• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of Ionic Surfactants on Bacterial Luciferase and α-Amylase*

    2009-05-15 06:17:22YANSangtian閆桑田LIAn李安ZHENGHao鄭浩LUOMingfang羅明芳andXINGXinhui邢新會(huì)
    關(guān)鍵詞:桑田李安

    YAN Sangtian (閆桑田), LI An (李安), ZHENG Hao (鄭浩), LUO Mingfang (羅明芳) and XING Xinhui (邢新會(huì))**

    ?

    Effects of Ionic Surfactants on Bacterial Luciferase and α-Amylase*

    YAN Sangtian (閆桑田), LI An (李安), ZHENG Hao (鄭浩), LUO Mingfang (羅明芳) and XING Xinhui (邢新會(huì))**

    Department of Chemical Engineering, Tsinghua University, Beijing 100084, China

    In order to study the effects of ionic surfactants on bacterial luciferase, the cationic surfactant dodecyltrimethylammonium biomide (DTAB) and anionic surfactant sodium dodecylsulfate (SDS) were chosen. For comparison with bacterial luciferase, α-amylase was used since these two enzymes have similar electrostatic potential and charged active sites. After the enzymes were treated with the surfactants, the catalytic properties of bacterial luciferase and α-amylase were assayed, and fluorescence spectroscopy and circular dichroism (CD) were used to analyze the alteration of the protein structure. The results showed that when the DTAB concentration was low, the cationic surfactant DTAB enhanced the enzymatic activities of bacterial luciferase and α-amylase. On the other hand, the anionic surfactant SDS did not alter the enzymatic activity. The main interaction of cationic surfactant DTAB and the negatively charged surface of the proteins was the ionic interaction, which could alter the environment for the enzyme to work when the DTAB/enzyme molar ratio was low. However, at high cationic surfactant concentration, the ionic interaction and hydrophobic interaction might destroy the secondary and tertiary structures of the proteins, leading to the loss of enzymatic activities.

    luciferase, α-amylase, ionic surfactant, surfactant-enzyme interaction

    1 Introduction

    Many organisms, ranging from bacteria and fungi to fireflies and fish, are capable of emitting light [1]. In these systems, bacterial bioluminescence (LUX) is generated by a complicated reaction catalyzed by bacterial luciferase, shown in Eqs. (1) and (2) [2]. The bacterial luciferase is encoded by theAB gene, which can be widely expressed in other organisms.

    As seen from the above reaction mechanism, in addition to luciferase, intracellular coenzymes of FMN, FMNH2and NAD(P)H are also involved in luminescence. Bioluminescence is thus dependent upon bacterial cell concentration and metabolic activity. Bioluminescent bacteria have been used formonitoring of the toxicity of environmental samples and as commercial biosensors [3, 4]. Bioluminescence can also be used to indicate the biocatalyst concentration in mixed culture or in cofactor regeneration systems [5, 6]. In the above applications, the sensitivity of the bioluminescence formation is important. Recently, it has been reported that the light emission in the bioluminescence reaction by firefly luciferase is improved by a surfactant [7]. In our previous study [2], we use the cationic surfactant dodecyltrimethylammonium biomide (DTAB) to treat theBLU cells containing bacterialgenes, which significantly alters the bioluminescence output, but the reason remains unclear. Until now, few researches have been reported on analysis of the interaction between bacterial luciferase and surfactants.

    Surfactant-enzyme (protein) interactions in aqueous solutions have been focused in many researches, and extensively studied for applications such as drug delivery, cosmetics and detergency, biodegradation, and for membrane proteins and lipids [8]. The interactions are important because they can modulate protein functions [9]. however, it is still very difficult to predict the molecular alteration of a protein by surfactants.

    For interaction of surfactants with proteins, sodium dodecylsulfate (SDS) is the one studied most extensively. Other surfactants such as bile salts (sodium taurodeoxycholate, in particular), cetyltrimethylammonium bromide (CTAB) and DTAB [10] have also been investigated. The ionic head groups of the surfactants bind to the oppositely charged groups on protein surfaces by electrostatic interaction. The non-polar tail groups of the surfactants interact with the non-polar regions of proteins by hydrophobic interaction [9]. The intermolecular force of ionic surfactants and proteins involves electrostatic forces and polar molecule forces, and the electrostatic Coulomb force between the two charged atoms, or ions, is by far the strongest physical force [11].

    In this study, in order to explore the effects of ionic surfactants on bacterial luciferase, the cationic surfactant DTAB and anionic surfactant SDS are chosen. The effects of surfactants on the enzyme structure and activity are examined. Since the surface amino acid charge in a protein is the key factor affecting the interaction between proteins and ionic surfactants [12], in addition to bacterial luciferase, several other enzymes including pepsin, firefly luciferase, α-amylase and lysozyme are used to estimate the surface electrostatic potential by Insight II software. The local charges on the protein surfaces are also very important, especially at the active site. According to the Insight II calculation results and the Protein Data Bank (PDB) database, the enzyme(s) with the most similar surface electrostatic potential and charges of the active site to those of the bacterial luciferase is chosen for comparison.

    After the enzymes are treated with surfactants, the catalytic properties of bacterial luciferase and α-amylase are assayed. Since the interaction of ionic surfactants with enzymes may result in changes in the tertiary and secondary structures [15, 16], in this study fluorescence spectroscopy and circular dichroism (CD) are used to analyze the alteration of the protein structure.

