• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Calculation of Transport Properties of CF4+Noble Gas Mixtures

    2009-05-15 06:18:00SoodabehNikmaneshJalilMoghadasiandMohammadMehdiPapari

    Soodabeh Nikmanesh*, Jalil Moghadasiand Mohammad Mehdi Papari

    ?

    Calculation of Transport Properties of CF4+Noble Gas Mixtures

    Soodabeh Nikmanesh1,*, Jalil Moghadasi1and Mohammad Mehdi Papari2

    1Department of Chemistry, Shiraz University, Shiraz 71454, Iran2Department of Chemistry, Shiraz University of Technology, Shiraz 71555-313, Iran

    The present work is concerned with determining the viscosity, diffusion, thermal diffusion factor and thermal conductivity of five equimolar binary gas mixtures including: CF4-He, CF4-Ne, CF4-Ar, CF4-Kr, CF4-Xe from the principle of corresponding states of viscosity by the inversion technique. The Lennard-Jones (12-6) model potential is used as the initial model potential. The calculated interaction potential energies obtained from the inversion procedure is employed to reproduce the viscosities, diffusions, thermal diffusion factors, and thermal conductivities. The accuracies of the calculated viscosity and diffusion coefficients were 1% and 4%, respectively.

    corresponding states principle, diffusion, inversion method, kinetic theory of gases, thermal conductivity, transport properties, viscosity

    1 INTRODUCTION

    Tetrafluoromethane which is a low temperature refrigerant is employed in electronics microfabrication alone or in combination with oxygen as a plasma etchant for silicon, silicon dioxide, and silicon nitride. This compound is a potent greenhouse gas that contributes to the greenhouse effect. It is very stable, has an atmospheric lifespan of 50000 years, and a high greenhouse warming potential of 6500 (CO2has a factor of 1); however, the low amount in the atmosphere restricts the overall radiative forcing effect. Although structurally similar to chlorofluorocarbons (CFCs), tetrafluoromethane does not deplete the ozone layer.

    The results of kinetic and statistical-mechanical theories provide theoretical expressions for various equilibrium and non-equilibrium (transport) properties in terms of the potential energy of interaction between a pair of molecules [1]. Thus, the evaluation of the thermophysical properties of fluids will be straightforward if a pair potential energy is already known. This procedure reduces the need for experimentation to a manageable level. For instance, the most successful and promising approach of this type is the calculation of the transport properties of dilute gases from the known pair-wise interaction potential energy using the kinetic theories of gases initiated by Boltzmann and developed by Chapman and Enskog [2]. Therefore, the problem is now how to establish the intermolecular pair potential energy for a specific system.

    Among thermophysical properties, the viscosity is almost independent of the existence of the internal degrees of freedom and unaffected by inelastic collision. This is particularly valuable because it can be served to infer the potential energy. The viscosity coefficients are obtained either from the resistance of the gas to flow a capillary tube or by observing the damping effect of the gas upon the motion of a torsionally oscillating disc [3].

    The general method of inferring molecular interactions from transport properties such as viscosity was essentially cuts and trials on a model potential until a good fit was obtained to a given set of experimental data on thermophysical properties. The major problem is increasing difficulties for fixing the adjustable parameters with experiments as their number increases. In addition, this procedure does not produce a unique potential. The second approach is the inversion method that generates a spherical pair potential energy without introducing any disposable model potential.

    Papari. [4-8] have developed this method to examine intermolecular potential energies and then predict transport properties of some selected gas mixtures.

    The present work is devoted to the calculation of the gas transport coefficients of five CF4-noble gas mixtures using the inverted unlike pair potential energy through the Chapman-Enskog [2] and Wang Chang-Uhlenbeck [9] solutions of the kinetic theories of gases as well as Ross scheme [10].

    2 MOLECULAR THEORY OF TRANSPORT PROPERTIES OF GASES

    Whereis the scattering angle,(l)() is the transport collision integral,is the impact parameter,is the relative kinetic energy of colliding partners,is the relative velocity of colliding molecules,mis the closest approach of two molecules, andBis the molecular thermal energy. Hence, the potential() would serve as the input information required in calculating collision integrals and, consequently, the transport properties. The definition of collision integrals as dimensionless reduced quantities makes calculations of transport properties more convenient.

    We can introduce the reduced collision integral*(l,s)as follows:

    The ratios of collision integrals are given by:

    3 INVERSION SCHEME

    The inversion procedure developed by Smith and coworkers [11-13] and fully described in our previous work [14] is briefly given here. Also, we calculated transport properties of some polyatomic gases including carbon tetrafluorid (CF4), sulfur hexafluoride (SF6), and nitrous oxide (N2O) [15]. This method relies on the Chapman-Enskog rigorous kinetic theory of gases, which is well developed for spherical interactions. The method is iterative and converges rapidly once a good choice has been made for the initial potential starting the iteration.

