• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of Sintering Atmosphere on the Microstructure and Surface Properties of Symmetric TiO2Membranes*

    2009-05-15 03:09:42ZHOUShouyong周守勇ZHONGZhaoxiang仲兆祥FANYiqun范益群XUNanping徐南平andHEYuehui賀躍輝
    關(guān)鍵詞:基層心理效果

    ZHOU Shouyong (周守勇), ZHONG Zhaoxiang (仲兆祥), FAN Yiqun (范益群),** XU Nanping (徐南平) and HE Yuehui (賀躍輝)

    ?

    Effects of Sintering Atmosphere on the Microstructure and Surface Properties of Symmetric TiO2Membranes*

    ZHOU Shouyong (周守勇)1, ZHONG Zhaoxiang (仲兆祥)1, FAN Yiqun (范益群)1,** XU Nanping (徐南平)1and HE Yuehui (賀躍輝)2

    1State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009, China2State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083, China

    The effects of sintering atmosphere on the properties of symmetric TiO2membranes are studied with regard to sintering behavior, porosity, mean pore size, surface composition, and surface charge properties. The experimental results show that the symmetric TiO2membranes display better sintering activity in the air than in argon, and the mean pore diameters and porosities of the membrane sintered in argon are higher than those of the membrane sintered in the air at the same temperature. The surface compositions of the symmetric TiO2membrane sintered in the air and in argon at different temperatures, as studied by X-ray photoelectron spectroscopy, are discussed in terms of their chemical composition, with particular emphasis on the valence state of the titanium ions. The correlation between the valence state of the titanium ions at the surface and the surface charge properties is examined. It is found that the presence of Ti3+, introduced at the surface of the symmetric TiO2membranes by sintering in a lower partial pressure of oxygen, is related to a significant decrease in the isoelectric point. TiO2with Ti4+at the interface has an isoelectric point of 5.1, but the non-stoichiometric TiO2-xwith Ti3+at the interface has a lower isoelectric point of 3.6.

    TiO2membrane, sintering atmosphere, sintering behavior, surface, microstructure

    1 Introduction

    Composite membranes consisting of a ceramic layer on a porous metal support advantageously combine the properties of the porous metal and the ceramic membrane. Metal supports are easily fixed,.., by welding, crimping, or brazing, to a module. Ceramic membrane layers enable the elaboration of finer microstructures because submicron ceramic powders are easier to be handled than metal powders of the same particle size [1]. Furthermore, ceramic membrane layers possess some advantages, such as stability at high temperatures, resistance to high pressure, good chemical stability, high mechanical resistance, long life, good defouling properties, and well-defined stable pore structure [2]. Titania can be sintered at a lower temperature compared with Al2O3and ZrO2, it shows good adhesion to metal supports, and it has a narrow particle size distribution. Thus, titania is usually selected as the ceramic membrane layer material to prepare composite membranes supported on porous metal supports [3, 4].

    以水資源消耗 (LNTW)為自變量,人口城鎮(zhèn)化 (LNPOP)、經(jīng)濟城鎮(zhèn)化 (LNINC)、產(chǎn)業(yè)城鎮(zhèn)化 (LNIND)為因變量,利用式 (2)設(shè)立的模型對4個區(qū)域的面板數(shù)據(jù)進行固定效應(yīng)面板模型的估計,得到的估計結(jié)果如表6所示。根據(jù)面板固定效應(yīng)估計結(jié)果,四大區(qū)域的面板回歸模型的R2與F值都很高,說明各方程的擬合效果很好。

    Sintering is a key step in the preparation of composite membranes consisting of a ceramic layer on a porous metal support. In order to protect metallic supports from oxidation, sintering has to be carried out in a reducing or inert atmosphere, or in vacuo. However, as TiO2is an oxygen-deficient compound, the temperature and the oxygen partial pressure can greatly affect its crystal structure, chemical composition, and properties. Its properties are determined by the degree of non-stoichiometry and the concentrations of various defects that may exist in its lattice. In addition, the properties of the TiO2surface may be greatly affected by the bulk structure and defects [5, 6]. At high temperatures, Ti interstitials are regarded as the major defects [7].

    這個效果并不一定要求使用絕對的純黑和純白色,只要足夠深的黑和足夠淺的白放在一起就能得到不錯的效果。閾值調(diào)整圖層只有一個控制選項——閾值色階。使用這個滑塊我們可以直接更改畫面的黑白分界點。這個效果最適合本例中這種在純色背景下拍攝的肖像,效果非常像裝飾畫。

    Many efforts have been made to investigate the formation of non-stoichiometric TiO2-x[8-11] and the nature of its defects [12-14], as well as its electronic properties [15], photoelectrochemical properties [16], and wettability [17]. Kuscer. [18] showed that the presence of Ti3+, introduced at the titanium-oxygen ceramic surface by sintering at a lower partial pressure of oxygen, significantly improved the wettability of the sintered ceramics. TiO2ceramics with exclusive Ti4+at the interface showed a water-contact angle of 67°, but non-stoichiometric TiO2-xwith Ti3+at the interface showed a lower water-contact angle of 26°. In the preparation of composite membranes consisting of a titania layer on a porous nickel alloy support, it was found that a new non-stoichiometric titanium oxide phase of type TiO2-x,.. Ti4O7, was formed [19]. In the preparation of the supported TiO2/Ti-Al composite membrane, we also found that the reduction of TiO2led to the formation of the non-stoichiometric titanium oxide phase of type TiO2-x,.. Ti4O7, during sintering of the functional layer in argon atmosphere [20].