    2 Materials and methods

    2.1 Materials

    Two well-characterized enzyme proteins were used in this study: bacterial luciferase (EC 1.14.14.3; L8507; Sigma Chemical Co., molecular weight 40140) and α-amylase (EC 3.2.1.1; A4551; Sigma Chemical Co., molecular weight 44918). DTAB was purchased from TCI.-Decanol was purchased from Wako. SDS was purchased from Sigma. All other chemicals were of analytical grade and commercially available. The surface electrostatic potential of protein was calculated using the Insight II software (Biosym, San Diego, CA, USA, Accelrys Inc. 2001). The structural data of the two enzymes were downloaded from PDB [17], and input into the Insight II software to calculate the average surface electrostatic potential for a molecular structure under any pH condition. To choose the enzyme for comparison with the target bacterial luciferase, many enzymes including pepsin, bacterial luciferase, firefly luciferase, α-amylase and lysozyme were used for the molecular calculation.

    2.2 Procedures

    2.3 Analysis

    2.3.1

    The bacterial luciferase activity was evaluated by the bioluminescence (LUX) [1]. The reaction mixture for bioluminescence determination consisted of 1 ml.cell lysate, to provide the coenzyme for the reaction, and 50 μl 1 g·L-1bacterial luciferase. After the mixture was prepared and 10 μl-decanal was added, the bioluminescence was immediately detected by using a luminocounter (NU-700, Microteku-nichion, Japan). The waiting time and detection time of the luminocounter were set at 5 s, respectively [6]. The result of LUX was expressed by relative luminescence units (RLUs). Triplicate measurements were performed for each sample.

    2.3.2

    The fluorescence spectroscopy experiments were performed using a fluorescence spectrophotometer (F-2500, Hitachi Co., Japan). The enzyme solution after treatment with the surfactants was excited at 280 nm and the fluorescence due to the tryptophan and tyrosine residues was measured in the range of 300-500 nm. The value ofmaxfor the emission was found to be about 340 nm.

    2.3.3

    The changes in the secondary and tertiary structures of bacterial luciferase and α-amylase with the DTAB and SDS treatment under different conditions were evaluated by CD measurement. The far-ultraviolet CD spectra between 190 and 250 nm were recorded at 25°C with a spectropolarimeter (J-715, JASCO, Tokyo, Japan).

    3 Results and Discussion

    3.1 Enzymatic activity after treatment with DTAB and SDS

    In order to compare the cationic surfactant DTAB and anionic surfactant SDS, the surfactant concentration, expressed by molar ratio (surfactant moles/enzyme moles), is in the range 100︰1 to 12000︰1 in this study. The enzymatic activity after treatment with different molar ratios of DTAB is shown in Fig. 1. At low DTAB concentration, the activities for the bacterial luciferase and α-amylase are enhanced. The highest LUX for the bacterial luciferase is 6.31×106RLU at molar ratio of 130︰1 (DTAB concentration 0.05 g·L-1), which is about 7-fold higher than the LUX of the control without the DTAB treatment. The α-amylase activity is also increased compared with the control, but the maximal increment is smaller than that of the bacterial luciferase. However, when the DTAB/enzyme molar ratio is higher than 1950︰1, the enzymatic activity of the bacterial luciferase decreases. The LUX is 3.87×105RLU at 1 g·L-1DTAB (DTAB/enzyme molar ratio 2600︰1), only about 44% of the control. Similarly, α-amylase keeps its improved activity until the DTAB/enzyme molar ratio reaches 2600︰1, and its activity decreases when the DTAB/enzyme molar ratio is higher than 2920︰1.

    Figure 1 The activities of bacterial luciferase and α-amylase after treatment with DTAB for 20 min

    □?α-amylase;○?bacterial luciferase

    Figure 2 shows the enzymatic activity after treatment with SDS at different SDS/enzyme molar ratios. The anionic surfactant SDS does not enhance the activities of either bacterial luciferase or α-amylase. High SDS concentration also leads to a decrease of enzymatic activity for both enzymes. Moreover, in the control experiments, adding cofactor and surfactant without the luciferase does not affect the detection of LUX (data not shown).

    Figure 2 Activities of bacterial luciferase and α-amylase after treatment with SDS for 20 min

    □?α-amylase;○?bacterial luciferase

    The above results indicate that the bacterial luciferase and α-amylase have the same behavior when treated with DTAB and SDS. For cationic DTAB,there is an optimal molar ratio of DTAB/enzyme for improving the enzyme activity, while the anionic SDS shows a different pattern.

    3.2 Fluorescence spectroscopy

    The fluorescence of bacterial luciferase and α-amylase depends upon tryptophan (Trp) residues (data not shown). Fluorescence spectroscopy is used to analyze the tertiary structure of the bacterial luciferase and α-amylase after treatment with DTAB and SDS (Figs. 3 and 4). As shown in Fig. 3, at low molar ratio of DTAB/enzyme (the ratio 200︰1 for bacterial luciferase and 234︰1 for α-amylase), the fluorescence intensities of these two enzymes are increased compared with the control. It is consistent withan investigation for another luciferase, firefly luciferase, in which the activity is enhanced by liposomes containing cationic surfactant at 0.5 pmol·L-1[7]. However, when the DTAB/enzyme molar ratio is higher than 260︰1 for the bacterial luciferase and 292︰1 for α-amylase, the enzymatic activities of both enzymes decrease.

    Figure 4 shows that after treatment with SDS, the fluorescence intensity of the bacterial luciferase is increased when the SDS/enzyme molar ratio is less than 30︰1, and after that, as the ratio increases, the value ofmaxfor the emission of the bacterial luciferase becomes shorter (blue-shift) [Fig. 4 (a)]. However, the fluorescence intensity of α-amylase increases with the SDS/enzyme molar ratio in the whole range examined [Fig. 4 (b)].