    In Eq. (10)*isB/andis the well depth. Eqs. (10) and (11) are central equations in the inversion scheme.

    The new potential is a closer approximation to the true potential energy than the potential of the initial model. The new() can be obtained from square interpolation among new potentials. The new potentials are used to calculate improved collision integrals by performing three consecutive integral Eqs. (1)-(3). The above-mentioned process is repeated until convergence occurs. The convergence condition is the degree to which the calculated collision integrals for a given iteration are close to the experimental correlations within experimental accuracy. It should be mentioned that the rate of convergence of iteration reflects the differences of the detail between the initial potential and the potential obtained around iteration. In general, of course, the closer is two potentials functions, the faster is the convergence. The present results converged after two iterations.

    4 RESULTS AND DISCUSSION

    In this study an iterative inversion procedure has been employed to define the intermolecular pair interaction potential energies of CF4+noble gas gaseous mixtures from corresponding states of viscosity. To implement the full inversion procedure, the experimental data should be extended over as wide temperature range as possible. In this respect, a corresponding states correlation for viscosity collision integral was taken from Ref. [16] to calculate the reduced viscosity collision integral*(2,2).

    The inverted potential energies for all systems have been used to evaluate improved collision integrals through Eqs. (1)-(3). The calculated collision integrals and their ratios for aforementioned systems are given in Tables 1-5. The relationships given by Ross. [10] and equations obtained from Chapman- Enskog solution of the Boltzman equation [2, 3, 17] have been employed to compute, respectively, thermal conductivity and other remaining transport properties of present systems by the use of improved collision integral ratios given in Tables 1-5.

    Figures 1-4 demonstrate the deviations of the calculated viscosity values of afore-cited mixtures from those reported in Refs. [18] and [19] at different temperatures and mole fractions. Figs. (1)-(4) depict that the calculated viscosities agree with experimental values within 1%. Unfortunately, due to lack of experimental data, we could not confirm the obtained viscosity of CF4-Xe mixture. In addition, the comparison of the calculated viscosities with those calculated from Davidson’s and Reichenberg’s methods [20, 21] are brought in Figs. 5 and 6, respectively. In the case of three heavier noble gas mixtures, the relative errors are at most 0.9% in comparison with those estimated using Davidson’s method [20] and at most 0.5% when compared with the Reichenberg’s method [21]. But the deviations of estimated values for CF4-He and CF4-Ne mixtures from those obtained using Davidson’s and Reichenberg’s methods increase at very low and very high temperatures. The calculated interaction viscosities were correlated with the following function:

    Table 1 The reduced collision integrals and their ratios for CF4-He system

    Table 2 The reduced collision integrals and their ratios for CF4-Ne system

    Table 3 The reduced collision integrals and their ratios for CF4-Ar system

    Table 4 The reduced collision integrals and their ratios for CF4-Kr system

    Table 5 The reduced collision integrals and their ratios for CF4-Xe system

    Figure 1 Deviations of the calculated viscosity values of CF4-He gaseous system from those reported in Ref. [18] at different temperatures and mole fractions

    (He):◆?0.3748;■?0.5209;▲?0.9134

    Figure 2 Deviations of the calculated viscosity values of CF4-Ne gaseous system from those reported in Ref. [18] at different temperatures and mole fractions

    (Ne): ◆?0.1713; ■?0.3886;△?0.5801; ×?0.8041

    Figure 3 Deviations of the calculated viscosity values of CF4-Ar gaseous system from those reported in Ref. [18] at different temperatures and mole fractions

    Figure 4 Deviations of the calculated viscosity values of CF4-Kr gaseous system from those reported in Ref. [19] at different temperatures and mole fractions

    (Kr): ◆?0.2122;□?0.2899;▲?0.5127

    Figure 5 The comparison of the calculated viscosities with those calculated from Davidson’s method [20]

    Figure 7 shows how the calculated diffusion coefficients of aforesaid systems except CF4-Xe mixture, deviate from those given in Refs. [18, 19]. The accuracy of this property is of the order of 4%. Also the values of diffusion coefficients were correlated with the following equation:

    Figure 6 The comparison of the calculated viscosities with those calculated from Reichenberg’s method [21]

    ◆?CF4-He;■?CF4-Ne;△?CF4-Ar; ×?CF4-Kr;○?CF4-Xe

    Figure 7 Deviation plot for the diffusion coefficients at different temperatures: for CF4-He, CF4-Ne, CF4-Ar compared with Ref. [18], for CF4-Kr compared with Ref. [20]

    ◆?CF4-He; ▲?CF4-Ne; □?CF4-Ar;△?CF4-Kr

    As for thermal conductivity, the predicted viscosities obtainedthe inverted pair potential energies were employed to predict thermal conductivities using Ross.’s method [10]. The calculated interaction thermal conductivities were correlated with the following polynomial:

    The parameters are listed in Table 8. Unfortunately, because of lack of the literature data of thermal diffusion factors and thermal conductivities, we could not evaluate the accuracy of our work.

