• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of A-type Zeolite on Methane Hydrate Formation*

    2009-05-15 03:01:22ZANGXiaoya臧小亞DUJianwei杜建偉LIANGDeqing梁德青FANShuanshi樊栓獅andTANGCuiping唐翠萍

    ZANG Xiaoya (臧小亞), DU Jianwei (杜建偉), LIANG Deqing (梁德青),**, FAN Shuanshi (樊栓獅) and TANG Cuiping (唐翠萍)

    ?

    Influence of A-type Zeolite on Methane Hydrate Formation*

    ZANG Xiaoya (臧小亞)1,2,3, DU Jianwei (杜建偉)1,2,3, LIANG Deqing (梁德青)1,2,3,**, FAN Shuanshi (樊栓獅)2and TANG Cuiping (唐翠萍)1,2,3

    1Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China2Guangzhou Center for Gas Hydrate Research, Chinese Academy of Sciences, Guangzhou 510640, China3Key Laboratory of Renewable Energy and Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China

    The porous medium has an important effect on hydrate formation. In this paper, the formation process and the gas storage capacity of the methane hydrate were investigated with A-type zeolite and Sodium Dodecyl Sulfate (SDS) existing in the system. The results show that A-type zeolite can influence methane hydrate formation. At the temperature of 273.5 K and pressure of 8.3 MPa, the distilled water with A-type zeolite can form methane hydrate with gaseous methane in 12 hours. The formation process of the system with A-type zeolite was quite steady and the amount of A-type zeolite can influence the gas storage capacity significantly. The adding of A-type zeolite with 0.067 g·(g water)-1into 2×10-3g·g-1SDS-water solution can increase the gas storage capacity, and the maximum increase rate was 31%. Simultaneously the promotion effect on hydrate formation of 3A-type zeolite is much more obvious than that of 5A-type zeolite when the water adding amounts are 0.033 g·g-1and 0.067 g·g-1at the experimental conditions.

    hydrate, formation, gas storage, A-type zeolite

    1 INTRODUCTION

    Gas hydrates (or clathrate hydrates) are ice-like nonstoichiometric compounds formed when light gases (such as methane, ethane,.) react with water at high pressures and/or low temperatures [1]. There are three main crystal structures I (SI), II (SII), and H (SH), which differ from each other in the cavity size and shape. At present, new technologies based on hydrates achieved significant developments not only in energy and environmental fields, but also in other practical topics [2-4], such as separation technologies. Because of the high gas storage concentration in theory, hydrates can also be used propitiously for carbon dioxide sequestration and storage or transportation of natural gas [5, 6]. Moreover, dissociation heat of clathrate hydrates is relative high, so it can be utilized for refrigeration applications in cold storage and air conditioning [7, 8].

    However, the utilization of hydrates in these domains are restricted because of some disadvantages, such as low gas storage density, low formation rate and long induction time of gas hydrate formation. To solve these problems, extensive works were carried out to promote hydrate formation, such as enhancing the hydrate formation rate through agitation, using the ultrasonic wave to make water atomization, increasing the atmospheric-water contacted area, and so on [9, 10]. Several researchers focused on adding suitable surfactant to promote hydrate formation recently. Zhong and Rogers [11] noticed that sodium dodecyl sulfate (SDS) can accelerate the formation rate of natural gas hydrate. Zhang. [12] found that various kinds of additives such as alkylpolyglucside and potassium oxalate monohydrate increased the formation rates of natural gas hydrate(NGH) and its storage capacity, and reduced the induction time of NGH formation. Karaaslan. [13] studied the effect of anionic surfactant sodium-alkyl benzene sulfonate on the formation rate of methane hydrate, and methane and propane mixture hydrate. The results indicted that the production rate increases along with increasing surfactant. Gnanendran and Amin [14] also found that some proper supplements are helpful in increasing the gas storage capacity.

    Porous medium have significant influence on hydrate formation rate, as they can reduce the chemical barrier which hydrate formation must overcome and promote hydrate formation [15, 16]. The A-type zeolite is a kind of porous medium. It has very widespread application in industry because of its special pores and the intensive polar adsorption function [17, 18]. Its tiny powder can provide large contact surfaces for hydrate nucleation. The effect of 3A-type zeolite on formation process of tetrahydrofuran(THF) hydrate has already been investigated [19], but the influence on methane hydrate formation and gas storage capacity has not been studied. Therefore, both the A-type zeolite and SDS were used as additives in this paper to investigate the effect of them on methane hydrate formation process and gas storage capacity.

    2 EXPERIMENTAL

    2.1 Experimental apparatus and materials

    The experiments were carried out in the batch reactor made of stainless steel with a total volume of 100 ml. Fig. 1 shows the sketch of the experimental apparatus used for methane hydrate formation. The pressure transducer was bought from Guangzhou Senex Instrument Ltd., the type is DG-1215 and the precision is 0.1MPa. The thermocouple was bought from Guangzhou Deligen Instrument Company Ltd., the type is WZPK-193 and the precision is ±0.1 K.

    Figure 1 Schematic drawing of the experimental apparatus

    1—gas cylinder; 2—pressure-regulating valve; 3—pressure gauge; 4—gas reservoir; 5—pressure gauge; 6—mass flow meter; 7—vacuum pump; 8—output system; 9—mechanical agitation unit; 10—pressure transducer; 11—thermocouple; 12—hydrate formation reactor; 13—magnetic stirring unit; 14—water bath

    The materials used are listed in Table 1.

