• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of Ionic Surfactants on Bacterial Luciferase and α-Amylase*

    2009-05-15 06:17:22YANSangtian閆桑田LIAn李安ZHENGHao鄭浩LUOMingfang羅明芳andXINGXinhui邢新會(huì)
    關(guān)鍵詞:桑田李安

    YAN Sangtian (閆桑田), LI An (李安), ZHENG Hao (鄭浩), LUO Mingfang (羅明芳) and XING Xinhui (邢新會(huì))**

    ?

    Effects of Ionic Surfactants on Bacterial Luciferase and α-Amylase*

    YAN Sangtian (閆桑田), LI An (李安), ZHENG Hao (鄭浩), LUO Mingfang (羅明芳) and XING Xinhui (邢新會(huì))**

    Department of Chemical Engineering, Tsinghua University, Beijing 100084, China

    In order to study the effects of ionic surfactants on bacterial luciferase, the cationic surfactant dodecyltrimethylammonium biomide (DTAB) and anionic surfactant sodium dodecylsulfate (SDS) were chosen. For comparison with bacterial luciferase, α-amylase was used since these two enzymes have similar electrostatic potential and charged active sites. After the enzymes were treated with the surfactants, the catalytic properties of bacterial luciferase and α-amylase were assayed, and fluorescence spectroscopy and circular dichroism (CD) were used to analyze the alteration of the protein structure. The results showed that when the DTAB concentration was low, the cationic surfactant DTAB enhanced the enzymatic activities of bacterial luciferase and α-amylase. On the other hand, the anionic surfactant SDS did not alter the enzymatic activity. The main interaction of cationic surfactant DTAB and the negatively charged surface of the proteins was the ionic interaction, which could alter the environment for the enzyme to work when the DTAB/enzyme molar ratio was low. However, at high cationic surfactant concentration, the ionic interaction and hydrophobic interaction might destroy the secondary and tertiary structures of the proteins, leading to the loss of enzymatic activities.

    luciferase, α-amylase, ionic surfactant, surfactant-enzyme interaction

    1 Introduction

    Many organisms, ranging from bacteria and fungi to fireflies and fish, are capable of emitting light [1]. In these systems, bacterial bioluminescence (LUX) is generated by a complicated reaction catalyzed by bacterial luciferase, shown in Eqs. (1) and (2) [2]. The bacterial luciferase is encoded by theAB gene, which can be widely expressed in other organisms.

    As seen from the above reaction mechanism, in addition to luciferase, intracellular coenzymes of FMN, FMNH2and NAD(P)H are also involved in luminescence. Bioluminescence is thus dependent upon bacterial cell concentration and metabolic activity. Bioluminescent bacteria have been used formonitoring of the toxicity of environmental samples and as commercial biosensors [3, 4]. Bioluminescence can also be used to indicate the biocatalyst concentration in mixed culture or in cofactor regeneration systems [5, 6]. In the above applications, the sensitivity of the bioluminescence formation is important. Recently, it has been reported that the light emission in the bioluminescence reaction by firefly luciferase is improved by a surfactant [7]. In our previous study [2], we use the cationic surfactant dodecyltrimethylammonium biomide (DTAB) to treat theBLU cells containing bacterialgenes, which significantly alters the bioluminescence output, but the reason remains unclear. Until now, few researches have been reported on analysis of the interaction between bacterial luciferase and surfactants.

    Surfactant-enzyme (protein) interactions in aqueous solutions have been focused in many researches, and extensively studied for applications such as drug delivery, cosmetics and detergency, biodegradation, and for membrane proteins and lipids [8]. The interactions are important because they can modulate protein functions [9]. however, it is still very difficult to predict the molecular alteration of a protein by surfactants.

    For interaction of surfactants with proteins, sodium dodecylsulfate (SDS) is the one studied most extensively. Other surfactants such as bile salts (sodium taurodeoxycholate, in particular), cetyltrimethylammonium bromide (CTAB) and DTAB [10] have also been investigated. The ionic head groups of the surfactants bind to the oppositely charged groups on protein surfaces by electrostatic interaction. The non-polar tail groups of the surfactants interact with the non-polar regions of proteins by hydrophobic interaction [9]. The intermolecular force of ionic surfactants and proteins involves electrostatic forces and polar molecule forces, and the electrostatic Coulomb force between the two charged atoms, or ions, is by far the strongest physical force [11].

    In this study, in order to explore the effects of ionic surfactants on bacterial luciferase, the cationic surfactant DTAB and anionic surfactant SDS are chosen. The effects of surfactants on the enzyme structure and activity are examined. Since the surface amino acid charge in a protein is the key factor affecting the interaction between proteins and ionic surfactants [12], in addition to bacterial luciferase, several other enzymes including pepsin, firefly luciferase, α-amylase and lysozyme are used to estimate the surface electrostatic potential by Insight II software. The local charges on the protein surfaces are also very important, especially at the active site. According to the Insight II calculation results and the Protein Data Bank (PDB) database, the enzyme(s) with the most similar surface electrostatic potential and charges of the active site to those of the bacterial luciferase is chosen for comparison.

    After the enzymes are treated with surfactants, the catalytic properties of bacterial luciferase and α-amylase are assayed. Since the interaction of ionic surfactants with enzymes may result in changes in the tertiary and secondary structures [15, 16], in this study fluorescence spectroscopy and circular dichroism (CD) are used to analyze the alteration of the protein structure.