    The increase of the fluorescence intensity or the blue shift of the maximal emission wavelength implies that some parts of the enzymes are more hydrophobic, probably due to the exposure of the Trp to the environment. After treatment with a low molar ratio of DTAB/enzyme, the increases in the fluorescence intensity of the bacterial luciferase and α-amylase indicates that some parts of these two proteins become more hydrophobic [19, 20]. At higher DTAB/enzyme molar ratio, the obvious decrease in the fluorescence intensityindicates that the cationic surfactant changes the tertiarystructure of the bacterial luciferase and α-amylase, implyingthat more Trp residues and other amino acids areexposed to water, causing a more hydrophilic condition.

    Figure 3 Fluorescence spectra of bacterial luciferase and α-amylase after treatment with DTAB for 20 min (EX wave 280 nm)

    Figure 4 Fluorescence spectra of bacterial luciferase and α-amylase after treatment with SDS for 20 min (EX wave 280 nm)

    In contrast, SDS, an anionic surfactant, can provide a more hydrophobic condition for these two enzymes [21]. The fluorescence spectroscopy of the bacterial luciferase and α-amylase after treatment with SDS suggests that SDS makes the enzyme surface more hydrophobic. For the bacterial luciferase, the fluorescence intensity increases with SDS concentration, but the maximal emission wavelength decreases. However, under the same conditions, for the α-amylase, the fluorescence intensity increases linearly with the SDS/enzyme molar ratio. The structure of α-amylase and bacterial luciferase is changed by SDS treatment, but α-amylase is more stable than bacterial luciferase in the presence of SDS.

    3.3 CD spectra

    The far-UV CD spectroscopy (190-250 nm) is shown in Figs. 5 and 6. When the DTAB/enzyme molar ratio is 130 for bacterial luciferase [Fig. 5 (a)] and 260 for α-amylase [Fig. 5 (b)], the CD spectra are not changed significantly, but when the molar ratio is increased to 1300 for the bacterial luciferase and 2600 for α-amylase, the CD spectra are changed obviously. In the CD spectra, the negative minimum peaks at around 209 nm and 222 nm reflect the α-helix [8, 19], and the negative minimum peak at 215 nm indicates the-sheet [19]. Fig. 5 indicates that after treatment with low DTAB/enzyme molar ratio, the α-helix of these two enzymes is destroyed first, and at higher DTAB concentration, the-sheet is destroyed.

    After treatment with SDS at different concentrations, no significant changes occur in the CD spectra (Fig. 6), suggesting that the secondary structures of the enzymes do not change significantly after treatment with SDS in the range of SDS/enzyme molar ratios examined.

    3.4 Interaction between the examined enzymes and surfactants

    The effect of a surfactant on an enzyme’s structure and activity is dependent on the chemically selective interactions between the molecules, which may be influenced by enzyme structure and chemical property of surfactant. For many years, surfactants have been considered as non-specific denaturants of proteins, even though some positive effects of surfactants have been reported to enhance the activity and/or stability of some enzymes [12]. In this study, the interaction of the bacterial luciferase and α-amylase with cationic surfactant DTAB and anionic surfactant SDS are examined by evaluating the changes in the enzymatic activities and molecular structures.

    Figure 5 Circular dichroism spectra for the bacterial luciferase and α-amylase after treatment with DTAB

    Figure 6 Circular dichroism spectra for bacterial luciferase and α-amylase after treatment with SDS

    As shown in Figs. 1 and 2, when the DTAB concentration is low, the cationic surfactant DTAB may enhance the enzymatic activities of the bacterial luciferase and α-amylase, but the anionic surfactant SDS does not alter the enzymatic activities. It is widely accepted that the binding of ionic surfactant molecules to proteins can disrupt the native structure of most globular proteins [22-24]. Ionic surfactants interact with proteins through a combination of electrostatic and hydrophobic forces [25], so the surfactant head group will play a determining role in protein- surfactant interactions, which preferentially begins with the formation of strong ionic bonds between the surfactant polar groups, especially the charged sites on the protein surface [12]. Since the surface electrostatic potential and the local charges of the active sites on the protein surface of these two enzymes are similar at pH 7, the cationic surfactant DTAB may affect the surface anionic amino acid residues, which are negatively charged, or may bind to the negatively charged part on the surface in a similar pattern. The fluorescence spectrum analysis (Fig. 3) also indicates that when the DTAB concentration is low, some parts of the enzyme are exposed to a more hydrophobic environment. The electrostatic force between the active site and the surfactant may allow the active sites of the enzyme to become more flexible by changing its surrounding environment, increasing the enzymatic activity. At high DTAB concentration, the surfactant and protein association changes the enzyme structures, and the bacterial luciferase and α-amylase lose their activity, as indicated by the CD spectra (Fig. 5).

    The main interaction of cationic surfactant DTAB and the negatively charged surface of the proteins is the ionic interaction, which can alter the environment in which the enzyme works when the DTAB/enzyme molar ratio is low. This interaction may contribute to the maximal luciferase activity at molar ratio of 130︰1 of DTAB to luciferase (Fig. 1). The detailed reason is still unclear now, but this phenomenon will be useful for further analysis of the DTAB-enzyme interaction mechanism. However, at higher cationic surfactant concentration, the ionic interaction and hydrophobic interaction may destroy the secondary and tertiary structures of the proteins, leading to the loss of enzyme activity.

    On the other hand, the interactions of the bacterial luciferase and α-amylase with anionic SDS are different from those with DTAB. Since the surface electrostatic potential and especially the amino acid residues in the active sites of the two enzymes are negative, it may be difficult for the anionic surfactant to access the enzymes. Although the fluorescence spectra (Fig. 4) indicates that the enzymes are exposed to a more hydrophobic environment by in the presence of SDS, the protein structure does not change apparently in the range of the SDS/enzyme molar ratio examined, as reflected by the CD spectra (Fig. 6).