    5 CONCLUSIONS

    The present study describes a procedure for analyzing the viscosity data in the form of corresponding states equations to yield a unique unlike effective and isotropic pair potential energy of the CF4-He, CF4-Ne, CF4-Ar, CF4-Kr and CF4-Xe systems.

    The acceptable agreement was achieved between the calculated and the literature values for viscosity and diffusion coefficients. No literature data are now available to assess the accuracy of thermal conductivity and thermal diffusion factors calculated with the present method.

    Using this procedure, there is no need to set flexible multi-parameter potential functions. The major benefit of our studies has been that in addition to the prediction of viscosity with an acceptable accuracy, the inverted pair potential energy is capable of providing other transport properties such as the binary diffusion coefficient, thermal diffusion factor, and thermal conductivity. Therefore, the most crucial advantage of the inversion procedure is that the values of one property that is known accurately can be used to predict other properties that are known less accurately from the experiment.

    Table 6 Least squares coefficients, correlation coefficients (R), and standard errors (ES) for Eq. (12)

    Table 7 Least squares coefficients, correlation coefficients and standard errors for Eq. (13)

    Table 8 Least squares coefficients, correlation coefficients and standard errors for Eq. (14)

    ACKNOWLEDGEMENTS

    .

    NOMENCLATURE

    *ratio of collision integrals

    a,a,a,aconstant

    *ratio of collision integrals

    impact factor, m

    b,b,b,bconstant

    *ratio of collision integrals

    c,α,cconstant

    binary diffusion coefficient, m2·s-1

    α,d,dconstant

    *ratio of collision integrals

    Sstandard error

    econstant

    * ratio of collision integrals

    inversion function

    BBoltzman constant, J·K-1

    molecular mass, kg

    (l)transport cross-section, m2

    correlation coefficient

    intermolecular distance, m

    mclosest approach of two molecule, m

    temperature, K

    *reduced temperature

    () intermolecular potential energy, J

    relative velocity of colliding molecules

    mole fraction

    energy-scaling factor, J

    interaction viscosity, Pa·s

    scattering angle, rad

    interaction thermal conductivity

    length-scaling factor, m

    Ω(l,s)collision integral, m2

    Ω*(l,s)reduced collision integral

    Superscripts

    ,weighting factors related to the mechanism of transport by molecular collisions

    * reduced

    Subscripts

    diffusion

    thermal diffusion factor

    viscosity

    thermal conductivity

    1 Hirschfelder, J.O., Curtis, C.F., Bird, B.R., Molecular Theory of Gases and Liquids, John-Wiley, New York (1964).

    2 Chapman, S., Cowling, T., The Mathematical Theory of Non-Uniform Gases, 3rd edition, Cambridge University Press, Cambridge (1964).

    3 Wakeham, W.A., Nagashima, A., Sengers, J.V., Measurements of the Transport Properties of Fluids, Experimental Thermodynamics, Blackwell Scientific Publications, Oxford (1991).

    4 Papari, M.M., Boushehri, A., “Semi-empirical calculation of the transport properties of eight binary gas mixtures at low density by the inversion method”,..., 71, 2757-2767 (1998).

    5 Haghighi, B., Fathabadi, M., Papari, M.M., “Calculation of the transport properties of CO-nobel gases mixtures at low density by the semi-empirical inversion method”,..., 203, 205-225 (2002).

    6 Haghighi, B., Javanmardi, A.H., Najafi, M., Papari, M.M., “Calculation of the diffusion coefficients for mixtures of NO with He, Ne, Ar and Kr at low density using semi-empirical inversion method”,...., 2 (3), 371-384 (2003).

    7 Papari, M.M., Mohammad-Aghaie, D., Haghighi, B., Boushehri, A., “Transport properties of argon-hydrogen gaseous mixture from an effective unlike interaction”,..., 232,122-135 (2005).

    8 Papari, M.M., Mohammad-Aghaie, D., Moghadasi, J., Boushehri, A., “Semi-empirically based assessment for predicting dilute gas transport properties of F2and Ar-F2fluids”,..., 79, 67-74 (2006).

    9 Wang Change, C.S., Uhlenbeck, G.E., de Boer, J., “The heat conductivity and viscosity of poly-atomic of gases”, de Boer, J., Uhlenbeck, G.E., Eds., Studies in Statistical Mechanics, North-Holland, Amsterdam (1964).