    消費心理是指消費觀。從經(jīng)濟學(xué)角度來對年輕人不正確的消費心理進行認識,不僅能更好地了解消費心理的內(nèi)涵,也可以為年輕人正確判斷自身消費行為提供相關(guān)依據(jù)。當(dāng)然,消費心理作為衡量人們消費習(xí)慣的標準,集中展現(xiàn)了人們在消費過程中個人心理行為的具體表現(xiàn),人們的消費觀念會根據(jù)人們的收入水平以及社會風(fēng)氣等發(fā)生變化。所以在研究年輕人的消費心理時,需要從多個方面出發(fā),比如:要從當(dāng)前社會氛圍、對購買活動的態(tài)度等多個方面,進行綜合考慮。就目前年輕人在成長過程中的諸多現(xiàn)象看,存在很多不健康的消費心理。歸納起來,主要表現(xiàn)在以下幾方面:

    However, little attention has been paid to the detailed effects of the sintering atmosphere on the sintering behavior, microstructure, and surface properties of titania membranes. In fact, this knowledge may eventually help us to produce composite membranes consisting of a TiO2layer on a porous metal support with reliable and desirable properties for industrial applications.

    The variation in the porosity of the symmetric TiO2membranes with temperature is shown in Fig. 3. The porosities of the membranes sintered in the air and in argon decreased as the sintering temperature increased from 1025 to 1075°C. However, at the same sintering temperature, the porosity of the symmetric TiO2membrane sintered in argon was higher than that of the membrane sintered in the air. This is consistent with the results concerning the sintering behavior of TiO2in the air and in argon. Kuscer. found that a TiO2ceramic sintered in Ar/H2(7%) was more porous than that sintered in the air at 1400°C for 2 h. The variation in mean pore diameter with temperature for the membranes is shown in Fig. 4. The results indicate that the mean pore diameter of a symmetric TiO2membrane sintered in argon is larger than that of a membrane sintered in the air at the same temperature. The differences in porosities and mean pore diameters stem from the fact that the shrinkage of the TiO2membrane in argon is smaller than that in the air at the same temperature.

    Therefore, the objective of this work is to apply different sintering atmosphere, and investigate their effects on the properties of the resulting symmetric titania membranes. The effect on the microstructure of the symmetric titania membranes is investigated through the changes in porosity and mean pore size. Other surface properties of symmetric titania membranes sintered in the air or in argon are also investigated. The chemical compositions of the titania membranes are measured by XRD and XPS. The effect of sintering in the air or argon on the surface charge properties of titania are also investigated.

    經(jīng)過實際的“計算機網(wǎng)絡(luò)”課程的教學(xué)使用,這種基于Moodle平臺下的探究式學(xué)習(xí)模式比較適合計算機應(yīng)用類高等教育課程,通過這種學(xué)習(xí)模式的構(gòu)建和使用使學(xué)生的主體意識有了明顯的提升,使原先的被動學(xué)習(xí)轉(zhuǎn)化為主動學(xué)習(xí)、自主探究學(xué)習(xí),提高了探究學(xué)習(xí)和自主學(xué)習(xí)的能力,學(xué)生之間合作學(xué)習(xí)的氛圍也逐漸形成,學(xué)習(xí)效率有了大幅提高.

    2 Experimental

    2.1 Materials and fabrication of symmetric membranes

    Rutile titania powder with an average particle size of 0.3mm was used in this work. The average particle size and the particle size distribution were determined using a Zetersizer 3000HSA (Malvern Instruments Ltd., England). All powders were used without further treatment. Polyethylenimine with an average molecular weight of 10000 (Aldrich, USA) was used as a dispersant. Methylcellulose was used as a binder.

    2.2 Fabrication of symmetric membranes

    Sintering behavior is an important property of a precursor material, which determines the microstructure and performance of the final material. Thus, we investigated the sintering behavior of symmetric titania membranes in the air and argon atmosphere. Dilatometry is an effective means of measuring the sintering behavior of a material. Sintering curves for the TiO2membranes in the air and argon up to 1125°C are shown in Fig. 1. The TiO2membranes show similar sintering curves in the temperature range 25-1125°C in the air and argon atmosphere. The onset temperature for both cases was 960°C. However, Fig. 1 (a) also shows that the shrinkage of the TiO2membrane sintered in argon is less than that in the air at the same temperature, and the difference between the two curves becomes more pronounced with increasing temperature. This can be seen clearly in Fig. 1 (b), in which the sintering rates of the TiO2membranes in the air and argon rapidly increase with temperature from 960 to 1070°C. However, compared to the shrinkage rate for the TiO2in the air, the shrinkage rate for the TiO2in argon is lower in the temperature range from about 1000 to 1125°C. The sintering rate of the TiO2membrane in argon at 1070°C is about 84.5% of that in the air at the same temperature, indicating that the TiO2membranes sintered in the air have a better sintering activity, which can be explained as follows. Sintering process is a diffusion process of atoms and/or ions, which happens when an atom/or ion gains sufficient energy to leave its mooring and migrate. As for the sintering of TiO2, the oxygen grain boundary diffusion is fast and therefore the cationic diffusion is the rate limiting step [22]. That is, the titanium bulk diffusion controls the kinetics of the sintering of TiO2. At high temperature and in argon (low oxygen partial pressure), the material will lose part of oxygen and form oxygen vacancies to maintain the electroneutrality, at the same time high valence Ti in TiO2is reduced to lower valence states. Thus, the diffusion rates of metal ions are suppressed in argon atmosphere. In addition, the lower valence cations increase the ion radius, and then reduce the cation diffusion rate. Furthermore, this result can be used to constitute proper sintering process for titania composite membranes.