    2 Materials and methods

    2.1 Materials

    Two well-characterized enzyme proteins were used in this study: bacterial luciferase (EC 1.14.14.3; L8507; Sigma Chemical Co., molecular weight 40140) and α-amylase (EC 3.2.1.1; A4551; Sigma Chemical Co., molecular weight 44918). DTAB was purchased from TCI.-Decanol was purchased from Wako. SDS was purchased from Sigma. All other chemicals were of analytical grade and commercially available. The surface electrostatic potential of protein was calculated using the Insight II software (Biosym, San Diego, CA, USA, Accelrys Inc. 2001). The structural data of the two enzymes were downloaded from PDB [17], and input into the Insight II software to calculate the average surface electrostatic potential for a molecular structure under any pH condition. To choose the enzyme for comparison with the target bacterial luciferase, many enzymes including pepsin, bacterial luciferase, firefly luciferase, α-amylase and lysozyme were used for the molecular calculation.

    2.2 Procedures

    2.3 Analysis

    2.3.1

    The bacterial luciferase activity was evaluated by the bioluminescence (LUX) [1]. The reaction mixture for bioluminescence determination consisted of 1 ml.cell lysate, to provide the coenzyme for the reaction, and 50 μl 1 g·L-1bacterial luciferase. After the mixture was prepared and 10 μl-decanal was added, the bioluminescence was immediately detected by using a luminocounter (NU-700, Microteku-nichion, Japan). The waiting time and detection time of the luminocounter were set at 5 s, respectively [6]. The result of LUX was expressed by relative luminescence units (RLUs). Triplicate measurements were performed for each sample.

    2.3.2

    The fluorescence spectroscopy experiments were performed using a fluorescence spectrophotometer (F-2500, Hitachi Co., Japan). The enzyme solution after treatment with the surfactants was excited at 280 nm and the fluorescence due to the tryptophan and tyrosine residues was measured in the range of 300-500 nm. The value ofmaxfor the emission was found to be about 340 nm.

    2.3.3

    The changes in the secondary and tertiary structures of bacterial luciferase and α-amylase with the DTAB and SDS treatment under different conditions were evaluated by CD measurement. The far-ultraviolet CD spectra between 190 and 250 nm were recorded at 25°C with a spectropolarimeter (J-715, JASCO, Tokyo, Japan).

    3 Results and Discussion

    3.1 Enzymatic activity after treatment with DTAB and SDS

    In order to compare the cationic surfactant DTAB and anionic surfactant SDS, the surfactant concentration, expressed by molar ratio (surfactant moles/enzyme moles), is in the range 100︰1 to 12000︰1 in this study. The enzymatic activity after treatment with different molar ratios of DTAB is shown in Fig. 1. At low DTAB concentration, the activities for the bacterial luciferase and α-amylase are enhanced. The highest LUX for the bacterial luciferase is 6.31×106RLU at molar ratio of 130︰1 (DTAB concentration 0.05 g·L-1), which is about 7-fold higher than the LUX of the control without the DTAB treatment. The α-amylase activity is also increased compared with the control, but the maximal increment is smaller than that of the bacterial luciferase. However, when the DTAB/enzyme molar ratio is higher than 1950︰1, the enzymatic activity of the bacterial luciferase decreases. The LUX is 3.87×105RLU at 1 g·L-1DTAB (DTAB/enzyme molar ratio 2600︰1), only about 44% of the control. Similarly, α-amylase keeps its improved activity until the DTAB/enzyme molar ratio reaches 2600︰1, and its activity decreases when the DTAB/enzyme molar ratio is higher than 2920︰1.

    Figure 1 The activities of bacterial luciferase and α-amylase after treatment with DTAB for 20 min

    □?α-amylase;○?bacterial luciferase

    Figure 2 shows the enzymatic activity after treatment with SDS at different SDS/enzyme molar ratios. The anionic surfactant SDS does not enhance the activities of either bacterial luciferase or α-amylase. High SDS concentration also leads to a decrease of enzymatic activity for both enzymes. Moreover, in the control experiments, adding cofactor and surfactant without the luciferase does not affect the detection of LUX (data not shown).

    Figure 2 Activities of bacterial luciferase and α-amylase after treatment with SDS for 20 min

    □?α-amylase;○?bacterial luciferase

    The above results indicate that the bacterial luciferase and α-amylase have the same behavior when treated with DTAB and SDS. For cationic DTAB,there is an optimal molar ratio of DTAB/enzyme for improving the enzyme activity, while the anionic SDS shows a different pattern.

    3.2 Fluorescence spectroscopy

    The fluorescence of bacterial luciferase and α-amylase depends upon tryptophan (Trp) residues (data not shown). Fluorescence spectroscopy is used to analyze the tertiary structure of the bacterial luciferase and α-amylase after treatment with DTAB and SDS (Figs. 3 and 4). As shown in Fig. 3, at low molar ratio of DTAB/enzyme (the ratio 200︰1 for bacterial luciferase and 234︰1 for α-amylase), the fluorescence intensities of these two enzymes are increased compared with the control. It is consistent withan investigation for another luciferase, firefly luciferase, in which the activity is enhanced by liposomes containing cationic surfactant at 0.5 pmol·L-1[7]. However, when the DTAB/enzyme molar ratio is higher than 260︰1 for the bacterial luciferase and 292︰1 for α-amylase, the enzymatic activities of both enzymes decrease.

    Figure 4 shows that after treatment with SDS, the fluorescence intensity of the bacterial luciferase is increased when the SDS/enzyme molar ratio is less than 30︰1, and after that, as the ratio increases, the value ofmaxfor the emission of the bacterial luciferase becomes shorter (blue-shift) [Fig. 4 (a)]. However, the fluorescence intensity of α-amylase increases with the SDS/enzyme molar ratio in the whole range examined [Fig. 4 (b)].