    10 Ross, M.J., Vesovic, V., Wakeham, W.A., “Alternative expressions for the thermal conductivity of dilute gas mixtures”,, 183,519-536 (1992).

    11 Gough, D.W., Maitland, G.C., Smith, E.B., “The direct determination of intermolecular potential energy functions from gas viscosity measurements”,.., 24 (1), 151-161 (1972).

    12 Maitland, G.C., Smith, E.B., “The direct determination of potential energy functions from second virial coefficients”,.., 24,1185-1201 (1972).

    13 Clancy, P., Gough, D.W., Mathews, G.P., Smith, E.B., Maitland, G.C., “Simplified methods for the inversion of thermophysical data”,.., 30, 1397-1407 (1975).

    14 Papari, M.M., “Transport properties of carbon dioxide from an isotopic and effective pair potential energy”,.., 288, 249-259 (2003).

    15 Moghadasi, J., Papari, M.M., Nekoie, A., Sengers, J.V., “Transport properties of some polyatomic gases from isotropic and effective pair potential energies (part II)”,.., 306, 229-240 (2004).

    16 Bzowski, J., Kestin, J., Mason, E.A., Uribe, F.J., “Equilibrium and transport properties of gas mixtures at low density: Eleven polyatomic gases and five noble gases”,...., 19, 1179-1232 (1990).

    17 Papari, M.M., Moghadasi, J., Yousefi, F., Boushehri, A., Haghighi, B., “Correlation and prediction of low density Ne-H2 gas transport coefficients”,..., 10, 143-156 (2008).

    18 Kestin, J., Khalifa, H.E., Ro, S.T., Wakeham, W.A., “The viscosity and diffusion coefficients of eighteen binary gaseous systems”,, 88, 242-260 (1977).

    19 Kestin, J., Khalifa, H.E., Wakeham, W.A., “The viscosity of gaseous mixtures containing Krypton”,..., 67 (9), 4254-4259 (1977).

    20 Davidson, T.A., “A simple and accurate method for calculating viscosity of gaseous mixtures”, U.S. Bureau of Mines, RI9456 (1993).

    21 Reichenberg, D., “New simplified methods for the estimation of the viscosities of gas mixtures at moderate pressures”, Natl. Eng. Lab. Rept. Chem. 53, East Kilbride, Glasgow, Scotland (1977).

    2009-01-05,

    2009-06-25.

    * To whom correspondence should be addressed. E-mail: soodabeh.nikmanesh@gmail.com