    2.3 Characterization

    The surfaces of the TiO2symmetric membranes were analyzed by means of X-ray photoelectron spectroscopy (XPS, ESCALAB 250, Thermo-VG Scientific). All such spectra were recorded using monochromated Al-Kαradiation (1486.8 eV), with a pass energy of 20 eV. The shift in binding energy due to relative surface charging was corrected for by using the C1s level at 285.0 eV as an internal standard. The surface composition was calculated from the XPS intensities using the relative sensitivity factors provided by the instrument manufacturer.

    The average pore sizes and porosities of the symmetric membranes were estimated by mercury porosimetry (Poremaster GT-60, Quantachrome, USA). The crystal structure of the sintered membranes was studied by X-ray diffraction analysis (XRD, Bruker D8 Advance) using Cu-Kαradiation, with 2from 20°to 80°. The microstructure of the synthesized membranes was observed by scanning electron microscopy (SEM, LEO 1530VP).

    Samples used to study the sintering behavior of TiO2membranes were of dimensions 6 mm×6 mm× 2 mm. Dilatometric investigations were performed with a dilatometer (model DIL 402C, Netzsch, Germany) in either air or argon, as in the sintering studies, with a constant heating rate of 1°C·min-1up to 1125°C. The flow rate of sintering atmosphere was kept at 30 ml·min-1(STP).

    The zeta potentials of the TiO2powders were determined using a Zetersizer 3000HSA. For these measurements, samples were prepared at solid contents of 0.1 g·L-1in a 1×10-3mol·L-1solution of NaCl to maintain constant ionic strength. The pH values were adjusted from 2 to 12 using either 0.1 mol·L-1HCl or 0.1 mol·L-1NaOH solutions. Prior to the zeta potential measurements, the suspensions were aged for 24 h at room temperature to reach surface equilibrium, using an orbital shaker. All suspensions were prepared using an ultrasound probe for homogenization.

    Figure 1 Sintering behavior of titania membranes in the air and argon atmosphere from 25 to 1125°C at a heating rate of 1°C·min-1

    3 Results and Discussion

    3.1 Sintering behavior of symmetric titania membranes

    The titania powder was dispersed in pure water, along with different amount of polyethylenimine as a dispersant, and milled in a ball mill for 12 h. The grinding media were high-purity corundum balls. The binder methylcellulose was then added and the suspension was stirred for 50 min at 16.66 Hz (1000 r·min-1). Symmetric membranes were prepared on plaster supports and then separated from these supports before sintering [21]. The membranes were dried for 12 h at room temperature, 70 or 110°C, and were then sintered in either air or argon for 3 h at 1025, 1050 or 1075°C in an electric furnace with a heating and cooling rate of 1°C·min-1.

    Figure 2 SEM image of the surface of titania membranes

    [(a), (b) and (c) sintered in the air for 3 h at 1025, 1050 and 1075°C, respectively; (d), (e) and (f) sintered in argon for 3 h at 1025, 1050 and 1075°C, respectively]

    3.2 Microstructure of symmetric titania membranes

    如何解決這個問題?我覺得,要先從調(diào)結(jié)構(gòu)做起。關(guān)于結(jié)構(gòu)調(diào)整,首先必須改變機關(guān)化的傾向。調(diào)研中,武漢市關(guān)于新招錄的人員都要到基層先干兩年再回機關(guān)的做法,十分符合實際。沒有基層經(jīng)驗的人,可以把組織關(guān)系、行政關(guān)系放在機關(guān),那沒問題,但是人你得下基層,到基層實踐、接受鍛煉,這樣不僅會改變我們整個司法行政系統(tǒng)的隊伍結(jié)構(gòu),也會增加基層力量。機關(guān)干部扎扎實實在基層呆兩年,來了新的同志再下去呆兩年。這樣的做法,首先確保基層兩年的力量有了保證,其次把這種做法形成一種制度,基層力量不足的情況就會不斷得到改善。

    翠姨的妹妹有一張,翠姨有一張,我的所有的同學(xué),幾乎每人有一張。就連素不考究的外祖母的肩上也披著一張,只不過披的是藍色的,沒有敢用那最流行的棗紅色的就是了。因為她總算年紀大了一點,對年輕人讓了一步。

    Figure 3 Porosity as a function of sintering temperature of titania membranes

    □?TiO2membrane in air;☆?TiO2membrane in argon

    Figure 4 Pore size distribution of titania membranes

    □?TiO2membrane in air, 1025°C;○?TiO2membrane in air, 1050°C;△?TiO2membrane in air, 1075°C;■?TiO2membrane in argon, 1025°C;●?TiO2membrane in argon, 1050°C;▲?TiO2membrane in argon, 1075°C

    3.3 Surface compositions of symmetric titania membranes

    It is well known that the sintering atmosphere may appreciably affect the densification process and the final microstructure in the fabrication of ceramics. SEM images of the surfaces of symmetric TiO2membranes sintered in the air and in argon for 3 h are shown in Fig. 2. It can be observed that the TiO2particles fuse together with increasing sintering temperature, and all of the sintered TiO2membranes are porous. In addition, the TiO2membrane obtained in the air is seen to be more compact than that obtained in argon at the same temperature.