    Table 1 List of experimental materials

    2.2 Experimental procedure

    Firstly, after the reactor cell was cleaned and dried, the SDS-water solution (or distilled water) and A-type zeolite were poured into the reactor cell with the mass concentration of the solution of 2×10-3g·g-1. After that, the cell was put into the water bath (the temperature was set at 273.5±0.5K) and connected with the gas pipeline. Then, the mechanical agitation (1000 r·min-1) and magnetic stirring (1300 r·min-1) were started up.

    When the water bath temperature was stable, gaseous methane was charged into the cell after the pipeline was vacuumed and the pressure was 8.4 MPa. During the whole hydrate formation process, the temperature and pressure were recorded by the data collection system.

    After the formation of methane hydrate was completed, the reactor cell was taken out from the water bath and the gaseous methane captured in hydrate was gathered by draining water to calculate the gas storage capacity.

    3 RESULTS AND DISCUSSION

    3.1 Influence of 3A-type zeolite on methane hydrate formation

    The hydrate formation process is an exothermic reaction and usually experiences three stages: induction stage, rapid reaction stage and ending stage. If large amount of hydrate formed in a short time, the heat can not be transferred in time, and the temperature of the system will rise suddenly. But as shown in Fig. 2, the temperatures of the systems of 3A-type zeolite do not rise obviously except for the first three hours of formation process.

    It is obviously shown in Fig. 2 that the temperatures raise when the high-pressure gaseous methane enters into the cool cell. The system temperatures rise after the gas intake process completed, which indicates that lots of methane hydrates form during this period. At the same time, the adding amount of 3A-type zeolite cannot influence significantly on temperature change in hydrate formation process. The temperatures with different quantities of 3A-type zeolite have similar change tendency and they overlap with each other. The gaseous methane can react completely with water to form methane hydrate over 12 hours under the experimental condition [20].

    Figure 2 Reaction temperature of the systems with 3A-type zeolite

    As shown in Fig. 2, the temperatures keep stable during the last 10 hours in formation process because of the special characteristic of 3A-type zeolite. 3A-type zeolite is one kind of crystal silicon aluminates with homogeneous aperture, polar adsorption function and extremely high specific surface area. The average aperture of 3A-type zeolite is 0.3 nm and water molecule can enter into interior. Therefore, the methane hydrate hydration process can occur separately on each tiny zeolite powder. 3A-type zeolite powders can provide the nucleus for the methane hydrate formation, reduce the nucleation randomicity and promote hydrate formation. Under the function of 3A-type zeolite, methane hydrate hydration process carries on slowly and the formation rate keeps constant basically. The reaction heat can be transferred in time, so the system temperature maintains stable.

    3.2 Influence of 5A-type zeolite on methane hydrate formation

    Figure 3 shows the temperature and pressure variation during methane hydrate formation process of 2 g 5A-type zeolite powder and 30ml distilled water system. The temperatures and pressures of the other systems with different amount of 5A-type zeolite are similar. It is evidently that the distilled water with the existence of 0.067 g·(g water)-15A-type zeolite powder is easy to react with gaseous methane under the experimental condition. Moreover, the reaction process is steady at preliminary formation stage, which is different with 3A-type zeolite system. After the reaction experiences 5 hours, system temperature has a small undulation and the duration is about 1 hour. This phenomenon indicates that the hydrate formation rate increases at this stage. Afterward, the temperature maintains constant until the reaction is finished. Because the reactor cell is connected with gas reservoir and its volume is much smaller than gas reservoir, the pressure in the reactor cell is equal to that in gas reservoir. The gaseous methane consumed in reaction is neglectable, so the pressure does not have much decrease during the whole reaction. It also can be seen from Fig. 3 that temperature does not vary obviously in the rest of the reaction process, which indicates that the hydration rate maintains constant.

    Figure 3 Reaction curve of the system with 5A-type zeolite

    ▲?pressure;△?temperature

    Figure 4 is the temperature and pressure curves during methane hydrate formation process of 30 ml SDS-water solution system. As shown in Fig. 4, the SDS-water solution is easy to react with gaseous methane in the preliminary methane hydrate formation stage. The pressure starts to decrease rapidly in 5 min after the gas intake process is completed, indicating that a large amount of methane hydrates is formed at this stage. 1 h later, the decrease range of pressure lessens and the pressure maintains stable till the end. And the temperature also keeps constant till the end.

    Figure 4 Reaction curve of the system with SDS-water solution

    ▼?pressure;▽?temperature

    The temperature and pressure curves during methane hydrate formation of 2 g 5A-type zeolite and 30 ml SDS-water solution system are shown in Fig. 5. In preliminary stage, the interior temperature rises during the period of compressed gas entering and then drop rapidly. This process lasts about 40 min and is similar to Fig. 4. This is because both 5A-type zeolite and SDS can promote the methane hydrate formation rate in preliminary stage. Methane hydrate forms quickly and the reaction heat accumulates in cell, leading to the temperature rising about 20 min. After that, the effect of 5A-type zeolite becomes weaken. Hydrate formation rate tends to be steady and the reaction heat can be taken away by water bath in time, and thus the temperature maintains constant simultaneously.