    The results obtained in this study explain the phenomenon in which the luminescence of the bioluminescent.BLU is influenced by the addition of DTAB, and imply that DTAB may be used to enhance the luminescence of bacterial luciferaseor.

    4 Conclusions

    The effect of a surfactant on enzyme structure and activity is dependent on the chemically selective interactions between the two kinds of molecules, which may be influenced by the enzyme structure and the chemical property of the surfactant. When the DTAB concentration is low, the cationic surfactant DTAB enhances the enzymatic activities of bacterial luciferase and α-amylase, while the anionic surfactant SDS has little effect. At higher concentration of cationic surfactant DTAB, the surfactant and protein association may cause some changes in the enzyme structure. The ionic interaction and hydrophobic interaction may destroy the secondary and tertiary structures of the proteins, leading to the loss of the enzyme activity. The interactions of the bacterial luciferase and α-amylase with anionic SDS are different from those with DTAB. The protein structures are not changed apparently in the range of SDS/enzyme molar ratio examined.

    1 Hastings, J.W., “Chemistries and colors of bioluminescent reactions: A review”,, 173, 5-11 (1996).

    2 Tanaka, T., Xing, X.H., Matsumoto, K., Unno, H., “Preparation and characteristics of resting cells of bioluminescentBLU”,..., 12, 29-36 (2002).

    3 Gil, G.C., Kim, Y.J., Gu, M.B., “Enhancement in the sensitivity of a gas biosensor by using an advanced immobilization of a recombinant bioluminescent bacterium”,.., 17, 427-432 (2002).

    4 Lampinen, J., Virta, M., Karp, M., “Use of controlled luciferase expression to monitor chemicals affecting protein-synthesis”,..., 61, 2981-2989 (1995).

    5 Burlage, R.S., Kuo., C.T., “Living biosensors for the management and manipulation of microbial consortia”,..., 48, 291-309 (1994).

    6 Xing, X.H., Tanaka, T., Matsumoto, K., Unno, H., “Characteristics of a newly created bioluminescent pseudomonas putida harboring TOL plasmid for use in analysis of a bioaugmentation system”,.., 22, 671-676 (2000).

    7 Kamidate, T., Niwa, S., Nakata, N., Application of cationic liposomes containing surfactants to an enhancer in firefly bioluminescent assay of adenosine 5′-triphosphate,.., 424, 169-175 (2000).

    8 Hoshino,E., Tanaka, A., Kanda, T., “Effects of a nonionic surfactant on the behavior ofamyloliquefaciens alpha-amylase in the hydrolysis of malto-oligosaccharide”,.., 9, 63-68 (2006).

    9 Kelley, D., Mcclements, D.J., “Interactions of bovine serum albumin with ionic surfactants in aqueous solutions”,, 17, 73-85 (2003).

    10 Chakraborty, T., Chakraborty, I., Moulik, S.P., Ghosh, S., “Physicochemical studies on pepsin-CTAB interaction: Energetics and structural changes”,..., 111, 2736-2746 (2007).

    11 Israelachvili, J.N., Intermolecular and Surface Forces, Academic Press, London (1991).

    12 Savelli, G., Spreti, N., Di Profio, P., “Enzyme activity and stability control by amphiphilic self-organizing systems in aqueous solutions”,..., 5, 111-117 (2000).

    13 Bordbar, A.K., Hosseinzadeh, R., Omidiyan, K., “Potentiometric study on interaction of dodecyltrimethylammonium bromide with alpha-amylase”,...., 77 (11), 2027-2032 (2004).

    14 Bordbar, A.K., Hosseinzadeh, R., Omidiyan, K., “Study on interaction of alpha-amylase fromsubtilis with cetyl trimethylammonium bromide”,..-, 40, 2027-2032 (2005).

    15 Gharibi, H., Javadian, S., Hashemianzadeh, M., “Investigation of interaction of cationic surfactant with HSA in the presence of alcohols using PFG-NMR and potentiometric technique”,..-..., 232, 77-86 (2004).

    16 Wei, X.F., Liu, H.Z., “Relationship between foaming properties and solution properties of protein/nonionic surfactant mixtures”,.., 3, 491-495 (2000).

    17 Berman, H.M., Battistuz, T., Bhat, T.N., Bluhm, W.F., Bourne, P.E., Burkhardt, K., Iype, L., Jain, S., Fagan, P., Marvin, J., Padilla, D., Ravichandran, V., Schneider, B., Thanki, N., Weissig, H., Westbrook, J.D., Zardecki, C., “The protein data bank”,..-.., 58, 899-907 (2002).

    18 Stellmach, B., Bestimmungsmethoden Enzyme, Steinkopff Verlag, Darmstadt (1988).

    19 Wu, D., Xu, G.Y., “Study on protein-surfactant interaction by spectroscopic methods”,..., 22, 254-260 (2006).

    20 Zhao, N., Zhou, H., Biophysics, China Higher Education Press, Beijing (2000). (in Chinese)

    21 Neu, T.R., “Significance of bacterial surface-active compounds in interaction of bacteria with interfaces”,.., 60, 151-166 (1996).

    22 Bordbar, A.K., Moosavi-Movahedi, A.A., Amini, M.K., “A microcalorimetry and binding study on interaction of dodecyl trimethylammonium bromide with wigeon hemoglobin”,., 400, 95-100 (2003).