    The compositions of the titania membranes were measured by XPS. XPS survey spectra of the TiO2membranes sintered in argon at 1025, 1050, and 1075°C, along with that of TiO2, are shown in Fig. 6. Ti and O are detected at the surface for all of the samples.

    Figure 5 XRD patterns of TiO2and TiO2membranes sintered in argon for 3 h

    (a) TiO2; (b) 1025°C; (c) 1050°C; (d) 1075°C;▼?rutile peak; ■?TiO2-xpeak

    Figure 6 XPS survey spectra from TiO2and the TiO2membranes sintered in argon

    (a) TiO2; (b) 1025°C; (c) 1050°C; (d) 1075°C

    In order to investigate the precise nature of the TiO2structure, we examined the XPS spectra of Ti2p3/2species obtained by deconvolution of the TiO2peak, as shown in Fig. 7. If TiO2has perfect stoichiometry, then the Ti2p3/2peak should be fitted with only TiO2species with a binding energy of about 458.8 eV. Fig. 7 (a) shows the Ti2p region of the stoichiometric TiO2surface. In the spectra with a carefully calibrated energy scale, the Ti2p3/2peak, attributed to (formally) Ti4+, is located at 458.39 eV. However, curve-fitting of Ti2p3/2of the surface of the TiO2membranes sintered in argon at 1025, 1050, and 1075°C using only TiO2species did not give a satisfying result. Some deviations were evident in the range of 457.63-457.81 eV. According to the XPS database showing binding energies of titanium compounds [23], the binding energies for TiO1.5, TiO, and Ti are 456.1, 455.1, and 454 eV, respectively. The lower the number of oxygen atoms bound to Ti in a given species, the lower the binding energy of this species. Therefore, in the case of the TiO2membranes sintered in argon, the Ti2p3/2peak positions located at 459, 458.9, and 458.81 eV are typical of Ti4+in TiO2, in accordance with the literature data [24]. However, the Ti2p3/2peaks at 457.63, 457.8, and 457.81 eV,.. lower than 458.8 eV of TiO2species, could best be deconvoluted by invoking the presence of another species. The newly added species is considered to be Ti3+, namely TiO2-xas a non-stoichiometric oxide. Table 1 shows the areas and binding energies of the deconvoluted peaks of Ti2p3/2for the TiO2samples, along with the TiO2-x/TiO2ratios calculated from the areas, which give an indication of the degree of non-stoichiometry. The TiO2-x/TiO2ratios of the surfaces of the TiO2membranes sintered in argon at 1025, 1050, and 1075°C were around 10%.

    Figure 7 Deconvolute XPS Ti 2p3/2peaks of TiO2and the TiO2membranes sintered in argon

    Table 1 Areas and binding energies of deconvoluted peaks of Ti2p3/2 of XPS of TiO2 samples, and calculated TiO2-x/TiO2 and relative atomic mole ratios of TiO2

    3.4 Surface charge properties of titania

    It is generally recognized that the surface charge characteristics of membranes is an important factor in determining their separation performances and fouling tendencies [25, 26]. The zeta potential is an important and reliable indicator of the surface charge of membranes [27-29]. The effects of pH on the zeta potential of the non-stoichiometric TiO2-xpowders sintered in argon at 1025, 1050, and 1075°C, as well as that of as-purchased rutile TiO2, are illustrated in Fig. 8. The isoelectric points (IEP, the pH value at which the zeta potential equals zero) of the non-stoichiometric TiO2-xpowders obtained at different temperatures are almost the same, at pH 3.6, but the IEP of the rutile TiO2is 5.1. Furthermore, the zeta potentials of the non-stoichiometric TiO2-xare larger than that of the as-purchased rutile TiO2. The significant IEP and zeta potential shifts are attributable to different chemical compositions at the surfaces. The zeta potential is very sensitive to the surface density of OH groups because their dissociation is the underlying mechanism for surface charge creation. The defect structure due to oxygen vacancies on non-stoichiometric TiO2affects the adsorption of water at the surface and the rate of dissociation of the water into hydroxyl groups and protons [30]. TiO2incorporating some TiO2-xresulting from the defect structure may have more OH groups on its surface. XPS results show that only Ti4+ions are present at the TiO2surface. Without Ti3+ions present at the surface, the formation of oxygen vacancies is not expected. However, for the non-stoichiometric TiO2-xsurface, Ti3+states have been detected by XPS analyses. In order to achieve electroneutral conditions in the non-stoichiometric TiO2-x, in addition to Ti3+, the formation of oxygen vacancies is then expected. As reported in the literature [31, 32], water molecules can be easily incorporated at an oxygen-vacancy- containing surface and cause an increase in the adsorbed hydroxyl group density. The surface charge properties of membranes can exert profound influence on the nature and magnitude of the interactions between the membrane and the solution, thus affecting its filtration properties such as permeability and permselectivity. As the non-stoichiometric TiO2-xmembrane has more surface charges than TiO2membrane, it can produce greater electrostatic repulsion during filtration of the same type of charge species and inhibit the formation of a fouling layer on the membrane surface, leading to a higher permeate flux. Certainly, this result also can be used to predict surface charge properties of titania composite membranes and filtration properties such as permeability and permselectivity.

    Figure 8 Zeta potential of TiO2particles in 10-3mol·L-1NaCl solution as a function of pH

    □?TiO2; ○?TiO2, Ar, 1025°C, 3 h; △?TiO2, Ar, 1050°C, 3 h;▽?TiO2, Ar, 1075°C, 3 h

    4 Conclusions

    The effects of sintering atmosphere on the properties of TiO2membranes were studied with regard to sintering behavior, porosity, mean pore size, surface composition, and surface charge properties.