    Figure 5 Reaction curve of the system with 5A-type zeolite and SDS-water solution

    ▲?pressure;△?temperature

    3.3 Gas storage capacity variation

    The gas storage capacity of methane hydrate at experimental temperature and pressure are summarized in Tables 2-5.

    Table 2 Gas storage capacity of 5A-type zeolite and distilled water system

    Table 3 Gas storage capacity of 3A-type zeolite and distilled water system

    Table 4 Gas storage capacity of 5A-type zeolite and SDS-water system

    As shown in Tables 2 and 3, the adding of 3A-type and 5A-type zeolite can promote methane hydrate formation and the amount of zeolite powder can change the gas storage capacity significantly. The gas storage capacity of methane hydrate is 49 (volume ratio) when the adding amount of 3A-type zeolite powder is 0.033g·(g water)-1. When the quantity increases to 0.067 g·(g water)-1, the gas storage capacity enhances to 54 (volume ratio) correspondingly. But it starts to decrease when the quantity of 3A-type zeolite increases to 0.1 g·(g water)-1. These results indicate that 0.067 g·(g water)-1of 3A-type zeolite powder can promote methane hydrate formation effectively. The gas storage capacity of methane hydrate reaches maximum when 0.067 g·(g water)-1of 3A-type zeolite powder is added in the system.

    Table 5 Gas storage capacity of 3A-type zeolite and SDS-water system

    Tables 4 and 5 show the gas storage capacity of methane hydrate of A-type zeolite and 30 ml SDS-water solution system. Similar with Tables 3 and 4, the methane hydrate has maximum gas storage capacity when the adding amount of A-type zeolite is 0.067 g·(g water)-1. Under the experimental condition, the gas storage capacity of hydrate formed with 2×10-3g·g-1SDS-water solution and methane gas is 135 (volume ratio), and it starts to decrease when the 3A-type zeolite powder adding is 0.033 g·(g water)-1or 0.1 g·(g water)-1. But the existence of 0.067 g·(g water)-1or 0.1 g·(g water)-15A-type zeolite can increase the gas storage capacity obviously and the maximum increase rate is about 31%.

    These results indicate that the quantity of A-type zeolite powder has significant influence on gas storage capacity of methane hydrate in 2×10-3g·g-1SDS-water solution system, and there is an optimize adding amount of A-type zeolite which can maximize the gas storage capacity. The reasons are probably that the porous cage structure of A-type zeolite adsorbs much water and changes the SDS-water solution concentration. A-type zeolite loses activity and it cannot adsorb methane gas molecule anymore, and then the adsorption effect of A-type zeolite is greatly weakened. In addition, 3A-type zeolite is the Kalium A type zeolite and 5A-type zeolite is the Calcium A type zeolite. Both K+and Ca2+can dissolve into the water, form an electrolyte solution and change the electric and magnetic environment of the SDS-water solution. Both of the two reasons play an important role in promoting the gas storage capacity of methane hydrate when the A-type zeolite quantity is 0.067 g·(g water)-1, so that the gas storage capacity increases compared to SDS-water system. But the gas storage capacity will drop if the quantity is not suitable.

    Generally speaking, the gas storage capacity of the methane hydrate formed in 3A-type zeolite system is higher than that formed in 5A-type zeolite system with the same condition.

    3.4 Mechanism analysis about the influence of 3A and 5A type zeolites

    Methane hydrate formation process is extremely stable with the existence of 3A-type zeolite, and the temperature in the cell has not change apparently in the formation process except for the preliminary stage. These results indicate that the methane hydrate formation rate keeps constant.

    On the other hand, the adding of A-type zeolite can promote methane hydrate formation. It also can cause the distilled water to react with methane gas to form hydrate. Simultaneously optimum amount of A-type zeolite and SDS together can promote hydrate formation significantly, but improper quantity of A-type zeolite may play negative roles in hydrate formation process.

    The reason can be analyzed from below aspects. The inner pore size of 3A and 5A type zeolites are 0.3 nm and 0.5 nm, and the molecule dynamic diameters of methane and water are approximately 0.436 nm and 0.29 nm, respectively. Both 3A and 5A type zeolites can adsorb water molecule, but only 5A type zeolite can adsorb methane molecule under the experimental condition. These are the difference between 3A and 5A type zeolites in promotion effect on methane hydrate formation. 3A type zeolite can adsorb the water molecule to provide nucleation grain, reduce the formation randomicity and change the electric and magnetic environment of the SDS-water solution. Its pores cage can supply third contact surface between water and methane molecular, reduce the surface energy and chemistry potential barrier which the formation must overcome. Thus, it has positive effect on the hydrate formation. In other words, 3A-type zeolite plays a role as the reaction intermedium in promoting hydrate formation. Simultaneously, 3A-type zeolite disperses in all of the solution and the solution is isotropic, and the formation rate mostly depends on the rate of gas solubility in water. The methane gas molecules dissolve in water and react with water slowly and orderly at the function of 3A-type zeolite. This is why there is no obvious temperature and pressure variation in hydrate formation process of 3A-type zeolite.