    The increase of the fluorescence intensity or the blue shift of the maximal emission wavelength implies that some parts of the enzymes are more hydrophobic, probably due to the exposure of the Trp to the environment. After treatment with a low molar ratio of DTAB/enzyme, the increases in the fluorescence intensity of the bacterial luciferase and α-amylase indicates that some parts of these two proteins become more hydrophobic [19, 20]. At higher DTAB/enzyme molar ratio, the obvious decrease in the fluorescence intensityindicates that the cationic surfactant changes the tertiarystructure of the bacterial luciferase and α-amylase, implyingthat more Trp residues and other amino acids areexposed to water, causing a more hydrophilic condition.

    Figure 3 Fluorescence spectra of bacterial luciferase and α-amylase after treatment with DTAB for 20 min (EX wave 280 nm)

    Figure 4 Fluorescence spectra of bacterial luciferase and α-amylase after treatment with SDS for 20 min (EX wave 280 nm)

    In contrast, SDS, an anionic surfactant, can provide a more hydrophobic condition for these two enzymes [21]. The fluorescence spectroscopy of the bacterial luciferase and α-amylase after treatment with SDS suggests that SDS makes the enzyme surface more hydrophobic. For the bacterial luciferase, the fluorescence intensity increases with SDS concentration, but the maximal emission wavelength decreases. However, under the same conditions, for the α-amylase, the fluorescence intensity increases linearly with the SDS/enzyme molar ratio. The structure of α-amylase and bacterial luciferase is changed by SDS treatment, but α-amylase is more stable than bacterial luciferase in the presence of SDS.

    3.3 CD spectra

    The far-UV CD spectroscopy (190-250 nm) is shown in Figs. 5 and 6. When the DTAB/enzyme molar ratio is 130 for bacterial luciferase [Fig. 5 (a)] and 260 for α-amylase [Fig. 5 (b)], the CD spectra are not changed significantly, but when the molar ratio is increased to 1300 for the bacterial luciferase and 2600 for α-amylase, the CD spectra are changed obviously. In the CD spectra, the negative minimum peaks at around 209 nm and 222 nm reflect the α-helix [8, 19], and the negative minimum peak at 215 nm indicates the-sheet [19]. Fig. 5 indicates that after treatment with low DTAB/enzyme molar ratio, the α-helix of these two enzymes is destroyed first, and at higher DTAB concentration, the-sheet is destroyed.

    After treatment with SDS at different concentrations, no significant changes occur in the CD spectra (Fig. 6), suggesting that the secondary structures of the enzymes do not change significantly after treatment with SDS in the range of SDS/enzyme molar ratios examined.

    3.4 Interaction between the examined enzymes and surfactants

    The effect of a surfactant on an enzyme’s structure and activity is dependent on the chemically selective interactions between the molecules, which may be influenced by enzyme structure and chemical property of surfactant. For many years, surfactants have been considered as non-specific denaturants of proteins, even though some positive effects of surfactants have been reported to enhance the activity and/or stability of some enzymes [12]. In this study, the interaction of the bacterial luciferase and α-amylase with cationic surfactant DTAB and anionic surfactant SDS are examined by evaluating the changes in the enzymatic activities and molecular structures.

    Figure 5 Circular dichroism spectra for the bacterial luciferase and α-amylase after treatment with DTAB

    Figure 6 Circular dichroism spectra for bacterial luciferase and α-amylase after treatment with SDS

    As shown in Figs. 1 and 2, when the DTAB concentration is low, the cationic surfactant DTAB may enhance the enzymatic activities of the bacterial luciferase and α-amylase, but the anionic surfactant SDS does not alter the enzymatic activities. It is widely accepted that the binding of ionic surfactant molecules to proteins can disrupt the native structure of most globular proteins [22-24]. Ionic surfactants interact with proteins through a combination of electrostatic and hydrophobic forces [25], so the surfactant head group will play a determining role in protein- surfactant interactions, which preferentially begins with the formation of strong ionic bonds between the surfactant polar groups, especially the charged sites on the protein surface [12]. Since the surface electrostatic potential and the local charges of the active sites on the protein surface of these two enzymes are similar at pH 7, the cationic surfactant DTAB may affect the surface anionic amino acid residues, which are negatively charged, or may bind to the negatively charged part on the surface in a similar pattern. The fluorescence spectrum analysis (Fig. 3) also indicates that when the DTAB concentration is low, some parts of the enzyme are exposed to a more hydrophobic environment. The electrostatic force between the active site and the surfactant may allow the active sites of the enzyme to become more flexible by changing its surrounding environment, increasing the enzymatic activity. At high DTAB concentration, the surfactant and protein association changes the enzyme structures, and the bacterial luciferase and α-amylase lose their activity, as indicated by the CD spectra (Fig. 5).

    The main interaction of cationic surfactant DTAB and the negatively charged surface of the proteins is the ionic interaction, which can alter the environment in which the enzyme works when the DTAB/enzyme molar ratio is low. This interaction may contribute to the maximal luciferase activity at molar ratio of 130︰1 of DTAB to luciferase (Fig. 1). The detailed reason is still unclear now, but this phenomenon will be useful for further analysis of the DTAB-enzyme interaction mechanism. However, at higher cationic surfactant concentration, the ionic interaction and hydrophobic interaction may destroy the secondary and tertiary structures of the proteins, leading to the loss of enzyme activity.

    On the other hand, the interactions of the bacterial luciferase and α-amylase with anionic SDS are different from those with DTAB. Since the surface electrostatic potential and especially the amino acid residues in the active sites of the two enzymes are negative, it may be difficult for the anionic surfactant to access the enzymes. Although the fluorescence spectra (Fig. 4) indicates that the enzymes are exposed to a more hydrophobic environment by in the presence of SDS, the protein structure does not change apparently in the range of the SDS/enzyme molar ratio examined, as reflected by the CD spectra (Fig. 6).