    The shrinkage of a TiO2membrane sintered in argon was found to be smaller than that in the air at the same temperature, and this disparity became more pronounced with increasing temperature. Compared to the shrinkage rate of the TiO2membrane sintered in the air, the corresponding shrinkage rate with argon is smaller between about 1000 and 1125°C. That is to say, the TiO2membrane sintered in the air showed better sintering activity.

    The mean pore diameters and porosities of TiO2membranes sintered in argon were larger than those of membranes sintered in the air.

    The presence of Ti3+, introduced at the surface of the TiO2membranes by sintering at a lower partial pressure of oxygen, was found to be related to a significant decrease in the isoelectric point. TiO2with exclusive Ti4+at the interface showed an isoelectric point of 5.1, but the non-stoichiometric TiO2-xwith Ti3+at the interface showed a lower isoelectric point of about 3.6.

    1 Meulenberg, W.A., Mertens, J., Bram, M., Buchkremer, H.P., St?ver, D., “Graded porous titania membranes for microfiltration”,...., 26, 449-454 (2006).

    2Benfer, S., árki, P., Tomandl, G., “Ceramic membranes for filtration applications—Preparation and characterization”,..., 6, 495-500 (2004).

    3Zhao, L., Bram, M., Buchkremer, H.P., St?ver, D., Li, Z., “Preparation of TiO2composite microfiltration membranes by the wet powder spraying method”,..., 244, 107-115 (2004).

    4Bram, M., Zhao, L., Buchkremer, H.P., Stover, D., “Graded hybrid membrane for microfiltration”,.., 29, 295-300 (2005).

    5Diebold, U., “The surface science of titania dioxide”,..., 48, 53-229 (2003).

    6Millot, F., Blanchin, M.G., Tetot, R., Marucco, J.F., Poumellec, B., Picard, C., Touzelin, B., “High temperature nonstoichiometric rutile TiO2-x”,.., 17, 263-293 (1987).

    7Marucco, J.F., Gautron, S., Lemasson, P., “Thermogravimetric and electrical study on non-stoichiometric titanium oxide TiO2?xbetween 800 and 1100°C”,..., 42, 363-367 (1981).

    8Luca, D., Macovei, D., Teodorescu, C.M., “Characterization of titania thin films prepared by reactive pulsed-laser ablation”,.., 600, 4342-4346 (2006).

    9Kumar, D., Chen, M.S., Goodman, D.W., “Characterization of ultra-thin TiO2films grown on Mo(112)”,, 515, 1475-1479 (2006).

    10Matsumoto, T., Batzill, M., Hsieh, S., Koel, B.E., “Fundamental studies of titanium oxide-Pt(100) interfaces I. Stable high temperature structures formed by annealing TiOfilms on Pt(100)”,.., 572, 127-145 (2004).

    11Tsuyumoto, I., Hosono, T., Murata, M., “Thermoelectric power in nonstoichiometric orthorhombic titanium oxides”,...., 89, 2301-2303 (2006).

    12Bowker, M., “The surface structure of titania and the effect of reduction”,......, 10, 153-162 (2006).

    13Li, M., Hebenstreit, W., Diebold, U., Tyryshkin, A.M., Bowman, M.K., Dunham, G.G., Henderson, M.A., “The influence of the bulk reduction state on the surface structure and morphology of rutile TiO2(110) single crystals”,...., 104, 4944-4950 (2000).

    14Nowotny, J., Bak, T., Nowotny, M.K., Sheppard, L.R., “Defect chemistry and electrical properties of titanium dioxide (1) Defect diagrams”,...., 112, 590-601(2008).

    15Hazra, S.K., Tripathy, S.R., Alessandri, I., Depero, L.E., Basu, S., “Characterizations of porous titania thin films produced by electrochemical etching”,...., 131, 135-141 (2006).

    16Nowotny, M.K., Sheppard, L.R., Bak, T., Nowotny, J., “Defect chemistry of titanium dioxide. Application of defect engineering in processing of TiO2-based photocatalysts”,...., 112, 5275-5300 (2008).

    17Feng, A., McCoy, B.J., Munir, Z.A., Cagliostro, D., “Wettability of transition metal oxide surfaces”,...., 242, 50-56 (1998).

    18Kuscer, D., Kova?, J., Kosec, M., Andriesen, R., “The effect of the valence state of titanium ions on the hydrophilicity of ceramics in the titanium-oxygen system”,...., 28, 577-584 (2008).

    19Gill, J.A., “Filter element with porous nickel based alloy substrate and metal oxide membrane”, W.O. Pat., 0226366 (2002).

    20Zhou, S.Y., Fan, Y.Q., He, Y.H., Xu, N.P., “Preparation of titania microfiltration membranes supported on porous Ti-Al alloys”,..., 325, 546-552 (2008).

    21Feng, J., Fan, Y.Q., Qi, H., Xu, N.P., “Co-sintering synthesis of tubular bilayer α-alumina membrane”,..., 288, 20-27 (2007).

    22Odier, P., Lecomte, J., Loup, J.P., “Effect of non-stoichiometry on the sintering of doped TiO2”,..., 23, 4547-4553 (1988).

    23Mouler, J.F., Stickle, W.F., Sobol, P.E., Bomben, K.D., Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics Inc (1995).