    But the existence of 5A-type zeolite can change the solution characteristic and adsorb the methane gas molecule. These are the reasons why the temperature rises in gas intake preliminary stage in Fig. 5. At the gas intake preliminary stage, 5A-type zeolite adsorbs many methane molecule and SDS-water solution. It plays a key role on methane hydrate formation rate because of its dual polar adsorption effect, leading to an increase in the methane hydrate formation rate and the interior temperature. When large numbers of 5A-type zeolite pores are occupied by the methane molecule, the 5A-type zeolite starts to lose activity. Therefore, the promotion effect of 5A-type zeolite on methane hydrate formation becomes weak, and the methane hydrate formation rate slows down and tends to be stable.

    In conclusion, the porous medium characteristic and the pore size are the crucial effects on hydrate formation. The polar adsorption ability of A-type zeolite also makes the formation easier because it can reduce the surface energy and chemistry potential barrier which the hydrate formation must overcome. Therefore, the gas storage capacity of 3A-type zeolite system is higher than that of 5A-type zeolite under the same condition in generally.

    4 CONCLUSIONS

    The results from this study show that the existence of A-type zeolite can promote methane hydrate formation and enable pure distilled water to react with gaseous methane to form hydrate when the temperature is 273.5 K and the pressure is 8.3 MPa. Methane hydrate formation process of the water with 3A-type zeolite is stable with both the temperature and pressure having no significant change.

    The promotion effect of 3A-type zeolite on hydrate formation is much more significant than 5A-type zeolite when the water adding quantity is 0.033 g·g-1or 0.067 g·g-1. The amount of A-type zeolite can influence the gas storage capacity of methane hydrate obviously. The methane hydrate has maximum gas storage capacity when the adding amount of A-type zeolite powder is 0.067 g·(g water)-1in all of the experiments with the maximum increase of about 31%.

    1 Sloan, E.D., Clathrate Hydrates of Natural Gases, 2nd ed., Marcel Dekker, New York (1997).

    2 Fan, S.S., Storage and Transport Technology of Natural Gas Hydrate, Chemical Industry Press, Beijing (2005).

    3 Chatti, I., Delahaye, A., Fournaison, L., Petitet, J.P., “Benefits and drawbacks of clathrate hydrates: A review of their areas of interest”,.., 46 (9/10), 1333-1343 (2005).

    4 Luo, Y.T., Zhu, J.H., Chen, G.J., “Numerical simulation of separating gas mixtureshydrate formation in bubble column”,...., 15 (3), 345-352 (2007).

    5 Yang, H.Q., Xu, Z.H., Fan, M.H., Gupta, R., Slimane, R.B., Bland, A.E., Wright, I., “Progress in carbon dioxide separation and capture: A review”,.., 20 (1), 14-27 (2008).

    6 Loveday, J.S., Nelmes, R.J., “High-pressure gas hydrates”,...., 10, 937-950 (2008).

    7 Rogers, R.E., Yevi, G., Swalm, M., “Hydrates for storage of natural gas”, In: Second International Conference on Natural Gas Hydrate, Toulouse, 423-429 (1996).

    8 Isobe, F., Mori, Y.H., “Formation of gas hydrate or ice by direct-contact evaporation of CFC alternatives”,..., 15 (2), 137-142 (1992).

    9 Ribeiro, C.P., Lage, P.L.C., “Modelling of hydrate formation kinetics: State-of-the-art and future directions”,..., 63 (8), 2007-2034 (2008).

    10 Guo, T.M., Wu, B.H., Zhu, Y.H., Fan, S.S., Chen, G.J., “A review on the gas hydrate research in China”,...., 41, 11-20 (2004).

    11 Zhong, Y., Rogers, R.E., “Surfactant effects on gas hydrate formation”,..., 55, 4175-4187 (2000).

    12 Zhang, C.S., Fan, S.S., Liang, D.Q., Guo, K.H., “Effect of additives on formation of natural gas hydrate”,, 83, 2115-2121 (2004).

    13 Karaaslan, U., Uluneye, E., Parlaktuna, M., “Effect of an anionic surfactant on different type of hydrate structures”,..., 35 (1), 49-57 (2002).

    14 Gnanendran, N., Amin, R., “The effect of hydrotropes on gas hydrate formation”,..., 40 (1), 37-46 (2003).

    15 Cha, S.B., Ouar, H., Wildeman, T.R., Sloan, E.D., “A third-surface effect on hydrate formation”,..., 92, 6492-6494 (1988).

    16 Yan, L.J., Chen, G.J., Pang, W.X., Liu, J., “Experimental and modeling study on hydrate formation in wet activated carbon”,..., 109, 6025-6030 (2005).

    17 Xu, R.R., Pang, W.Q., Chemistry-Zeolites and Porous Materials, Science Press, Beijing, 34 (2004). (in Chinese)

    18 Tian, J., Zhang, M.H., Dong, X.Q., “Adsorption and diffusion equilibrium research about water on 3A molecular sieve”,... (), 33 (10), 932-936 (2004). (in Chinese)

    19 Zang, X.Y., Fan, S.S., Liang, D.Q., Li, D.L., Chen, G.J., “Influence of 3A molecular sieve to tetrahydrofuran(THF) hydrate formation”,...., 51 (9), 893-900 (2008).

    20 Sun, Z.G., Ma, R.S., Guo, K.H., Fan, S.S., Wang, R.Z., “Natural gas storage in hydrates with the presence of promoters”,.., 44 (17), 2733-2742 (2003).

    2009-04-10,

    2009-08-09.

    the National Natural Science Foundation of China (50876107), the National Basic Research Program of China (2009CB219504), NSFC-Guangdong Union Foundation (NSFC-U0733033) and CAS Program (KGCX2-YW-805).