    av中文乱码字幕在线| 美女扒开内裤让男人捅视频| 免费在线观看成人毛片| 亚洲国产毛片av蜜桃av| 热re99久久国产66热| 亚洲成av片中文字幕在线观看| 欧美日韩精品网址| 国产精品一区二区精品视频观看| 欧美成人午夜精品| 国产精品综合久久久久久久免费| 亚洲中文字幕一区二区三区有码在线看 | 色综合婷婷激情| 免费在线观看视频国产中文字幕亚洲| 亚洲av五月六月丁香网| 精品少妇一区二区三区视频日本电影| 熟女电影av网| 亚洲成人久久性| 亚洲国产高清在线一区二区三 | 亚洲人成网站在线播放欧美日韩| 美国免费a级毛片| 一区二区三区国产精品乱码| 老司机深夜福利视频在线观看| 久久国产精品影院| 少妇粗大呻吟视频| 国产在线观看jvid| 啦啦啦 在线观看视频| 国产三级黄色录像| 亚洲五月天丁香| 在线看三级毛片| 久久久久久久久中文| 一进一出抽搐gif免费好疼| 亚洲第一青青草原| 好男人在线观看高清免费视频 | 久久久久久久午夜电影| 97超级碰碰碰精品色视频在线观看| 麻豆一二三区av精品| 身体一侧抽搐| a级毛片a级免费在线| 国产麻豆成人av免费视频| 两个人看的免费小视频| 成人特级黄色片久久久久久久| 久久精品夜夜夜夜夜久久蜜豆 | 国产精品av久久久久免费| x7x7x7水蜜桃| 热re99久久国产66热| 好男人电影高清在线观看| 亚洲av成人av| 热99re8久久精品国产| 成人欧美大片| 97碰自拍视频| or卡值多少钱| 黄色片一级片一级黄色片| 两个人看的免费小视频| 丝袜在线中文字幕| 俄罗斯特黄特色一大片| 校园春色视频在线观看| 婷婷精品国产亚洲av| 午夜福利欧美成人| 人成视频在线观看免费观看| 久久国产精品人妻蜜桃| 黄网站色视频无遮挡免费观看| 1024香蕉在线观看| 午夜福利视频1000在线观看| 我的亚洲天堂| 午夜视频精品福利| 亚洲av电影在线进入| 一进一出抽搐动态| netflix在线观看网站| 国产精品久久久久久亚洲av鲁大| а√天堂www在线а√下载| 97超级碰碰碰精品色视频在线观看| 99久久99久久久精品蜜桃| 神马国产精品三级电影在线观看 | 女警被强在线播放| 亚洲av中文字字幕乱码综合 | 久久草成人影院| 亚洲一区二区三区不卡视频| 欧美日本亚洲视频在线播放| 色播亚洲综合网| 99久久综合精品五月天人人| 国产精品1区2区在线观看.| 午夜福利欧美成人| 一边摸一边抽搐一进一小说| 91老司机精品| 精品人妻1区二区| 俄罗斯特黄特色一大片| 精品午夜福利视频在线观看一区| 黑人巨大精品欧美一区二区mp4| 男女下面进入的视频免费午夜 | 嫁个100分男人电影在线观看| 90打野战视频偷拍视频| 亚洲精品粉嫩美女一区| 久久久久久久午夜电影| 亚洲aⅴ乱码一区二区在线播放 | 夜夜夜夜夜久久久久| 最新美女视频免费是黄的| 又黄又粗又硬又大视频| 丝袜在线中文字幕| 日本 av在线| 成人亚洲精品一区在线观看| 男人的好看免费观看在线视频 | 天堂影院成人在线观看| 午夜日韩欧美国产| 国产亚洲av高清不卡| 国产又爽黄色视频| 久久久久久国产a免费观看| 又大又爽又粗| 久久久国产成人精品二区| 夜夜夜夜夜久久久久| 精品久久久久久,| 国产精品综合久久久久久久免费| 亚洲自拍偷在线| 99精品欧美一区二区三区四区| 母亲3免费完整高清在线观看| 美女 人体艺术 gogo| 国产精品一区二区免费欧美| 我的亚洲天堂| 精品国产美女av久久久久小说| 亚洲欧美精品综合一区二区三区| 欧美乱码精品一区二区三区| netflix在线观看网站| 亚洲精品粉嫩美女一区| 一级a爱片免费观看的视频| 女生性感内裤真人,穿戴方法视频| 日日干狠狠操夜夜爽| 免费在线观看黄色视频的| 国产人伦9x9x在线观看| 亚洲国产精品合色在线| 好男人电影高清在线观看| 88av欧美| 国产精品久久视频播放| 久久久久国产一级毛片高清牌| 日日夜夜操网爽| 亚洲熟女毛片儿| 在线视频色国产色| 人人妻人人澡欧美一区二区| 亚洲真实伦在线观看| 午夜激情福利司机影院| 亚洲一区高清亚洲精品| 日日爽夜夜爽网站| 国产亚洲精品久久久久久毛片| 亚洲国产毛片av蜜桃av| av在线天堂中文字幕| 给我免费播放毛片高清在线观看| svipshipincom国产片| 久久精品亚洲精品国产色婷小说| 少妇粗大呻吟视频| 婷婷六月久久综合丁香| 一夜夜www| 免费在线观看黄色视频的| 欧美国产日韩亚洲一区| 香蕉久久夜色| 