    23 Goddard, E.D., Protein-Surfactant Interactions, CRC Press, New York (1993).

    24 Sabate, R., Estelrich. J., “Interaction of alpha-amylase with-alkylammonium bromides”,...., 28 (2), 151-156 (2001).

    25 Bordbar, A.K., Saboury, A.A., Housaindokht, M.R., Moosavi-Movahedi, A.A., “Statistical effects of the binding of ionic surfactant to protein”,..., 192, 415-419 (1997).

    2009-03-03,

    2009-06-03.

    the National Natural Science Foundation of China (20676071, 20836004).

    ** To whom correspondence should be addressed. E-mail: xhxing@tsinghua.edu.cn

    猜你喜歡
    桑田李安
    青春作伴·沃野桑田
    青梅竹馬
    金山(2021年10期)2021-11-02 08:53:02
    不做房間里最聰明的人
    觀景
    李安電影視聽語言的美學(xué)特征
    科技傳播(2019年23期)2020-01-18 07:58:42
    桑田
    文苑(2019年22期)2019-11-16 03:15:01
    雞毛蒜皮無小事
    迷途終于散了霧
    花火A(2018年4期)2018-05-25 08:53:26
    飄雪
    南風(fēng)(2017年14期)2017-05-12 17:06:39
    李安電影“父親三部曲”中女性意識(shí)
    久久精品亚洲av国产电影网| 国产欧美日韩精品亚洲av| 黄网站色视频无遮挡免费观看| 日日爽夜夜爽网站| 亚洲欧洲日产国产| 色婷婷av一区二区三区视频| 国产成人av教育| 精品熟女少妇八av免费久了| 中文字幕人妻熟女乱码| 热99久久久久精品小说推荐| 欧美乱码精品一区二区三区| 午夜老司机福利片| 亚洲激情五月婷婷啪啪| 久久精品国产亚洲av高清一级| bbb黄色大片| 国产日韩一区二区三区精品不卡| 黄色a级毛片大全视频| e午夜精品久久久久久久| 中文字幕另类日韩欧美亚洲嫩草| 国产又爽黄色视频| 国产成人欧美| 99国产极品粉嫩在线观看| 亚洲精品一区蜜桃| 丁香六月欧美| 极品人妻少妇av视频| 五月开心婷婷网| 国产伦理片在线播放av一区| 又大又爽又粗| 久久久久视频综合| 亚洲欧美成人综合另类久久久| 国产在线免费精品| 波多野结衣av一区二区av| 妹子高潮喷水视频| 日韩中文字幕欧美一区二区| 99国产极品粉嫩在线观看| 亚洲久久久国产精品| 老汉色av国产亚洲站长工具| 国产一级毛片在线| xxxhd国产人妻xxx| 国产激情久久老熟女| 国产极品粉嫩免费观看在线| 美女福利国产在线| 久久人人97超碰香蕉20202| 久久精品国产a三级三级三级| 两性午夜刺激爽爽歪歪视频在线观看 | 天天添夜夜摸| 亚洲色图 男人天堂 中文字幕| 首页视频小说图片口味搜索| 首页视频小说图片口味搜索| 中文字幕人妻丝袜制服| 欧美激情 高清一区二区三区| 国产在线观看jvid| 男人添女人高潮全过程视频| 巨乳人妻的诱惑在线观看| 亚洲,欧美精品.| h视频一区二区三区| 欧美精品亚洲一区二区| 精品国产乱子伦一区二区三区 | 午夜91福利影院| 少妇 在线观看| 久久人人97超碰香蕉20202| 精品福利观看| 国产精品一区二区在线不卡| bbb黄色大片| 国产免费福利视频在线观看| 亚洲七黄色美女视频| 国产国语露脸激情在线看| 中文字幕色久视频| 欧美人与性动交α欧美精品济南到| 18禁国产床啪视频网站| 久久狼人影院| 国产日韩欧美在线精品| videos熟女内射| 国产精品国产av在线观看| 极品少妇高潮喷水抽搐| 成年人午夜在线观看视频| 精品一区二区三区av网在线观看 | 国产精品.