    The results obtained in this study explain the phenomenon in which the luminescence of the bioluminescent.BLU is influenced by the addition of DTAB, and imply that DTAB may be used to enhance the luminescence of bacterial luciferaseor.

    4 Conclusions

    The effect of a surfactant on enzyme structure and activity is dependent on the chemically selective interactions between the two kinds of molecules, which may be influenced by the enzyme structure and the chemical property of the surfactant. When the DTAB concentration is low, the cationic surfactant DTAB enhances the enzymatic activities of bacterial luciferase and α-amylase, while the anionic surfactant SDS has little effect. At higher concentration of cationic surfactant DTAB, the surfactant and protein association may cause some changes in the enzyme structure. The ionic interaction and hydrophobic interaction may destroy the secondary and tertiary structures of the proteins, leading to the loss of the enzyme activity. The interactions of the bacterial luciferase and α-amylase with anionic SDS are different from those with DTAB. The protein structures are not changed apparently in the range of SDS/enzyme molar ratio examined.

    1 Hastings, J.W., “Chemistries and colors of bioluminescent reactions: A review”,, 173, 5-11 (1996).

    2 Tanaka, T., Xing, X.H., Matsumoto, K., Unno, H., “Preparation and characteristics of resting cells of bioluminescentBLU”,..., 12, 29-36 (2002).

    3 Gil, G.C., Kim, Y.J., Gu, M.B., “Enhancement in the sensitivity of a gas biosensor by using an advanced immobilization of a recombinant bioluminescent bacterium”,.., 17, 427-432 (2002).

    4 Lampinen, J., Virta, M., Karp, M., “Use of controlled luciferase expression to monitor chemicals affecting protein-synthesis”,..., 61, 2981-2989 (1995).

    5 Burlage, R.S., Kuo., C.T., “Living biosensors for the management and manipulation of microbial consortia”,..., 48, 291-309 (1994).

    6 Xing, X.H., Tanaka, T., Matsumoto, K., Unno, H., “Characteristics of a newly created bioluminescent pseudomonas putida harboring TOL plasmid for use in analysis of a bioaugmentation system”,.., 22, 671-676 (2000).

    7 Kamidate, T., Niwa, S., Nakata, N., Application of cationic liposomes containing surfactants to an enhancer in firefly bioluminescent assay of adenosine 5′-triphosphate,.., 424, 169-175 (2000).

    8 Hoshino,E., Tanaka, A., Kanda, T., “Effects of a nonionic surfactant on the behavior ofamyloliquefaciens alpha-amylase in the hydrolysis of malto-oligosaccharide”,.., 9, 63-68 (2006).

    9 Kelley, D., Mcclements, D.J., “Interactions of bovine serum albumin with ionic surfactants in aqueous solutions”,, 17, 73-85 (2003).

    10 Chakraborty, T., Chakraborty, I., Moulik, S.P., Ghosh, S., “Physicochemical studies on pepsin-CTAB interaction: Energetics and structural changes”,..., 111, 2736-2746 (2007).

    11 Israelachvili, J.N., Intermolecular and Surface Forces, Academic Press, London (1991).

    12 Savelli, G., Spreti, N., Di Profio, P., “Enzyme activity and stability control by amphiphilic self-organizing systems in aqueous solutions”,..., 5, 111-117 (2000).

    13 Bordbar, A.K., Hosseinzadeh, R., Omidiyan, K., “Potentiometric study on interaction of dodecyltrimethylammonium bromide with alpha-amylase”,...., 77 (11), 2027-2032 (2004).

    14 Bordbar, A.K., Hosseinzadeh, R., Omidiyan, K., “Study on interaction of alpha-amylase fromsubtilis with cetyl trimethylammonium bromide”,..-, 40, 2027-2032 (2005).

    15 Gharibi, H., Javadian, S., Hashemianzadeh, M., “Investigation of interaction of cationic surfactant with HSA in the presence of alcohols using PFG-NMR and potentiometric technique”,..-..., 232, 77-86 (2004).

    16 Wei, X.F., Liu, H.Z., “Relationship between foaming properties and solution properties of protein/nonionic surfactant mixtures”,.., 3, 491-495 (2000).

    17 Berman, H.M., Battistuz, T., Bhat, T.N., Bluhm, W.F., Bourne, P.E., Burkhardt, K., Iype, L., Jain, S., Fagan, P., Marvin, J., Padilla, D., Ravichandran, V., Schneider, B., Thanki, N., Weissig, H., Westbrook, J.D., Zardecki, C., “The protein data bank”,..-.., 58, 899-907 (2002).

    18 Stellmach, B., Bestimmungsmethoden Enzyme, Steinkopff Verlag, Darmstadt (1988).

    19 Wu, D., Xu, G.Y., “Study on protein-surfactant interaction by spectroscopic methods”,..., 22, 254-260 (2006).

    20 Zhao, N., Zhou, H., Biophysics, China Higher Education Press, Beijing (2000). (in Chinese)

    21 Neu, T.R., “Significance of bacterial surface-active compounds in interaction of bacteria with interfaces”,.., 60, 151-166 (1996).

    22 Bordbar, A.K., Moosavi-Movahedi, A.A., Amini, M.K., “A microcalorimetry and binding study on interaction of dodecyl trimethylammonium bromide with wigeon hemoglobin”,., 400, 95-100 (2003).