    ** To whom correspondence should be addressed. E-mail: liangdq@ms.giec.ac.cn

    国产高清视频在线播放一区| 老鸭窝网址在线观看| 成人av一区二区三区在线看| 国产成人a区在线观看| 亚洲aⅴ乱码一区二区在线播放| 97人妻精品一区二区三区麻豆| 看黄色毛片网站| 亚洲成av人片免费观看| 我的女老师完整版在线观看| 人妻制服诱惑在线中文字幕| 首页视频小说图片口味搜索| 一个人免费在线观看的高清视频| 三级国产精品欧美在线观看| 国产精品电影一区二区三区| 久久99热6这里只有精品| 一夜夜www| 一区福利在线观看| 亚洲中文字幕一区二区三区有码在线看| 成人一区二区视频在线观看| 亚洲人与动物交配视频| 舔av片在线| 欧美+日韩+精品| www.www免费av| 欧美黑人巨大hd| 久久6这里有精品| 日韩欧美精品免费久久 | 免费在线观看成人毛片| 麻豆成人午夜福利视频| 久99久视频精品免费| 18禁黄网站禁片午夜丰满| 一级黄片播放器| 色尼玛亚洲综合影院| 小蜜桃在线观看免费完整版高清| 免费无遮挡裸体视频| 成人av一区二区三区在线看| 欧美一区二区精品小视频在线| 国内少妇人妻偷人精品xxx网站| 日韩欧美 国产精品| 日韩欧美国产一区二区入口| 国内少妇人妻偷人精品xxx网站| av中文乱码字幕在线| 亚洲 国产 在线| 午夜影院日韩av| 美女高潮喷水抽搐中文字幕| 久久亚洲真实| 国产黄a三级三级三级人| 一二三四社区在线视频社区8| 欧美午夜高清在线| 深夜精品福利| а√天堂www在线а√下载| 欧美成人一区二区免费高清观看| 亚洲av日韩精品久久久久久密| 亚洲最大成人av| av视频在线观看入口| 啪啪无遮挡十八禁网站| 免费观看的影片在线观看| 18美女黄网站色大片免费观看| 可以在线观看的亚洲视频| 级片在线观看| 99久久99久久久精品蜜桃| 搡老熟女国产l中国老女人| 两性午夜刺激爽爽歪歪视频在线观看| 直男gayav资源| 十八禁国产超污无遮挡网站| 欧美最黄视频在线播放免费| 免费av观看视频| 少妇高潮的动态图| 国产高清视频在线播放一区| av国产免费在线观看| 我的女老师完整版在线观看| 欧美日韩中文字幕国产精品一区二区三区| 一夜夜www| 亚洲欧美日韩高清专用| 国产久久久一区二区三区| 成人欧美大片| 日韩精品中文字幕看吧| 99视频精品全部免费 在线| 亚洲乱码一区二区免费版| 国产三级在线视频| 亚洲片人在线观看| 99久久久亚洲精品蜜臀av| 国产在线男女| 午夜福利成人在线免费观看| 两人在一起打扑克的视频| 久久99热6这里只有精品| 中出人妻视频一区二区| 好男人在线观看高清免费视频| bbb黄色大片| 精品人妻熟女av久视频| 亚洲欧美清纯卡通| 精品熟女少妇八av免费久了| 国产亚洲精品久久久com| 麻豆成人午夜福利视频| 亚洲成人久久爱视频| 免费观看的影片在线观看| 午夜激情福利司机影院| 性欧美人与动物交配| 日韩欧美国产在线观看| 淫妇啪啪啪对白视频| 午夜日韩欧美国产| 日本熟妇午夜| 婷婷精品国产亚洲av| 日本黄色视频三级网站网址| 赤兔流量卡办理| 亚洲欧美精品综合久久99| 国内精品久久久久久久电影| 少妇人妻精品综合一区二区 | 搡老熟女国产l中国老女人| 9191精品国产免费久久| h日本视频在线播放| 国产乱人伦免费视频| 亚洲第一区二区三区不卡| av在线蜜桃| 亚洲一区二区三区色噜噜| 国内精品美女久久久久久| 亚洲中文字幕日韩| 少妇熟女aⅴ在线视频| 国产久久久一区二区三区| 久久草成人影院| 国产成人aa在线观看| 最近在线观看免费完整版| 日本一二三区视频观看| 最近在线观看免费完整版| 色av中文字幕| 日韩国内少妇激情av| 国产男靠女视频免费网站| 3wmmmm亚洲av在线观看| 国产伦精品一区二区三区视频9| 美女黄网站色视频| 综合色av麻豆| 丝袜美腿在线中文| 无人区码免费观看不卡| 欧美一级a爱片免费观看看| 国产亚洲精品综合一区在线观看| 国产亚洲精品av在线| 97碰自拍视频| 精品人妻1区二区| 亚洲精品在线观看二区| 国产黄片美女视频| 国内精品一区二区在线观看| 一本综合久久免费| 99久久精品一区二区三区| 天堂影院成人在线观看| 精品午夜福利视频在线观看一区| 久久久色成人| 国产亚洲精品久久久com| 免费观看的影片在线观看| 亚洲av电影在线进入| 高清日韩中文字幕在线| 亚洲,欧美精品.