久久久| 在线观看免费日韩欧美大片| av又黄又爽大尺度在线免费看| 18禁裸乳无遮挡动漫免费视频| 青草久久国产| 少妇裸体淫交视频免费看高清 | 日本av手机在线免费观看| 亚洲一卡2卡3卡4卡5卡精品中文| 高清黄色对白视频在线免费看| 国产男女超爽视频在线观看| 精品久久久久久久毛片微露脸 | 午夜成年电影在线免费观看| 日日夜夜操网爽| 亚洲专区字幕在线| 老司机在亚洲福利影院| 黄网站色视频无遮挡免费观看| 热re99久久国产66热| av天堂久久9| 女警被强在线播放| 成年人黄色毛片网站| 国产精品成人在线| 久久精品亚洲av国产电影网| av又黄又爽大尺度在线免费看| 老司机深夜福利视频在线观看 | 日韩有码中文字幕| 18禁裸乳无遮挡动漫免费视频| 亚洲一卡2卡3卡4卡5卡精品中文| 满18在线观看网站| 亚洲av国产av综合av卡| 又大又爽又粗| 99久久国产精品久久久| 淫妇啪啪啪对白视频 | 亚洲第一欧美日韩一区二区三区 | 精品一区二区三卡| 亚洲全国av大片| 久久天堂一区二区三区四区| 免费观看av网站的网址| 最近中文字幕2019免费版| 日本精品一区二区三区蜜桃| 精品国产一区二区三区四区第35| 涩涩av久久男人的天堂| 国产淫语在线视频| 国产亚洲欧美在线一区二区| 国产黄频视频在线观看| 在线av久久热| 一区二区av电影网| 最新的欧美精品一区二区| 电影成人av| 中文字幕另类日韩欧美亚洲嫩草| 国产精品久久久久久人妻精品电影 | 啦啦啦中文免费视频观看日本| 国产日韩一区二区三区精品不卡| av一本久久久久| 欧美久久黑人一区二区| 一级毛片电影观看| 美女国产高潮福利片在线看| 人妻 亚洲 视频| 男女免费视频国产| 美女主播在线视频| 免费高清在线观看视频在线观看| 久久天躁狠狠躁夜夜2o2o| 又大又爽又粗| 三级毛片av免费| 亚洲国产欧美在线一区| 丰满迷人的少妇在线观看| 国产亚洲精品一区二区www | 秋霞在线观看毛片| 9热在线视频观看99| 久久久久网色| 国产欧美日韩一区二区三区在线| 久久精品国产亚洲av香蕉五月 | 免费女性裸体啪啪无遮挡网站| 大陆偷拍与自拍| 狠狠狠狠99中文字幕| 国产成人av教育| 男男h啪啪无遮挡| 欧美日韩精品网址| 精品福利观看| 国产成+人综合+亚洲专区| 国产免费视频播放在线视频| 亚洲成人手机| 亚洲一区中文字幕在线| 日韩视频在线欧美| 午夜福利免费观看在线| 久久精品人人爽人人爽视色| www.av在线官网国产| 成年人免费黄色播放视频| 免费观看av网站的网址| 久久这里只有精品19| 亚洲情色 制服丝袜| 国产日韩欧美视频二区| 视频区欧美日本亚洲| 亚洲第一欧美日韩一区二区三区 | 亚洲国产中文字幕在线视频| 国产1区2区3区精品| 亚洲欧洲精品一区二区精品久久久| 色综合欧美亚洲国产小说| 91精品伊人久久大香线蕉| 欧美日韩黄片免| h视频一区二区三区| 满18在线观看网站| 精品欧美一区二区三区在线| 国产精品国产三级国产专区5o| 少妇被粗大的猛进出69影院| 黄频高清免费视频| 天天操日日干夜夜撸| 亚洲一码二码三码区别大吗| 久久久久久久久久久久大奶| 久久精品亚洲av国产电影网| 久久久久国产一级毛片高清牌| 日日夜夜操网爽| 国产无遮挡羞羞视频在线观看| 国产淫语在线视频| 亚洲人成77777在线视频| 超色免费av| 欧美精品av麻豆av| 国产精品99久久99久久久不卡| 亚洲全国av大片| 日韩中文字幕欧美一区二区| 老司机靠b影院| 亚洲第一av免费看| 国产一区二区激情短视频 | 亚洲国产日韩欧美精品在线观看 | 色综合欧美亚洲国产小说| 怎么达到女性高潮| 脱女人内裤的视频| 国产午夜精品论理片| 日韩中文字幕欧美一区二区| 色综合亚洲欧美另类图片| 18禁美女被吸乳视频| 高清在线国产一区| 日韩成人在线观看一区二区三区| 后天国语完整版免费观看| 久久人妻av系列| 亚洲av五月六月丁香网| 三级国产精品欧美在线观看 | 国产亚洲精品综合一区在线观看 | 久久久国产精品麻豆| 午夜精品在线福利| 成人一区二区视频在线观看| 久久天堂一区二区三区四区| 精品久久蜜臀av无| 日韩免费av在线播放| 男女之事视频高清在线观看| 国产成人精品久久二区二区免费| 18禁国产床啪视频网站| 亚洲成人久久爱视频| 国产精品电影一区二区三区| 国产亚洲av高清不卡| 免费在线观看影片大全网站| 丁香欧美五月| 亚洲精品美女久久av网站| 麻豆av在线久日| 亚洲成a人片在线一区二区| 中文字幕av在线有码专区| 国产又色又爽无遮挡免费看| 午夜激情福利司机影院| 夜夜看夜夜爽夜夜摸| 少妇裸体淫交视频免费看高清 | 国产三级中文精品| 制服丝袜大香蕉在线| 99久久综合精品五月天人人| 精品电影一区二区在线| 亚洲 国产 在线| 国产精品香港三级国产av潘金莲| 国产av不卡久久| tocl精华| 久久人妻av系列| 亚洲成人免费电影在线观看| 宅男免费午夜| 欧美成人免费av一区二区三区| 麻豆成人av在线观看| 国产私拍福利视频在线观看| 大型av网站在线播放| 日韩有码中文字幕| 亚洲第一电影网av| 免费观看精品视频网站| 国产午夜福利久久久久久| 国产私拍福利视频在线观看| 在线观看免费日韩欧美大片| 怎么达到女性高潮| 成人av一区二区三区在线看| 精品人妻1区二区| 久久亚洲精品不卡| 一二三四社区在线视频社区8| cao死你这个sao货| 国产单亲对白刺激| 国产精品一区二区三区四区免费观看 | 日本一区二区免费在线视频| 国产激情久久老熟女| 中文字幕高清在线视频| 精品电影一区二区在线| 99久久无色码亚洲精品果冻| 久久精品亚洲精品国产色婷小说| 