    23 Goddard, E.D., Protein-Surfactant Interactions, CRC Press, New York (1993).

    24 Sabate, R., Estelrich. J., “Interaction of alpha-amylase with-alkylammonium bromides”,...., 28 (2), 151-156 (2001).

    25 Bordbar, A.K., Saboury, A.A., Housaindokht, M.R., Moosavi-Movahedi, A.A., “Statistical effects of the binding of ionic surfactant to protein”,..., 192, 415-419 (1997).

    2009-03-03,

    2009-06-03.

    the National Natural Science Foundation of China (20676071, 20836004).

    ** To whom correspondence should be addressed. E-mail: xhxing@tsinghua.edu.cn

    猜你喜歡
    桑田李安
    青春作伴·沃野桑田
    青梅竹馬
    金山(2021年10期)2021-11-02 08:53:02
    不做房間里最聰明的人
    觀景
    李安電影視聽語言的美學(xué)特征
    科技傳播(2019年23期)2020-01-18 07:58:42
    桑田
    文苑(2019年22期)2019-11-16 03:15:01
    雞毛蒜皮無小事
    迷途終于散了霧
    花火A(2018年4期)2018-05-25 08:53:26
    飄雪
    南風(fēng)(2017年14期)2017-05-12 17:06:39
    李安電影“父親三部曲”中女性意識(shí)
    97在线视频观看| 一级毛片我不卡| 久久综合国产亚洲精品| 久久国内精品自在自线图片| 免费看日本二区| 国产在视频线在精品| av专区在线播放| 久久久久国产精品人妻aⅴ院| 天天一区二区日本电影三级| 国内少妇人妻偷人精品xxx网站| 婷婷色综合大香蕉| 国国产精品蜜臀av免费| 国产精品久久视频播放| 蜜桃亚洲精品一区二区三区| 少妇的逼水好多| av福利片在线观看| 蜜臀久久99精品久久宅男| 亚洲国产色片| 秋霞在线观看毛片| 亚洲av成人精品一区久久| 国产成人一区二区在线| 在线观看av片永久免费下载| 亚洲精品色激情综合| 超碰av人人做人人爽久久| 18禁裸乳无遮挡免费网站照片| 99热6这里只有精品| 国产精品久久电影中文字幕| 成人精品一区二区免费| 成人特级黄色片久久久久久久| 91久久精品电影网| 日本精品一区二区三区蜜桃| 美女内射精品一级片tv| 国产精品伦人一区二区| 久久久欧美国产精品| 人人妻人人澡人人爽人人夜夜 | 国产三级在线视频| 国产一区二区激情短视频| 91久久精品国产一区二区成人| 久久久色成人| 国产色爽女视频免费观看| 伦精品一区二区三区| 国产精品久久久久久久电影| 国产精品av视频在线免费观看| 久久精品综合一区二区三区| 国产欧美日韩一区二区精品| 国产精品一区二区免费欧美| 女同久久另类99精品国产91| 看非洲黑人一级黄片| 国产高清视频在线观看网站| 精品一区二区免费观看| 老女人水多毛片| 国产一区二区三区在线臀色熟女| 三级国产精品欧美在线观看| 久久午夜亚洲精品久久| 日韩亚洲欧美综合| 中文在线观看免费www的网站| 欧美日本视频| 国产精品综合久久久久久久免费| 日韩三级伦理在线观看| 18禁裸乳无遮挡免费网站照片| 又爽又黄无遮挡网站| 国产色婷婷99| 看黄色毛片网站| 日本熟妇午夜| 精品久久久久久久久亚洲| 美女xxoo啪啪120秒动态图| 能在线免费观看的黄片| 国产精品野战在线观看| 天天躁夜夜躁狠狠久久av| 国产精品,欧美在线| 欧美成人a在线观看| 欧美成人免费av一区二区三区| 91狼人影院| 99国产极品粉嫩在线观看| 国产一区二区三区在线臀色熟女| 老司机午夜福利在线观看视频| 91狼人影院| 欧美日韩在线观看h| 深爱激情五月婷婷| 性欧美人与动物交配| 在线播放无遮挡| 亚洲精品日韩在线中文字幕 | 1024手机看黄色片| 99久久精品一区二区三区| 午夜福利高清视频| 欧美一区二区亚洲| 高清毛片免费看| 黄色日韩在线| 亚洲自偷自拍三级| 秋霞在线观看毛片| 人妻制服诱惑在线中文字幕| 国产精品av视频在线免费观看| 嫩草影院入口| 精品一区二区三区av网在线观看| 嫩草影视91久久| 亚洲国产欧美人成| 成年女人永久免费观看视频| 欧美+日韩+精品| 亚洲中文日韩欧美视频| 国产伦在线观看视频一区| 