免费在线观看影片大全网站| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲三区欧美一区| 国产高清激情床上av| 黑丝袜美女国产一区| 在线观看日韩欧美| 国产片内射在线| 国产精品亚洲美女久久久| 妹子高潮喷水视频| 美女大奶头视频| 成在线人永久免费视频| 国产av又大| √禁漫天堂资源中文www| www日本在线高清视频| 日韩欧美 国产精品| 女生性感内裤真人,穿戴方法视频| 久久午夜亚洲精品久久| 丰满人妻熟妇乱又伦精品不卡| 99国产精品一区二区三区| 伊人久久大香线蕉亚洲五| 男女床上黄色一级片免费看| 亚洲七黄色美女视频| 非洲黑人性xxxx精品又粗又长| 午夜久久久久精精品| 国产精品亚洲美女久久久| 日韩免费av在线播放| 1024香蕉在线观看| 久久久久九九精品影院| 黄色丝袜av网址大全| 少妇熟女aⅴ在线视频| 每晚都被弄得嗷嗷叫到高潮| 欧美黑人欧美精品刺激| 久久精品成人免费网站| 国产成人啪精品午夜网站| 欧美精品啪啪一区二区三区| 2021天堂中文幕一二区在线观 | 在线观看舔阴道视频| 精品国产超薄肉色丝袜足j| avwww免费| 亚洲五月天丁香| svipshipincom国产片| 老熟妇乱子伦视频在线观看| 91成人精品电影| 国产精品av久久久久免费| 很黄的视频免费| 日日爽夜夜爽网站| 欧美日韩黄片免| 男女床上黄色一级片免费看| 给我免费播放毛片高清在线观看| 正在播放国产对白刺激| 日韩中文字幕欧美一区二区| 亚洲av美国av| 香蕉国产在线看| xxx96com| 一级a爱视频在线免费观看| 午夜福利欧美成人| 18禁美女被吸乳视频| 在线av久久热| 中文字幕高清在线视频| 99久久久亚洲精品蜜臀av| 免费av毛片视频| 亚洲精华国产精华精| 国产久久久一区二区三区| 熟妇人妻久久中文字幕3abv| 美女免费视频网站| 人成视频在线观看免费观看| 国产激情久久老熟女| 岛国在线观看网站| 黄色女人牲交| 啪啪无遮挡十八禁网站| 中文字幕精品亚洲无线码一区 | 12—13女人毛片做爰片一| 在线天堂中文资源库| 一本一本综合久久| 精品久久久久久久久久久久久 | 亚洲av美国av| 一级片免费观看大全| 久久草成人影院| 欧美绝顶高潮抽搐喷水| 亚洲自拍偷在线| 亚洲欧美一区二区三区黑人| 在线看三级毛片| 日韩大尺度精品在线看网址| 亚洲三区欧美一区| 美女高潮喷水抽搐中文字幕| 一区二区三区精品91| 一级毛片女人18水好多| 大型黄色视频在线免费观看| 久久久久久大精品| 久久久精品国产亚洲av高清涩受| 亚洲av成人一区二区三| 久久久久亚洲av毛片大全| 欧美成人性av电影在线观看| 精品午夜福利视频在线观看一区| 欧美 亚洲 国产 日韩一| 久久亚洲精品不卡| 亚洲一码二码三码区别大吗| 欧美一级毛片孕妇| 国产精品国产高清国产av| 丁香欧美五月| 满18在线观看网站| 欧美另类亚洲清纯唯美| 日韩精品中文字幕看吧| 99re在线观看精品视频| av视频在线观看入口| 中出人妻视频一区二区| 美国免费a级毛片| 中文字幕人成人乱码亚洲影| 久久精品aⅴ一区二区三区四区| 久久久久久国产a免费观看| 精品一区二区三区四区五区乱码| 成人永久免费在线观看视频| 男人舔女人下体高潮全视频| 欧美zozozo另类| 精品日产1卡2卡| 女同久久另类99精品国产91| 亚洲第一青青草原| 麻豆av在线久日| 91老司机精品| 日本免费一区二区三区高清不卡| 久久久水蜜桃国产精品网| 国产av又大| 国产成人精品久久二区二区免费| 免费看a级黄色片| 亚洲国产欧美一区二区综合| 久久热在线av| 国产精品综合久久久久久久免费| 黑丝袜美女国产一区| 亚洲一区高清亚洲精品| 国语自产精品视频在线第100页| 亚洲精品色激情综合| 国产日本99.