    24Mayer, J.T., Diebold, U., Madey, T.E., Garfunkel, E., “Titanium and reduced titania overlayers on titanium dioxide (110)”,....., 73, 1-11 (1995).

    25Nystr?m, M., Lindstrom, M., Matthiasson, E., “Streaming potential as a tool in the characterization of ultrafiltration membranes”,., 36, 297-312 (1989).

    26Clark, W.M., Bansal, A., Sontakke, M., Ma, Y.H., “Protein adsorption and fouling in ceramic ultrafiltration membranes”,..., 55, 21-38 (1991).

    27Zhao, Y.J., Xing, W.H., Xu, N.P., Wong, F.S., “Effects of inorganic electrolytes on zeta potentials of ceramic microfiltration membranes”,..., 42, 117-121 (2005).

    28Zhang, Q., Jin, W.Q., Fan, Y.Q., Xu, N.P., “An improved Parks equation for prediction of surface charge properties of composite ceramic membranes”,..., 318, 100-106 (2008).

    29Wang, Z., Zhao Y.Y., Ye, N., Wang, J.X., Zhao, Z.P., Wang, S.C., “Evaluation of four measurement operation modes of streaming potential for microfiltration and ultrafiltration Membranes”,...., 14, 456-463 (2006).

    30Kim, W.W., Lee, E.H., Kim, Y.J., Lee, M.H., Kim, K.H., Shin, D.W., “A relation between the non-stoichiometry and hydroxyl radical generated at photocatalytic TiO2on 4CP decomposition”,...:, 159, 301-310 (2003).

    31Fujishima, A., Rao, T.N., Tryk, D.A., “Titanium dioxide photocatalysis”,...:.., 1, 1-21 (2000).

    32Carp, O., Huisman, C.L., Reller, A., “Photoinduced reactivity of titania dioxide”,.., 32, 33-177 (2004).

    2008-11-20,

    2009-04-09.

    the National Basic Research Program of China (2003CB615707) and the National Natural Science Foundation of China (20636020).