成年版毛片免费区| 麻豆久久精品国产亚洲av| 久久久久久九九精品二区国产| 亚洲第一区二区三区不卡| 91久久精品电影网| 大型黄色视频在线免费观看| 国产国拍精品亚洲av在线观看| 国产精品日韩av在线免费观看| 床上黄色一级片| 欧美精品国产亚洲| 一a级毛片在线观看| 日本与韩国留学比较| 你懂的网址亚洲精品在线观看 | 色视频www国产| 久久精品国产清高在天天线| 亚洲国产精品sss在线观看| 亚洲专区国产一区二区| 成人美女网站在线观看视频| 一卡2卡三卡四卡精品乱码亚洲| 老司机影院成人| 日本免费a在线| 亚洲av成人av| 天堂√8在线中文| 欧美一区二区亚洲| 国产淫片久久久久久久久| 日韩强制内射视频| 欧美性猛交黑人性爽| 免费av毛片视频| 国产一区二区在线av高清观看| 日本a在线网址| 久久中文看片网| 国产精品无大码| 国产av在哪里看| 成年女人看的毛片在线观看| 久久久久国产精品人妻aⅴ院| 少妇的逼水好多| 久久久久性生活片| 最近在线观看免费完整版| 国产片特级美女逼逼视频| 国产人妻一区二区三区在| 亚洲欧美日韩高清在线视频| 亚洲欧美日韩东京热| 亚洲经典国产精华液单| 国产不卡一卡二| 久久中文看片网| 亚洲无线在线观看| 国产淫片久久久久久久久| 久久精品国产亚洲网站| 精品久久久久久久久久免费视频| 免费看光身美女| 老熟妇仑乱视频hdxx| 精华霜和精华液先用哪个| 亚洲一级一片aⅴ在线观看| 国产黄a三级三级三级人| 一个人免费在线观看电影| 黑人高潮一二区| 亚洲av一区综合| 97超视频在线观看视频| 热99在线观看视频| 国产高清激情床上av| 国产精品一区二区三区四区久久| 精品乱码久久久久久99久播| 一区福利在线观看| 亚洲成人av在线免费| 欧美一级a爱片免费观看看| 蜜桃久久精品国产亚洲av| 久久九九热精品免费| 日韩亚洲欧美综合| 在线免费十八禁| 非洲黑人性xxxx精品又粗又长| 一个人免费在线观看电影| 一区二区三区免费毛片| 亚洲av免费高清在线观看| 最近在线观看免费完整版| 精品人妻熟女av久视频| 51国产日韩欧美| 日本一本二区三区精品| 精品熟女少妇av免费看| 亚洲av美国av| 美女cb高潮喷水在线观看| 又爽又黄a免费视频| 一个人看的www免费观看视频| 国产一区二区在线观看日韩| 日本爱情动作片www.在线观看 | 寂寞人妻少妇视频99o| 亚洲自偷自拍三级| 能在线免费观看的黄片| 午夜日韩欧美国产| 欧美日韩在线观看h| 欧美性猛交╳xxx乱大交人| 亚洲最大成人手机在线| 啦啦啦韩国在线观看视频| 夜夜看夜夜爽夜夜摸| av免费在线看不卡| 国产精华一区二区三区| 啦啦啦韩国在线观看视频| 国产女主播在线喷水免费视频网站 | h日本视频在线播放| 少妇丰满av| 女人十人毛片免费观看3o分钟| 亚洲一区高清亚洲精品| 中文亚洲av片在线观看爽| 床上黄色一级片| 中文字幕精品亚洲无线码一区| 国内精品一区二区在线观看| 免费av毛片视频| 一级黄片播放器| 欧美高清成人免费视频www| 日本黄大片高清| 搡老妇女老女人老熟妇| 别揉我奶头 嗯啊视频| 亚洲色图av天堂| 亚洲成人中文字幕在线播放| 99国产精品一区二区蜜桃av| 精品久久久久久久久久久久久| 色综合色国产| 国产精品三级大全| 欧美色欧美亚洲另类二区| 午夜视频国产福利| 亚洲精品亚洲一区二区| 午夜亚洲福利在线播放| 久久精品国产鲁丝片午夜精品| 婷婷亚洲欧美| 日韩欧美三级三区| 禁无遮挡网站| 不卡视频在线观看欧美| 欧美日韩在线观看h| 亚洲av熟女| 欧美3d第一页| 久久久久国产精品人妻aⅴ院| 久久久成人免费电影| 亚洲av免费在线观看| 国产精品嫩草影院av在线观看| 黄色欧美视频在线观看| 大型黄色视频在线免费观看| 亚洲欧美日韩卡通动漫| 亚洲图色成人| 亚洲欧美精品自产自拍| 综合色丁香网| 亚洲丝袜综合中文字幕| 久久99热这里只有精品18| 亚洲人与动物交配视频| 婷婷精品国产亚洲av| 亚洲国产欧美人成| 成年免费大片在线观看| 国产高潮美女av| 毛片一级片免费看久久久久| 99热精品在线国产| 久久久成人免费电影| 熟女人妻精品中文字幕| 国产成人一区二区在线| 亚洲无线在线观看| 免费看日本二区| 日韩欧美 国产精品| 国产精品日韩av在线免费观看| 99久久精品国产国产毛片| 国产伦精品一区二区三区四那| 天天一区二区日本电影三级| 综合色av麻豆| 内地一区二区视频在线| 日韩欧美在线乱码| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲在线观看片| 高清午夜精品一区二区三区 | 久久99热这里只有精品18| 最近手机中文字幕大全| 久久久久免费精品人妻一区二区| 国产午夜精品久久久久久一区二区三区 | 日本爱情动作片www.