| 99久久精品热视频| 精品久久久久久,| 成人av一区二区三区在线看| 国产白丝娇喘喷水9色精品| 精品福利观看| 亚洲专区国产一区二区| 国产精品亚洲一级av第二区| 日本黄大片高清| 熟女电影av网| 99久久九九国产精品国产免费| 高潮久久久久久久久久久不卡| 国产大屁股一区二区在线视频| 91麻豆av在线| 搡老熟女国产l中国老女人| 国产乱人伦免费视频| 国产真实伦视频高清在线观看 | 成人美女网站在线观看视频| 国产大屁股一区二区在线视频| x7x7x7水蜜桃| 在线看三级毛片| 亚洲成a人片在线一区二区| 国产69精品久久久久777片| 在线看三级毛片| 欧美极品一区二区三区四区| 怎么达到女性高潮| 精品福利观看| 色在线成人网| 国产欧美日韩精品亚洲av| www.999成人在线观看| a级毛片免费高清观看在线播放| 久久天躁狠狠躁夜夜2o2o| 国产成人av教育| 亚洲第一欧美日韩一区二区三区| 久久久久久久亚洲中文字幕 | 草草在线视频免费看| or卡值多少钱| 日韩av在线大香蕉| 亚洲成a人片在线一区二区| 久久久精品大字幕| 欧美最新免费一区二区三区 | 偷拍熟女少妇极品色| 国产成人aa在线观看| 亚洲中文日韩欧美视频| 国产午夜福利久久久久久| 久久久久久久久久黄片| 美女cb高潮喷水在线观看| 午夜久久久久精精品| 在线a可以看的网站| 婷婷六月久久综合丁香| 老鸭窝网址在线观看| 99热这里只有精品一区| 亚洲va日本ⅴa欧美va伊人久久| 欧美日本亚洲视频在线播放| or卡值多少钱| 亚洲人与动物交配视频| 国产欧美日韩精品一区二区| 我的老师免费观看完整版| 美女高潮喷水抽搐中文字幕| 一本久久中文字幕| 久久人妻av系列| 亚洲专区国产一区二区| 日韩欧美一区二区三区在线观看| 岛国在线免费视频观看| 蜜桃亚洲精品一区二区三区| 啦啦啦观看免费观看视频高清| 久久久久久久久久成人| 国产老妇女一区| 日本与韩国留学比较| 亚洲精品色激情综合| 亚洲欧美日韩卡通动漫| 别揉我奶头~嗯~啊~动态视频| 亚洲第一欧美日韩一区二区三区| 99热这里只有是精品50| 国产精品亚洲美女久久久| 老熟妇仑乱视频hdxx| 欧美日本亚洲视频在线播放| 久久久久久久久久黄片| 日本成人三级电影网站| 成人av一区二区三区在线看| 91麻豆精品激情在线观看国产| a级毛片免费高清观看在线播放| 久久午夜福利片| 一级av片app| 窝窝影院91人妻| 不卡一级毛片| 久久精品国产亚洲av香蕉五月| 亚洲熟妇熟女久久| 观看美女的网站| 一本一本综合久久| 久久久久性生活片| 直男gayav资源| 波多野结衣巨乳人妻| 亚洲精品在线美女| 色在线成人网| АⅤ资源中文在线天堂| 丝袜美腿在线中文| 日韩 亚洲 欧美在线| 九色国产91popny在线| 欧美日韩国产亚洲二区| 亚洲电影在线观看av| 成人三级黄色视频| 国产黄a三级三级三级人| 欧美成人a在线观看| 很黄的视频免费| 国产av一区在线观看免费| 18+在线观看网站| 在线a可以看的网站| 久久欧美精品欧美久久欧美| 久久久成人免费电影| 黄色视频,在线免费观看| 午夜老司机福利剧场| 成人鲁丝片一二三区免费| 欧美激情国产日韩精品一区| 身体一侧抽搐| 99久久精品热视频| 国产高清有码在线观看视频| 99热这里只有是精品在线观看 | 日本与韩国留学比较| 国产精品一区二区三区四区久久| 欧美激情在线99| 色av中文字幕| 搡老熟女国产l中国老女人| 12—13女人毛片做爰片一| 99久久精品热视频| 国产精品女同一区二区软件 | 亚洲最大成人手机在线| 午夜精品一区二区三区免费看| 国产一级毛片七仙女欲春2| 久久亚洲精品不卡| 最近视频中文字幕2019在线8| 精品人妻熟女av久视频| 国产精品永久免费网站| 国产午夜精品论理片| 12—13女人毛片做爰片一| 国产蜜桃级精品一区二区三区| 午夜福利免费观看在线| 亚洲av免费高清在线观看| 国产精品亚洲av一区麻豆| 国产精品野战在线观看| 大型黄色视频在线免费观看| 老熟妇仑乱视频hdxx| 成人三级黄色视频| 国产91精品成人一区二区三区| 床上黄色一级片| 亚洲欧美日韩高清专用| 精品午夜福利视频在线观看一区| 91狼人影院| 亚洲 国产 在线| 深夜精品福利| 一本一本综合久久| 精品日产1卡2卡| 精品久久久久久久人妻蜜臀av| 夜夜看夜夜爽夜夜摸| 亚洲美女视频黄频| 好男人在线观看高清免费视频| 亚洲第一电影网av| 