    ** To whom correspondence should be addressed. E-mail: yiqunfan@njut.edu.cn

    猜你喜歡
    基層心理效果
    看見具體的自己
    光明少年(2024年5期)2024-05-31 10:25:59
    基層為何總是栽同樣的跟頭?
    心理“感冒”怎樣早早設(shè)防?
    按摩效果確有理論依據(jù)
    一句“按規(guī)定辦”,基層很為難
    心理感受
    娃娃畫報(2019年11期)2019-12-20 08:39:45
    基層治理如何避免“空轉(zhuǎn)”
    迅速制造慢門虛化效果
    抓住“瞬間性”效果
    中華詩詞(2018年11期)2018-03-26 06:41:34
    模擬百種唇妝效果
    Coco薇(2016年8期)2016-10-09 02:11:50
    免费看日本二区| 校园人妻丝袜中文字幕| 久久精品久久久久久噜噜老黄| 久久亚洲国产成人精品v| 观看免费一级毛片| 日本黄色片子视频| 在现免费观看毛片| 午夜老司机福利剧场| 一二三四中文在线观看免费高清| 国产日韩一区二区三区精品不卡 | 欧美日韩综合久久久久久| a级片在线免费高清观看视频| 免费人成在线观看视频色| 在线观看免费视频网站a站| videos熟女内射| 精品亚洲乱码少妇综合久久| 狂野欧美白嫩少妇大欣赏| 人妻系列 视频| 久久人人爽人人片av| 日韩 亚洲 欧美在线| 麻豆成人午夜福利视频| 男人爽女人下面视频在线观看| 亚洲va在线va天堂va国产| 夜夜骑夜夜射夜夜干| av国产久精品久网站免费入址| 王馨瑶露胸无遮挡在线观看| 亚洲综合精品二区| 美女cb高潮喷水在线观看| 最后的刺客免费高清国语| 夜夜骑夜夜射夜夜干| av不卡在线播放| 亚洲精品国产av成人精品| 91在线精品国自产拍蜜月| 99久久综合免费| 久久影院123| 亚洲av电影在线观看一区二区三区| 国产亚洲午夜精品一区二区久久| 亚洲国产精品专区欧美| 97超视频在线观看视频| 黑人高潮一二区| 国国产精品蜜臀av免费| 色哟哟·www| 国产成人精品婷婷| 色哟哟·www| 国产亚洲最大av| 久久影院123| 国产亚洲91精品色在线| 国产精品三级大全| 亚洲情色 制服丝袜| 人人澡人人妻人| 欧美性感艳星| 亚洲精品久久午夜乱码| 最近中文字幕高清免费大全6| 国产av国产精品国产| 国产成人免费无遮挡视频| 人人妻人人添人人爽欧美一区卜| 人人澡人人妻人| 校园人妻丝袜中文字幕| 久久国产亚洲av麻豆专区| 婷婷色综合www| 女性被躁到高潮视频| 日本欧美国产在线视频| 中文乱码字字幕精品一区二区三区| 下体分泌物呈黄色| 国产美女午夜福利| 秋霞在线观看毛片| 国产精品蜜桃在线观看| 新久久久久国产一级毛片| 欧美精品高潮呻吟av久久| 久久这里有精品视频免费| 国产精品人妻久久久久久| 亚洲在久久综合| 欧美区成人在线视频| 制服丝袜香蕉在线| 日本-黄色视频高清免费观看| 日本免费在线观看一区| 边亲边吃奶的免费视频| 黄片无遮挡物在线观看| 欧美bdsm另类| 国产一区二区在线观看日韩| 成人国产麻豆网| 日韩三级伦理在线观看| av天堂久久9| 久久97久久精品| 日韩欧美精品免费久久| 色婷婷久久久亚洲欧美| 亚洲国产精品成人久久小说| 韩国高清视频一区二区三区| 国产爽快片一区二区三区| 国产高清三级在线| 男女无遮挡免费网站观看| 在线播放无遮挡| 日韩,欧美,国产一区二区三区| 欧美日韩一区二区视频在线观看视频在线| 久久久久久久久久久久大奶| 最新的欧美精品一区二区| 免费人妻精品一区二区三区视频| 久久99蜜桃精品久久| av福利片在线| 最近最新中文字幕免费大全7| 精品久久国产蜜桃| 成人亚洲欧美一区二区av| 国产乱来视频区| 最近2019中文字幕mv第一页| 国产69精品久久久久777片| 精品99又大又爽又粗少妇毛片| 狠狠精品人妻久久久久久综合| 在线观看一区二区三区激情| 久久国产精品男人的天堂亚洲 | 亚洲伊人久久精品综合| 啦啦啦在线观看免费高清www| 欧美少妇被猛烈插入视频| 欧美日韩视频高清一区二区三区二| 国产成人免费无遮挡视频| 亚洲综合精品二区| 少妇熟女欧美另类| 成年av动漫网址| 国产日韩欧美在线精品| 午夜福利,免费看| 国产在线免费精品| 亚洲激情五月婷婷啪啪| 精华霜和精华液先用哪个| 最近最新中文字幕免费大全7| 一级毛片久久久久久久久女| av卡一久久| 国产片特级美女逼逼视频| 国产无遮挡羞羞视频在线观看| av线在线观看网站| 欧美老熟妇乱子伦牲交| 性高湖久久久久久久久免费观看| 欧美精品人与动牲交sv欧美| 亚洲国产av新网站| 午夜免费鲁丝| 国产老妇伦熟女老妇高清| 免费黄网站久久成人精品| 久久毛片免费看一区二区三区| 亚洲国产日韩一区二区| 边亲边吃奶的免费视频| 亚洲天堂av无毛| 黑人高潮一二区| 最近中文字幕高清免费大全6| 一本一本综合久久| 丝袜在线中文字幕| 成人综合一区亚洲| 人妻一区二区av| 我的老师免费观看完整版| 少妇丰满av| 多毛熟女@视频| 国产精品久久久久久av不卡| 国产乱来视频区| 国产色婷婷99| 亚洲中文av在线| freevideosex欧美| 搡女人真爽免费视频火全软件| 国产亚洲欧美精品永久| av国产精品久久久久影院| 亚洲欧美中文字幕日韩二区| 久久精品国产亚洲av天美| 青春草视频在线免费观看| 久久久国产精品麻豆| 男人舔奶头视频| 亚洲伊人久久精品综合| 成人漫画全彩无遮挡| 亚洲精品国产av成人精品| 在线观看www视频免费| tube8黄色片| 久久鲁丝午夜福利片| 男的添女的下面高潮视频| 日本wwww免费看| 91在线精品国自产拍蜜月| 少妇 在线观看| 中文字幕人妻熟人妻熟丝袜美| 亚洲国产精品999| 欧美区成人在线视频| 国产午夜精品久久久久久一区二区三区| 少妇的逼好多水| 91精品伊人久久大香线蕉| 成年人午夜在线观看视频| 免费黄网站久久成人精品| 亚洲精品一二三| 亚洲国产精品999| 