产亚洲av在线 | 亚洲精品自拍成人| 极品少妇高潮喷水抽搐| 午夜免费鲁丝| 亚洲av欧美aⅴ国产| 国产在线一区二区三区精| 制服人妻中文乱码| 日本黄色日本黄色录像| 精品福利观看| 国产区一区二久久| 十八禁网站免费在线| 97人妻天天添夜夜摸| 久久这里只有精品19| 在线观看免费视频网站a站| 在线观看免费高清a一片| 在线观看午夜福利视频| 精品久久久久久,| √禁漫天堂资源中文www| 精品亚洲成国产av| 国产人伦9x9x在线观看| 久久中文字幕人妻熟女| 十八禁网站免费在线| 欧美日韩国产mv在线观看视频| 这个男人来自地球电影免费观看| 久久国产乱子伦精品免费另类| av国产精品久久久久影院| 色精品久久人妻99蜜桃| 精品一区二区三区视频在线观看免费 | 精品福利永久在线观看| 乱人伦中国视频| 成人18禁高潮啪啪吃奶动态图| 在线看a的网站| 久久久久久人人人人人| 国产男女内射视频| 精品久久久久久久毛片微露脸| 亚洲三区欧美一区| 中出人妻视频一区二区| 男女床上黄色一级片免费看| 老司机亚洲免费影院| 99热国产这里只有精品6| 两个人免费观看高清视频| 香蕉久久夜色|