亚洲国产精品合色在线| av中文乱码字幕在线| 18禁在线播放成人免费| 色综合欧美亚洲国产小说| 91在线观看av| 欧美一区二区精品小视频在线| 国产精品一区二区三区四区久久| 十八禁人妻一区二区| av黄色大香蕉| 欧美最新免费一区二区三区 | 国产精品三级大全| 成年人黄色毛片网站| 久久国产精品人妻蜜桃| 一级黄色大片毛片| 一a级毛片在线观看| 亚洲黑人精品在线| 精品午夜福利视频在线观看一区| 好看av亚洲va欧美ⅴa在| 久久久久久九九精品二区国产| 五月玫瑰六月丁香| 久久久久国内视频| 色尼玛亚洲综合影院| 久久精品91蜜桃| 亚洲激情在线av| 性插视频无遮挡在线免费观看| 极品教师在线视频| 国产熟女xx| 久久国产乱子伦精品免费另类| a级毛片a级免费在线| 久久久国产成人免费| 免费在线观看日本一区| 欧美日韩黄片免| 日韩欧美三级三区| 午夜福利视频1000在线观看| 亚洲第一电影网av| 亚洲av二区三区四区| 亚洲精品色激情综合| 性色avwww在线观看| 直男gayav资源| 波野结衣二区三区在线| 一区福利在线观看| 精品国内亚洲2022精品成人| av中文乱码字幕在线| 丰满乱子伦码专区| 久99久视频精品免费| 国产精品野战在线观看| ponron亚洲| 国产高清有码在线观看视频| 久久久国产成人精品二区| 成人永久免费在线观看视频| 精品人妻视频免费看| 我要搜黄色片| 国产精品久久久久久久久免 | 国产午夜福利久久久久久| 亚洲av.av天堂| 男插女下体视频免费在线播放| av专区在线播放| 日韩免费av在线播放| 精品久久国产蜜桃| 国产成人av教育| 国产精品人妻久久久久久| 亚洲乱码一区二区免费版| 欧美一区二区亚洲| 成熟少妇高潮喷水视频| 久久香蕉精品热| a级毛片免费高清观看在线播放| 热99re8久久精品国产| 亚洲va日本ⅴa欧美va伊人久久| 国产真实伦视频高清在线观看 | 在线观看美女被高潮喷水网站 | 天天一区二区日本电影三级| 亚洲成人中文字幕在线播放| 欧美在线一区亚洲| 久久伊人香网站| 亚洲人成网站在线播放欧美日韩| 一个人免费在线观看的高清视频| 一卡2卡三卡四卡精品乱码亚洲| 国产精品一区二区三区四区免费观看 | 神马国产精品三级电影在线观看| 久久久久久久午夜电影| 在线看三级毛片| 亚洲最大成人中文| 高清日韩中文字幕在线| 亚洲五月婷婷丁香| 免费观看精品视频网站| 91久久精品电影网| 丰满乱子伦码专区| 欧美3d第一页| 亚洲av五月六月丁香网| 美女黄网站色视频| 麻豆成人午夜福利视频| 亚洲中文日韩欧美视频| 国产午夜精品久久久久久一区二区三区 | 国内毛片毛片毛片毛片毛片| 如何舔出高潮| 又紧又爽又黄一区二区| 国产成年人精品一区二区| 桃色一区二区三区在线观看| 亚洲最大成人中文| 亚洲av成人av| 免费在线观看成人毛片| 成人高潮视频无遮挡免费网站| 色综合亚洲欧美另类图片| 午夜老司机福利剧场| 成人欧美大片| 精品久久久久久久久亚洲 | 欧美zozozo另类| 午夜久久久久精精品| 两个人的视频大全免费| 综合色av麻豆| 国内久久婷婷六月综合欲色啪| 永久网站在线| 国产精品自产拍在线观看55亚洲| 极品教师在线视频| 国产视频一区二区在线看| 国产精品自产拍在线观看55亚洲| 亚洲欧美精品综合久久99| 在线天堂最新版资源| 成人特级av手机在线观看| 如何舔出高潮| 成年女人看的毛片在线观看| а√天堂www在线а√下载| 久久久久精品国产欧美久久久| 人妻夜夜爽99麻豆av| 噜噜噜噜噜久久久久久91| 极品教师在线视频| 在线观看av片永久免费下载| 亚洲最大成人手机在线| 国产亚洲精品综合一区在线观看| avwww免费| 真人一进一出gif抽搐免费| 搡老熟女国产l中国老女人| 国产精品久久久久久精品电影| 精品人妻熟女av久视频| 日韩国内少妇激情av| 我的女老师完整版在线观看| 熟女人妻精品中文字幕| 又黄又爽又免费观看的视频| 亚洲国产欧美人成| 亚洲精品456在线播放app | 久久久久国产精品人妻aⅴ院| 国产私拍福利视频在线观看| x7x7x7水蜜桃| 白带黄色成豆腐渣| 有码 亚洲区| 精品午夜福利视频在线观看一区| 国产老妇女一区| 国产高清有码在线观看视频| 午夜久久久久精精品| 国产三级中文精品| 一个人观看的视频www高清免费观看| 国产色婷婷99| 搡老岳熟女国产| 熟女人妻精品中文字幕| 日本熟妇午夜| 特大巨黑吊av在线直播| 少妇熟女aⅴ在线视频| 