在线观看 | 身体一侧抽搐| 国产精品一区二区三区四区久久| 久久久国产成人精品二区| 久久久欧美国产精品| 又粗又爽又猛毛片免费看| 九九热线精品视视频播放| 欧美激情在线99| 婷婷精品国产亚洲av在线| 亚洲精华国产精华液的使用体验 | 国产老妇女一区| 亚洲精品日韩在线中文字幕 | 亚洲人成网站在线观看播放| 又黄又爽又免费观看的视频| 成人永久免费在线观看视频| 免费无遮挡裸体视频| 国产午夜福利久久久久久| 村上凉子中文字幕在线| 大型黄色视频在线免费观看| 黄片wwwwww| 99国产极品粉嫩在线观看| 精品久久久久久久久av| 最后的刺客免费高清国语| av在线老鸭窝| 亚洲精品在线观看二区| 一区二区三区四区激情视频 | 亚洲成人久久爱视频| 免费av观看视频| 日韩中字成人| 亚洲aⅴ乱码一区二区在线播放| 成人欧美大片| 日本与韩国留学比较| 日韩成人av中文字幕在线观看 | 日本成人三级电影网站| АⅤ资源中文在线天堂| 精品欧美国产一区二区三| 欧美不卡视频在线免费观看| 五月玫瑰六月丁香| 亚洲天堂国产精品一区在线| 男人舔女人下体高潮全视频| 国内精品宾馆在线| 亚洲欧美日韩高清在线视频| 九九久久精品国产亚洲av麻豆| 亚洲国产精品成人久久小说 | 99久久九九国产精品国产免费| 在线观看一区二区三区| 亚洲婷婷狠狠爱综合网| 亚洲婷婷狠狠爱综合网| 日韩av不卡免费在线播放| 男人舔奶头视频| 男人舔奶头视频| 天天躁夜夜躁狠狠久久av| 国产精品久久电影中文字幕| 麻豆成人午夜福利视频| 在线免费观看不下载黄p国产| 久久精品综合一区二区三区| 1000部很黄的大片| 久久精品国产自在天天线| 国产精品三级大全| 亚洲国产精品成人综合色| 在线免费十八禁| 久久久a久久爽久久v久久| 久久久久久久久中文| 神马国产精品三级电影在线观看| 亚洲美女视频黄频| 国产一区二区在线av高清观看| 夜夜爽天天搞| 成年女人毛片免费观看观看9| 18+在线观看网站| 成人毛片a级毛片在线播放| 亚洲成人中文字幕在线播放| 久久人人爽人人爽人人片va| 国产视频内射| 小说图片视频综合网站| 99久久无色码亚洲精品果冻| 99精品在免费线老司机午夜| 搡老岳熟女国产| 亚洲熟妇熟女久久| 亚洲欧美日韩高清专用| 免费一级毛片在线播放高清视频| 天天一区二区日本电影三级| 男女边吃奶边做爰视频| 99热这里只有是精品在线观看| 一级黄色大片毛片| 狂野欧美激情性xxxx在线观看| 亚洲成人久久性| 亚洲五月天丁香| 亚洲成a人片在线一区二区| 中文字幕免费在线视频6| 国产av一区在线观看免费| 国产av在哪里看| 在线免费十八禁| 少妇熟女aⅴ在线视频| 日本 av在线| 日本欧美国产在线视频| h日本视频在线播放| 一个人免费在线观看电影| 99久久成人亚洲精品观看| 此物有八面人人有两片| 亚洲精品久久国产高清桃花| 欧美+日韩+精品| 日本 av在线| 蜜桃久久精品国产亚洲av| 91午夜精品亚洲一区二区三区| 欧美日韩乱码在线| 久久人妻av系列| 国产av在哪里看| 午夜福利在线观看吧| 欧美潮喷喷水| 亚洲精品色激情综合| 国产精品伦人一区二区| 夜夜看夜夜爽夜夜摸| 国产精品女同一区二区软件| 国内精品久久久久精免费| 国产精品国产三级国产av玫瑰| 麻豆av噜噜一区二区三区| 日本黄色视频三级网站网址| 国产黄色小视频在线观看| 韩国av在线不卡| 精品熟女少妇av免费看| 六月丁香七月| 色av中文字幕| 国产精品久久久久久精品电影| 成年免费大片在线观看| 全区人妻精品视频| 一级毛片久久久久久久久女| 亚洲三级黄色毛片| 国产男人的电影天堂91| 别揉我奶头 嗯啊视频| 午夜影院日韩av| 一个人观看的视频www高清免费观看| 真人做人爱边吃奶动态| 在线观看一区二区三区| 国产亚洲欧美98| 亚洲精华国产精华液的使用体验 | 五月玫瑰六月丁香| 高清毛片免费看| 老熟妇仑乱视频hdxx| 国产黄色视频一区二区在线观看 | 国产精品一二三区在线看| 高清午夜精品一区二区三区 | 欧美精品国产亚洲| 精品久久久久久成人av| 国产精品1区2区在线观看.| 在线观看午夜福利视频| 亚洲最大成人中文| 欧美一区二区亚洲| 国产色爽女视频免费观看| 国内少妇人妻偷人精品xxx网站| 别揉我奶头~嗯~啊~动态视频| 免费看光身美女| 国产精品久久久久久精品电影| 成人无遮挡网站| 精品少妇黑人巨大在线播放 | 亚洲国产精品久久男人天堂| 欧美三级亚洲精品| 欧美zozozo另类| 亚洲精华国产精华液的使用体验 | 嫩草影院精品99| 精品一区二区三区av网在线观看| 久久婷婷人人爽人人干人人爱| 国产淫片久久久久久久久| 久久久久久九九精品二区国产| av卡一久久| 久久亚洲国产成人精品v| 欧美精品国产亚洲| 午夜久久久久精精品| 蜜桃久久精品国产亚洲av| 免费无遮挡裸体视频| av免费在线看不卡| 亚洲图色成人| 久久精品夜夜夜夜夜久久蜜豆| 久久久久性生活片| 色综合色国产| 成人午夜高清在线视频| 真实男女啪啪啪动态图| 国产精品亚洲一级av第二区| 