免费观看| 亚洲va日本ⅴa欧美va伊人久久| 久久精品国产亚洲av香蕉五月| 后天国语完整版免费观看| 欧美日本视频| 久久99热这里只有精品18| 国产av又大| 国产成+人综合+亚洲专区| 国产高清激情床上av| 久久香蕉激情| 日本熟妇午夜| 免费电影在线观看免费观看| 日本一区二区免费在线视频| 色婷婷久久久亚洲欧美| 欧美黄色片欧美黄色片| 在线看三级毛片| 一级a爱视频在线免费观看| 黄色视频不卡| 老司机午夜福利在线观看视频| 亚洲熟女毛片儿| 精品久久久久久久毛片微露脸| 成人亚洲精品av一区二区| 欧美成人午夜精品| 亚洲熟妇熟女久久| 亚洲国产中文字幕在线视频| 12—13女人毛片做爰片一| 精品免费久久久久久久清纯| 久久热在线av| 日韩成人在线观看一区二区三区| 麻豆av在线久日| 国产成人av激情在线播放| 黄色 视频免费看| 黄色视频,在线免费观看| 特大巨黑吊av在线直播 | 免费搜索国产男女视频| 久久人妻av系列| 国产爱豆传媒在线观看 | 一边摸一边抽搐一进一小说| 怎么达到女性高潮| 亚洲自拍偷在线| 18禁裸乳无遮挡免费网站照片 | 国产野战对白在线观看| 国产精品久久久久久人妻精品电影| 夜夜躁狠狠躁天天躁| 久久人人精品亚洲av| 中国美女看黄片| 中文字幕av电影在线播放| 99re在线观看精品视频| 午夜精品久久久久久毛片777| 久久久久久久久中文| 97人妻精品一区二区三区麻豆 | 美女 人体艺术 gogo| 国产亚洲精品综合一区在线观看 | 国产又爽黄色视频| 亚洲狠狠婷婷综合久久图片| 男人操女人黄网站| 久久久久久久久中文| 搡老岳熟女国产| 成人手机av| 搡老熟女国产l中国老女人| 亚洲成人国产一区在线观看| www.www免费av| 亚洲天堂国产精品一区在线| 一边摸一边做爽爽视频免费| 黄色视频不卡| 亚洲av电影不卡..在线观看| 国产午夜福利久久久久久| 国产伦人伦偷精品视频| 50天的宝宝边吃奶边哭怎么回事| 91麻豆精品激情在线观看国产| 国产av一区在线观看免费| 两个人免费观看高清视频| 熟女少妇亚洲综合色aaa.| 国产又色又爽无遮挡免费看| 午夜福利成人在线免费观看| 日韩精品免费视频一区二区三区| xxxwww97欧美| 日本成人三级电影网站| 岛国视频午夜一区免费看| 亚洲全国av大片| 99在线人妻在线中文字幕| 最新在线观看一区二区三区| 成人国产综合亚洲| 色综合站精品国产| 精品日产1卡2卡| 国产免费男女视频| 亚洲欧美激情综合另类| 久久久久久久久中文| 国产av在哪里看| 黄片大片在线免费观看| 一本大道久久a久久精品| 久久精品夜夜夜夜夜久久蜜豆 | 国产一区二区三区视频了| 亚洲aⅴ乱码一区二区在线播放 | 婷婷六月久久综合丁香| 亚洲成人久久爱视频| 国产成+人综合+亚洲专区| 又紧又爽又黄一区二区| 99国产综合亚洲精品| 免费在线观看日本一区| 国产一区在线观看成人免费| 老司机午夜十八禁免费视频| 亚洲电影在线观看av| 最近最新免费中文字幕在线| 午夜免费鲁丝| 日本 av在线| 桃色一区二区三区在线观看| 国产高清视频在线播放一区| 男人的好看免费观看在线视频 | 亚洲av五月六月丁香网| 在线免费观看的www视频| 午夜成年电影在线免费观看| 日韩欧美国产一区二区入口| 一本一本综合久久| 色婷婷久久久亚洲欧美| 国产精品久久久久久精品电影 | 国产私拍福利视频在线观看| 真人一进一出gif抽搐免费| 久久国产精品影院| а√天堂www在线а√下载| 国产成人精品久久二区二区免费| 亚洲av美国av| 天堂影院成人在线观看| 亚洲精品久久成人aⅴ小说| 91麻豆av在线| 午夜影院日韩av| 午夜精品久久久久久毛片777| 国产成人精品久久二区二区免费| 欧美黄色片欧美黄色片| 操出白浆在线播放| 女性被躁到高潮视频| 成人免费观看视频高清| xxx96com| 午夜a级毛片| 人妻久久中文字幕网| av中文乱码字幕在线| 国产伦人伦偷精品视频| 宅男免费午夜| 亚洲色图 男人天堂 中文字幕| av电影中文网址| 日韩欧美三级三区| 在线av久久热| 嫩草影视91久久| 精品欧美国产一区二区三| 国产精品一区二区精品视频观看| 听说在线观看完整版免费高清| 色综合欧美亚洲国产小说| 久久精品人妻少妇| 18禁裸乳无遮挡免费网站照片 | 在线观看免费视频日本深夜| 免费观看人在逋| 久久久久久久久中文| 老汉色av国产亚洲站长工具| 国产视频内射| 色哟哟哟哟哟哟| 这个男人来自地球电影免费观看| 国产伦一二天堂av在线观看| 免费高清视频大片| 欧洲精品卡2卡3卡4卡5卡区| 亚洲欧美日韩无卡精品| 精品一区二区三区四区五区乱码| 精品国产亚洲在线| 一边摸一边抽搐一进一小说| 免费在线观看视频国产中文字幕亚洲| 女性生殖器流出的白浆| 欧美另类亚洲清纯唯美| 侵犯人妻中文字幕一二三四区| 国产成人精品无人区| 国产精品野战在线观看| 久久精品国产清高在天天线| 亚洲人成电影免费在线| 亚洲成人精品中文字幕电影| 丰满人妻熟妇乱又伦精品不卡| 日本精品一区二区三区蜜桃| 久久精品国产综合久久久| 欧美zozozo另类| 