久久久国产精品麻豆| 久久伊人香网站| 国产99白浆流出| 久久99热这里只有精品18| 国产精品九九99| 亚洲av熟女| aaaaa片日本免费| 男男h啪啪无遮挡| 大型黄色视频在线免费观看| videosex国产| 久久人妻av系列| www日本黄色视频网| 可以在线观看的亚洲视频| 国产伦一二天堂av在线观看| 搡老岳熟女国产| 色综合站精品国产| 十八禁人妻一区二区| 老司机午夜福利在线观看视频| 国产激情偷乱视频一区二区| 麻豆久久精品国产亚洲av| 亚洲精品国产精品久久久不卡| 免费在线观看黄色视频的| 麻豆成人av在线观看| 久久精品国产亚洲av高清一级| 看片在线看免费视频| 少妇人妻一区二区三区视频| 啪啪无遮挡十八禁网站| 国产麻豆成人av免费视频| 级片在线观看| 亚洲av五月六月丁香网| 97人妻精品一区二区三区麻豆| 国产精品久久久久久人妻精品电影| 欧美另类亚洲清纯唯美| 成人国产综合亚洲| 九色成人免费人妻av| 国产精品久久电影中文字幕| 成人特级黄色片久久久久久久| 国产欧美日韩一区二区三| 亚洲国产精品成人综合色| 亚洲国产中文字幕在线视频| 国产乱人伦免费视频| 美女免费视频网站| 精品免费久久久久久久清纯| 久久久国产成人精品二区| 日韩精品中文字幕看吧| 亚洲片人在线观看| 中亚洲国语对白在线视频| 脱女人内裤的视频| 亚洲成人中文字幕在线播放| 国模一区二区三区四区视频 | 99国产综合亚洲精品| 麻豆av在线久日| 一本精品99久久精品77| 精品电影一区二区在线| 久久久久久国产a免费观看| 国产69精品久久久久777片 | 日本 av在线| 欧美丝袜亚洲另类 | 亚洲精品色激情综合| 国产片内射在线| 日本 av在线| 精品日产1卡2卡| 国产亚洲精品第一综合不卡| 成人国语在线视频| 夜夜看夜夜爽夜夜摸| 欧美一区二区国产精品久久精品 | 亚洲成a人片在线一区二区| 国产1区2区3区精品| 少妇粗大呻吟视频| 天天添夜夜摸| av片东京热男人的天堂| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品美女特级片免费视频播放器 | 精品国产亚洲在线| 国产一区二区激情短视频| 一本一本综合久久| 亚洲天堂国产精品一区在线| 不卡av一区二区三区| 大型黄色视频在线免费观看| 欧美性猛交╳xxx乱大交人| 成人三级做爰电影| 亚洲中文字幕日韩| 亚洲av电影在线进入| 亚洲人成网站高清观看| 日本精品一区二区三区蜜桃| 国产成人av激情在线播放| 99热只有精品国产| 日本一本二区三区精品| 美女午夜性视频免费| 毛片女人毛片| 久久久久免费精品人妻一区二区| 国产男靠女视频免费网站| 久久香蕉国产精品| 好男人在线观看高清免费视频| 亚洲,欧美精品.| 免费在线观看黄色视频的| 波多野结衣巨乳人妻| 亚洲欧美日韩无卡精品| 两性夫妻黄色片| 日韩中文字幕欧美一区二区| 老鸭窝网址在线观看| 特级一级黄色大片| 亚洲av熟女| 亚洲一区二区三区不卡视频| 国产高清视频在线观看网站| 亚洲一区高清亚洲精品| 成年版毛片免费区| 中文字幕人成人乱码亚洲影| 亚洲av第一区精品v没综合| 国产激情久久老熟女| 国产午夜福利久久久久久| 欧美性猛交黑人性爽| 欧美极品一区二区三区四区| ponron亚洲| 这个男人来自地球电影免费观看| 欧美三级亚洲精品| av福利片在线| 精品人妻1区二区| 夜夜夜夜夜久久久久| 村上凉子中文字幕在线| 一卡2卡三卡四卡精品乱码亚洲| av在线播放免费不卡| 欧美另类亚洲清纯唯美| 日韩精品免费视频一区二区三区| 三级毛片av免费| 在线观看66精品国产| 久久中文看片网| 国产熟女午夜一区二区三区| netflix在线观看网站| 欧美av亚洲av综合av国产av| 久久久久九九精品影院| 老司机深夜福利视频在线观看| 黄片小视频在线播放| 老司机午夜十八禁免费视频| 日本成人三级电影网站| 亚洲精品中文字幕一二三四区| 757午夜福利合集在线观看| 黄频高清免费视频| av免费在线观看网站| 国模一区二区三区四区视频 | 亚洲乱码一区二区免费版| 亚洲第一欧美日韩一区二区三区| 国产精品av视频在线免费观看| 在线播放国产精品三级| 国产高清视频在线观看网站| 人人妻人人看人人澡| 极品教师在线免费播放| 激情在线观看视频在线高清| 国模一区二区三区四区视频 | 国产1区2区3区精品| 亚洲成人中文字幕在线播放| 欧美成人一区二区免费高清观看 | 99在线视频只有这里精品首页| 韩国av一区二区三区四区| 亚洲国产精品999在线| 18美女黄网站色大片免费观看| 欧美性长视频在线观看| 中国美女看黄片| 国产午夜福利久久久久久| 在线观看日韩欧美| 村上凉子中文字幕在线| 国产精品 欧美亚洲| 精品国产美女av久久久久小说| 精品第一国产精品| 日韩三级视频一区二区三区| 亚洲成av人片在线播放无| 男女之事视频高清在线观看| 日本成人三级电影网站| 成年女人毛片免费观看观看9| 高清在线国产一区| 村上凉子中文字幕在线| 