国产白丝娇喘喷水9色精品| 免费在线观看影片大全网站| 精品久久久久久久久亚洲| 国产一区二区三区在线臀色熟女| 亚洲成人久久爱视频| 国产精品野战在线观看| 97碰自拍视频| a级毛片a级免费在线| 可以在线观看的亚洲视频| 色5月婷婷丁香| 亚洲欧美日韩无卡精品| 国产精品久久视频播放| 色5月婷婷丁香| avwww免费| 男人的好看免费观看在线视频| 日日摸夜夜添夜夜添小说| 国产综合懂色| 亚洲成人av在线免费| 亚洲精品影视一区二区三区av| 久久久a久久爽久久v久久| 国产私拍福利视频在线观看| 尤物成人国产欧美一区二区三区| 99在线人妻在线中文字幕| 日本在线视频免费播放| 看非洲黑人一级黄片| 乱码一卡2卡4卡精品| 国产伦精品一区二区三区视频9| 久久精品国产99精品国产亚洲性色| 搡老熟女国产l中国老女人| 免费看美女性在线毛片视频| 午夜日韩欧美国产| 我要搜黄色片| 久久亚洲国产成人精品v| 久久精品影院6| 国产精品一二三区在线看| 国内揄拍国产精品人妻在线| 亚洲第一电影网av| 女生性感内裤真人,穿戴方法视频| 国产精品一区二区免费欧美| 亚洲性夜色夜夜综合| 99久久精品一区二区三区| 亚洲色图av天堂| 国产成人a∨麻豆精品| 日本黄色视频三级网站网址| 亚洲精品影视一区二区三区av| 三级国产精品欧美在线观看| 免费观看人在逋| 国产精品不卡视频一区二区| 色播亚洲综合网| 99久久九九国产精品国产免费| 久久国内精品自在自线图片| 亚洲欧美精品自产自拍| 麻豆成人午夜福利视频| 97碰自拍视频| 蜜桃久久精品国产亚洲av| 欧美日韩在线观看h| 中文字幕人妻熟人妻熟丝袜美| 亚洲美女视频黄频| 99精品在免费线老司机午夜| 亚洲国产欧美人成| 久久久久国产网址| 91久久精品国产一区二区成人| 精品一区二区三区人妻视频| 一本久久中文字幕| 成人av一区二区三区在线看| 麻豆国产av国片精品| 少妇人妻一区二区三区视频| 欧美成人免费av一区二区三区| 国产成年人精品一区二区| 久久久精品大字幕| 午夜亚洲福利在线播放| 看免费成人av毛片| 99久国产av精品国产电影| 亚洲电影在线观看av| 国产精品一二三区在线看| 色在线成人网| 尤物成人国产欧美一区二区三区| 亚洲欧美成人综合另类久久久 | 欧美性猛交黑人性爽| 亚洲人成网站在线观看播放| 久久中文看片网| 日韩成人伦理影院| 淫秽高清视频在线观看| 三级男女做爰猛烈吃奶摸视频| 亚洲高清免费不卡视频| 97碰自拍视频| 99久久成人亚洲精品观看| 九九热线精品视视频播放| 亚洲av二区三区四区| 简卡轻食公司| 精华霜和精华液先用哪个| 午夜精品一区二区三区免费看| or卡值多少钱| av福利片在线观看| 男人和女人高潮做爰伦理| 少妇人妻一区二区三区视频| 日本一二三区视频观看| 国内少妇人妻偷人精品xxx网站| 午夜激情欧美在线| 久久久成人免费电影| 观看免费一级毛片| 看非洲黑人一级黄片| 亚洲天堂国产精品一区在线| 18禁黄网站禁片免费观看直播| 人妻丰满熟妇av一区二区三区| 国产精品三级大全| 亚洲国产精品久久男人天堂| 亚洲av免费在线观看| 亚洲在线观看片| 色哟哟·www| 大香蕉久久网| 日本一二三区视频观看| 成人毛片a级毛片在线播放| 在线观看午夜福利视频| 午夜影院日韩av| 女的被弄到高潮叫床怎么办| 久久久成人免费电影| 91在线观看av| 校园人妻丝袜中文字幕| 国产伦一二天堂av在线观看| 一级毛片久久久久久久久女| 日本黄大片高清| 成人性生交大片免费视频hd| 三级国产精品欧美在线观看| 欧美另类亚洲清纯唯美| 婷婷六月久久综合丁香| 欧美成人免费av一区二区三区| 2021天堂中文幕一二区在线观| 精品人妻熟女av久视频| 97人妻精品一区二区三区麻豆| 色av中文字幕| 亚洲成人中文字幕在线播放| 欧美国产日韩亚洲一区| 男女边吃奶边做爰视频| aaaaa片日本免费| av在线蜜桃| 国内精品宾馆在线| 99久久久亚洲精品蜜臀av| 99riav亚洲国产免费| 国产精品1区2区在线观看.| 国产亚洲精品久久久com| 精品人妻视频免费看| 校园春色视频在线观看| 九九久久精品国产亚洲av麻豆| 国产精品久久电影中文字幕| 噜噜噜噜噜久久久久久91| 国产精品乱码一区二三区的特点| 国产成人a∨麻豆精品| 两性午夜刺激爽爽歪歪视频在线观看| 国产真实乱freesex| 日本与韩国留学比较| 女的被弄到高潮叫床怎么办| 丰满乱子伦码专区| 成人一区二区视频在线观看| 亚洲国产欧美人成| 国产视频一区二区在线看| 国产精品嫩草影院av在线观看| 亚洲精品日韩在线中文字幕 | 国产精品亚洲一级av第二区| 国产美女午夜福利| 色哟哟哟哟哟哟| 久久精品国产亚洲网站| 色噜噜av男人的天堂激情| 国产在线男女| 女生性感内裤真人,穿戴方法视频| 国产精品不卡视频一区二区| 69av精品久久久久久| 蜜臀久久99精品久久宅男| 蜜桃亚洲精品一区二区三区| 亚洲av.av天堂|