亚洲精品色激情综合| 夜夜夜夜夜久久久久| 午夜a级毛片| 美女 人体艺术 gogo| 亚洲经典国产精华液单 | 国产aⅴ精品一区二区三区波| 大型黄色视频在线免费观看| 亚洲aⅴ乱码一区二区在线播放| 看免费av毛片| 成人三级黄色视频| 国产麻豆成人av免费视频| 欧美激情久久久久久爽电影| 亚洲国产欧洲综合997久久,| 首页视频小说图片口味搜索| 午夜两性在线视频| 国内毛片毛片毛片毛片毛片| 男女那种视频在线观看| 国产三级在线视频| 国产欧美日韩一区二区精品| 国产毛片a区久久久久| 国产国拍精品亚洲av在线观看| 成熟少妇高潮喷水视频| 一区二区三区高清视频在线| 国产伦人伦偷精品视频| 亚洲在线观看片| 亚洲精品成人久久久久久| 午夜精品在线福利| 少妇熟女aⅴ在线视频| 精品乱码久久久久久99久播| 久久草成人影院| 亚洲成人久久性| 91久久精品国产一区二区成人| 日日摸夜夜添夜夜添小说| 日韩欧美三级三区| 成人鲁丝片一二三区免费| 日本黄大片高清| 亚洲国产精品成人综合色| 成人欧美大片| www.色视频.com| 久久久国产成人精品二区| 国产精品一区二区性色av| 69av精品久久久久久| 少妇的逼水好多| 亚洲激情在线av| 精品日产1卡2卡| 亚洲av成人不卡在线观看播放网| 欧美成人一区二区免费高清观看| 亚洲国产日韩欧美精品在线观看| 美女黄网站色视频| 欧美日韩亚洲国产一区二区在线观看| 成人国产一区最新在线观看| 禁无遮挡网站| 久久久久国产精品人妻aⅴ院| 亚洲国产欧美人成| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 一进一出好大好爽视频| 首页视频小说图片口味搜索| 国产精品一区二区性色av| 亚洲精品影视一区二区三区av| netflix在线观看网站| 五月玫瑰六月丁香| 怎么达到女性高潮| 亚洲av日韩精品久久久久久密| 国产亚洲精品综合一区在线观看| 99国产综合亚洲精品| 欧美日韩瑟瑟在线播放| 欧美激情在线99| 一级黄色大片毛片| 亚洲最大成人手机在线| 悠悠久久av| 国产中年淑女户外野战色| 亚洲精品一区av在线观看| 国产中年淑女户外野战色| 三级国产精品欧美在线观看| 久99久视频精品免费| 夜夜看夜夜爽夜夜摸| 男人的好看免费观看在线视频| 欧美精品啪啪一区二区三区| 免费观看人在逋| 人妻制服诱惑在线中文字幕| 老鸭窝网址在线观看| 在线观看免费视频日本深夜| 色精品久久人妻99蜜桃| 国产探花极品一区二区| a级毛片a级免费在线| 免费人成在线观看视频色| 波多野结衣高清作品| av在线老鸭窝| 亚洲激情在线av| 亚洲美女搞黄在线观看 | x7x7x7水蜜桃| 12—13女人毛片做爰片一| 国产亚洲av嫩草精品影院| 欧美成人免费av一区二区三区| 免费av不卡在线播放| 99国产精品一区二区蜜桃av| 两性午夜刺激爽爽歪歪视频在线观看| 午夜福利免费观看在线| 国产激情偷乱视频一区二区| 国产高清视频在线观看网站| 国产伦精品一区二区三区四那| 久久久精品欧美日韩精品| 国产在线男女| 国产三级黄色录像| 欧美最黄视频在线播放免费| 亚洲自偷自拍三级| 最近最新中文字幕大全电影3| 黄色女人牲交| 国产综合懂色| 亚洲av.av天堂| 丰满人妻熟妇乱又伦精品不卡| 男女下面进入的视频免费午夜| 99久国产av精品| 亚洲精品日韩av片在线观看| 麻豆av噜噜一区二区三区| 日本五十路高清| aaaaa片日本免费| 人人妻,人人澡人人爽秒播| 少妇人妻精品综合一区二区 | 亚洲 国产 在线| 免费在线观看亚洲国产| 日韩中字成人| av在线老鸭窝| АⅤ资源中文在线天堂| 久久久久久久久中文| 国产黄色小视频在线观看| 老熟妇乱子伦视频在线观看| 国产成人影院久久av| 大型黄色视频在线免费观看| 久久99热6这里只有精品| 最好的美女福利视频网| 色视频www国产| 亚洲国产精品999在线| 老司机午夜福利在线观看视频| 久久国产乱子免费精品| 午夜福利成人在线免费观看| 黄色女人牲交| 天堂影院成人在线观看| 亚洲av美国av| 国内精品久久久久精免费| 天堂√8在线中文| 国产av麻豆久久久久久久| 久久精品综合一区二区三区| 久久久久免费精品人妻一区二区| 黄色视频,在线免费观看| 成人永久免费在线观看视频| 午夜亚洲福利在线播放| 人妻制服诱惑在线中文字幕| 91久久精品国产一区二区成人| 变态另类成人亚洲欧美熟女| 免费观看的影片在线观看| 日韩欧美 国产精品|