亚洲熟女毛片儿| 日韩有码中文字幕| 国产精品久久久av美女十八| 91大片在线观看| 美女高潮到喷水免费观看| 波多野结衣巨乳人妻| 91av网站免费观看| 久久香蕉精品热| 女警被强在线播放| 久久狼人影院| 中文字幕久久专区| 制服丝袜大香蕉在线| 国产亚洲精品一区二区www| 成人亚洲精品一区在线观看| 日本一本二区三区精品| 久久精品夜夜夜夜夜久久蜜豆 | 女生性感内裤真人,穿戴方法视频| 亚洲avbb在线观看| 成人三级黄色视频| aaaaa片日本免费| 韩国精品一区二区三区| 一进一出抽搐动态| 18禁观看日本| 女警被强在线播放| 久久精品人妻少妇| 国产极品粉嫩免费观看在线| 12—13女人毛片做爰片一| 99热6这里只有精品| 男女下面进入的视频免费午夜 | 午夜福利在线在线| av片东京热男人的天堂| 亚洲三区欧美一区| 国产高清视频在线播放一区| 91国产中文字幕| 一二三四在线观看免费中文在| 欧美黑人巨大hd| 欧美激情久久久久久爽电影| 日本免费a在线| 国产精品野战在线观看| 国产一区二区激情短视频| 看免费av毛片| 亚洲av成人av| 国内精品久久久久精免费| 国产主播在线观看一区二区| 欧美另类亚洲清纯唯美| 国产精品香港三级国产av潘金莲| 色综合欧美亚洲国产小说| 国产真人三级小视频在线观看| www国产在线视频色| 欧美av亚洲av综合av国产av| 精品久久蜜臀av无| 巨乳人妻的诱惑在线观看| 老司机福利观看| 久久久国产欧美日韩av| 熟女少妇亚洲综合色aaa.| 国产成年人精品一区二区| 亚洲一区二区三区不卡视频| 18禁裸乳无遮挡免费网站照片 | 男女之事视频高清在线观看| 999久久久精品免费观看国产| aaaaa片日本免费| 欧美午夜高清在线| 韩国av一区二区三区四区| 中国美女看黄片| 欧美又色又爽又黄视频| 日韩欧美国产在线观看| 俄罗斯特黄特色一大片| 日本黄色视频三级网站网址| 国产视频内射| 亚洲av美国av| 日韩国内少妇激情av| 制服诱惑二区| 美女午夜性视频免费| 欧美最黄视频在线播放免费| cao死你这个sao货| 91字幕亚洲| 成人18禁在线播放| 日韩视频一区二区在线观看| 亚洲五月色婷婷综合| 免费在线观看成人毛片| 免费电影在线观看免费观看| 久久精品亚洲精品国产色婷小说| 成年人黄色毛片网站| 97人妻精品一区二区三区麻豆 | 两个人免费观看高清视频| 波多野结衣巨乳人妻| 精品久久久久久久末码| 男人舔奶头视频| 天堂影院成人在线观看| 欧美激情高清一区二区三区| 身体一侧抽搐| 亚洲精品国产一区二区精华液| 亚洲中文av在线| 变态另类成人亚洲欧美熟女| 很黄的视频免费| 免费电影在线观看免费观看| 老司机深夜福利视频在线观看| 后天国语完整版免费观看| 巨乳人妻的诱惑在线观看| 窝窝影院91人妻| 国产精品久久久久久人妻精品电影| 亚洲 国产 在线| 黄色丝袜av网址大全| 国产精品av久久久久免费| 亚洲精品在线美女| 欧美黄色淫秽网站| 波多野结衣高清作品| 日本熟妇午夜| bbb黄色大片| 国产av一区二区精品久久| 热re99久久国产66热| a在线观看视频网站| 一区二区三区高清视频在线| 特大巨黑吊av在线直播 | 天天一区二区日本电影三级| 精品熟女少妇八av免费久了| 国产av一区二区精品久久| 亚洲国产欧美网| 十八禁人妻一区二区| 97人妻精品一区二区三区麻豆 | 亚洲男人天堂网一区| www日本在线高清视频| 国产国语露脸激情在线看| 国产蜜桃级精品一区二区三区| 久久久久免费精品人妻一区二区 | 麻豆成人av在线观看| 女人被狂操c到高潮| 哪里可以看免费的av片| 一二三四在线观看免费中文在| 久9热在线精品视频| avwww免费| 欧美乱码精品一区二区三区| 欧美色视频一区免费| 国产av一区二区精品久久| 国产成+人综合+亚洲专区| 99精品久久久久人妻精品| 色综合亚洲欧美另类图片| 欧美绝顶高潮抽搐喷水| 可以在线观看的亚洲视频| 91麻豆精品激情在线观看国产| 两性午夜刺激爽爽歪歪视频在线观看 | 中亚洲国语对白在线视频| 人人妻人人澡欧美一区二区| 看免费av毛片| 1024视频免费在线观看| 日韩欧美国产一区二区入口| 精品久久久久久久久久免费视频| 免费搜索国产男女视频| 国产野战对白在线观看| 窝窝影院91人妻| 俺也久久电影网| 精品国产一区二区三区四区第35| 色综合婷婷激情| 男人操女人黄网站| 丰满的人妻完整版| 色婷婷久久久亚洲欧美|