女警被强在线播放| 一进一出抽搐gif免费好疼| 久久这里只有精品19| 国产成人系列免费观看| 狂野欧美白嫩少妇大欣赏| 亚洲国产高清在线一区二区三| 国产黄色小视频在线观看| 免费在线观看日本一区| 国产亚洲精品第一综合不卡| 欧美黑人巨大hd| 欧美一级a爱片免费观看看 | 99riav亚洲国产免费| 看黄色毛片网站| 国内揄拍国产精品人妻在线| 欧美日韩一级在线毛片| 亚洲色图av天堂| 91av网站免费观看| 两个人看的免费小视频| 欧美日本亚洲视频在线播放| 最近在线观看免费完整版| 日本黄大片高清| 高清毛片免费观看视频网站| 中文字幕高清在线视频| 搡老岳熟女国产| 别揉我奶头~嗯~啊~动态视频| 在线国产一区二区在线| 丁香欧美五月| 亚洲色图 男人天堂 中文字幕| 日本熟妇午夜| 天堂动漫精品| 午夜福利成人在线免费观看| 成人三级黄色视频| 亚洲成人久久爱视频| 夜夜看夜夜爽夜夜摸| 亚洲狠狠婷婷综合久久图片| 国产激情久久老熟女| 神马国产精品三级电影在线观看 | 黄色a级毛片大全视频| 日韩欧美精品v在线| 99精品久久久久人妻精品| 每晚都被弄得嗷嗷叫到高潮| 97超级碰碰碰精品色视频在线观看| av在线播放免费不卡| 久久久久久久久免费视频了| 两个人免费观看高清视频| 午夜福利成人在线免费观看| 此物有八面人人有两片| 俺也久久电影网| 超碰成人久久| 琪琪午夜伦伦电影理论片6080| 欧美日韩亚洲国产一区二区在线观看| 欧美+亚洲+日韩+国产| 给我免费播放毛片高清在线观看| 欧美乱色亚洲激情| 亚洲av电影在线进入| 一本大道久久a久久精品| 久久久久国内视频| av免费在线观看网站| 人成视频在线观看免费观看| 国产伦在线观看视频一区| 天堂动漫精品| 色av中文字幕| 久久久久亚洲av毛片大全| 国产成人影院久久av| 成人高潮视频无遮挡免费网站| 亚洲av电影在线进入| 国产精品一区二区免费欧美| av国产免费在线观看| 欧美中文日本在线观看视频| 在线视频色国产色| 欧美丝袜亚洲另类 | 国产精品九九99| 亚洲欧洲精品一区二区精品久久久| 97人妻精品一区二区三区麻豆| 美女 人体艺术 gogo| 亚洲乱码一区二区免费版| 91麻豆av在线| 在线永久观看黄色视频| 在线播放国产精品三级| 两个人免费观看高清视频| 国产v大片淫在线免费观看| 又粗又爽又猛毛片免费看| 毛片女人毛片| 国产精品98久久久久久宅男小说| 日本免费a在线| 成人欧美大片| 天堂√8在线中文| 观看免费一级毛片| 国产成人系列免费观看| 精品一区二区三区四区五区乱码| 搡老岳熟女国产| 精品一区二区三区av网在线观看| 性色av乱码一区二区三区2| 精品国产超薄肉色丝袜足j| 亚洲一区高清亚洲精品| 欧美黑人欧美精品刺激| 不卡av一区二区三区| 精品欧美国产一区二区三| 一级a爱片免费观看的视频| 亚洲欧美日韩高清在线视频| 90打野战视频偷拍视频| 国产成人精品久久二区二区免费| 91成年电影在线观看| 真人做人爱边吃奶动态| 亚洲男人天堂网一区| 欧美中文综合在线视频| 五月伊人婷婷丁香| 欧美黄色淫秽网站| 亚洲精品在线观看二区| 热99re8久久精品国产| 成人av一区二区三区在线看| 1024手机看黄色片| 亚洲中文字幕一区二区三区有码在线看 | 日韩精品中文字幕看吧| 舔av片在线| 亚洲国产欧美网| 久久久久久久午夜电影| 国产99久久九九免费精品| 99在线人妻在线中文字幕| 久久久精品大字幕| 欧美黄色片欧美黄色片| 九色国产91popny在线| 欧美性猛交╳xxx乱大交人| 亚洲 欧美 日韩 在线 免费| 女人被狂操c到高潮| 亚洲精品美女久久久久99蜜臀| www日本在线高清视频| 久久性视频一级片| 黄色 视频免费看| 免费在线观看黄色视频的| 免费在线观看影片大全网站| 亚洲欧美日韩高清专用| 在线观看www视频免费| 香蕉国产在线看| 国产午夜福利久久久久久| 给我免费播放毛片高清在线观看| 动漫黄色视频在线观看| 国产亚洲av嫩草精品影院| 久久精品91蜜桃| 国产真实乱freesex| 国产又色又爽无遮挡免费看| 亚洲中文日韩欧美视频| 国产精品久久视频播放| 国产99白浆流出| 99久久国产精品久久久| 91字幕亚洲| 国产成人一区二区三区免费视频网站| 一进一出抽搐gif免费好疼| 国产真实乱freesex| 黄色 视频免费看| 国产熟女午夜一区二区三区| 老熟妇仑乱视频hdxx| 国产精品美女特级片免费视频播放器 | 欧美国产日韩亚洲一区| 极品教师在线免费播放| 老汉色∧v一级毛片| √禁漫天堂资源中文www| 亚洲九九香蕉| 成人av一区二区三区在线看| 高清在线国产一区| 国产亚洲精品久久久久5区| 久久久久久人人人人人| 级片在线观看| 亚洲七黄色美女视频| 日韩精品青青久久久久久| 亚洲人成网站高清观看| 亚洲黑人精品在线| 久久久久久免费高清国产稀缺| 久久这里只有精品19| 亚洲成人中文字幕在线播放| 国产成人啪精品午夜网站| 他把我摸到了高潮在线观看| 99热这里只有是精品50|