伊人亚洲综合成人网| 色吧在线观看| 精品少妇内射三级| 成人无遮挡网站| 三上悠亚av全集在线观看 | 大码成人一级视频| 午夜91福利影院| 国产精品伦人一区二区| 97在线人人人人妻| a级片在线免费高清观看视频| 亚洲精品aⅴ在线观看| 亚州av有码| 卡戴珊不雅视频在线播放| 免费在线观看成人毛片| tube8黄色片| 五月开心婷婷网| 欧美精品一区二区免费开放| 国产亚洲欧美精品永久| 天美传媒精品一区二区| 在现免费观看毛片| av在线老鸭窝| 久久鲁丝午夜福利片| 日日啪夜夜撸| 日韩大片免费观看网站| 久久97久久精品| 国产视频内射| 国产色爽女视频免费观看| 在线精品无人区一区二区三| 边亲边吃奶的免费视频| 免费播放大片免费观看视频在线观看| 有码 亚洲区| 99久国产av精品国产电影| 国产欧美日韩一区二区三区在线 | 天堂中文最新版在线下载| 亚洲av成人精品一二三区| 偷拍熟女少妇极品色| 简卡轻食公司| 日本欧美视频一区| 精品国产一区二区三区久久久樱花| 日韩中字成人| 人人妻人人添人人爽欧美一区卜| 国产成人aa在线观看| 亚洲av成人精品一区久久| 久久久久久久久久人人人人人人| 五月伊人婷婷丁香| 日韩强制内射视频| 亚洲欧美中文字幕日韩二区| 91成人精品电影| 久久久久久久久久久免费av| 国产熟女午夜一区二区三区 | 一级a做视频免费观看| 亚洲婷婷狠狠爱综合网| 国产69精品久久久久777片| 99久久精品一区二区三区| 熟女电影av网| av免费在线看不卡| av卡一久久| 蜜桃久久精品国产亚洲av| 91精品一卡2卡3卡4卡| 男的添女的下面高潮视频| 久久久国产一区二区| 老司机影院成人| 久久久久久久亚洲中文字幕| 日韩,欧美,国产一区二区三区| 国产精品无大码| 国产精品一区二区在线不卡| 一本久久精品| 97在线人人人人妻| 国产高清不卡午夜福利| 亚洲激情五月婷婷啪啪| 免费av中文字幕在线| 中文乱码字字幕精品一区二区三区| tube8黄色片| 国产男女超爽视频在线观看| 亚洲av成人精品一二三区| 国模一区二区三区四区视频| 久久久久久久久久久丰满| 久久国产精品大桥未久av | 建设人人有责人人尽责人人享有的| 国产亚洲av片在线观看秒播厂| av天堂中文字幕网| 亚洲欧美成人综合另类久久久| 久久 成人 亚洲| 嘟嘟电影网在线观看| 国产伦精品一区二区三区四那| av网站免费在线观看视频| 一边亲一边摸免费视频| 日韩亚洲欧美综合| 久久精品熟女亚洲av麻豆精品| 天堂中文最新版在线下载| 一本—道久久a久久精品蜜桃钙片| 精品卡一卡二卡四卡免费| 欧美成人午夜免费资源| 不卡视频在线观看欧美| 边亲边吃奶的免费视频| 亚洲欧洲日产国产| 在线免费观看不下载黄p国产| 日韩在线高清观看一区二区三区| 日日啪夜夜撸| 亚洲情色 制服丝袜| 妹子高潮喷水视频| 国产欧美亚洲国产| 亚洲国产av新网站| av卡一久久| 观看免费一级毛片| 成年美女黄网站色视频大全免费 | 夫妻午夜视频| 乱系列少妇在线播放| 夜夜爽夜夜爽视频| 天堂中文最新版在线下载| 国产亚洲91精品色在线| 简卡轻食公司| 国产精品不卡视频一区二区| 观看av在线不卡| 最后的刺客免费高清国语| 亚洲av成人精品一区久久| 男的添女的下面高潮视频| 亚洲内射少妇av| 久久精品国产亚洲网站| 久久精品国产亚洲av涩爱| 成人国产麻豆网| videossex国产| 成人综合一区亚洲| 天天躁夜夜躁狠狠久久av| 久久综合国产亚洲精品| 熟妇人妻不卡中文字幕| 免费观看在线日韩| 欧美另类一区| 丰满饥渴人妻一区二区三| 久久久久国产网址| 久久久久久伊人网av| 高清欧美精品videossex| 赤兔流量卡办理| 少妇人妻一区二区三区视频| 国产av国产精品国产| 亚洲国产毛片av蜜桃av| av网站免费在线观看视频| 亚洲av电影在线观看一区二区三区| 亚洲av综合色区一区| 色94色欧美一区二区| 一本—道久久a久久精品蜜桃钙片| 色婷婷久久久亚洲欧美| 亚洲精华国产精华液的使用体验| a级毛片在线看网站| 成人漫画全彩无遮挡| 黑人巨大精品欧美一区二区蜜桃 | 久久精品夜色国产| 精品少妇黑人巨大在线播放| 搡女人真爽免费视频火全软件| 高清欧美精品videossex| 午夜免费观看性视频| 国产精品成人在线| 在线观看免费高清a一片| 精品亚洲成国产av| 国产免费福利视频在线观看| 我要看日韩黄色一级片| 国产精品伦人一区二区| 亚洲中文av在线| 丰满少妇做爰视频| 国产精品久久久久久精品电影小说| 欧美97在线视频| 精品人妻偷拍中文字幕| 精品少妇久久久久久888优播| 极品少妇高潮喷水抽搐| 亚洲激情五月婷婷啪啪| 午夜免费鲁丝| 国产色爽女视频免费观看| 亚洲精品久久久久久婷婷小说| 一区二区三区四区激情视频| 国产爽快片一区二区三区| 成年美女黄网站色视频大全免费 | 国产高清有码在线观看视频| 新久久久久国产一级毛片| 边亲边吃奶的免费视频| 亚洲情色 制服丝袜| 中文字幕人妻熟人妻熟丝袜美| 一级,二级,三级黄色视频| 91精品国产国语对白视频| 国产高清三级在线| 亚洲精品亚洲一区二区| 国产精品久久久久久av不卡| 一级毛片aaaaaa免费看小| 国产一区二区三区av在线| 亚洲va在线va天堂va国产| a级片在线免费高清观看视频| 男女边摸边吃奶| 免费不卡的大黄色大毛片视频在线观看| 在线观看免费日韩欧美大片 | 一本久久精品| 爱豆传媒免费全集在线观看| 在线播放无遮挡| 久久久久久久久久久久大奶| 大码成人一级视频| 亚洲人与动物交配视频| 国产精品99久久久久久久久| 一本—道久久a久久精品蜜桃钙片| 国产精品一区www在线观看| 日日摸夜夜添夜夜添av毛片| 欧美日韩精品成人综合77777| 一本一本综合久久| 日日摸夜夜添夜夜添av毛片| 极品人妻少妇av视频| 51国产日韩欧美| h日本视频在线播放| 午夜久久久在线观看| 亚洲国产成人一精品久久久| 国产av码专区亚洲av| 国产精品女同一区二区软件| 在线观看人妻少妇| 日韩一本色道免费dvd| 啦啦啦中文免费视频观看日本| 高清在线视频一区二区三区| 一级,二级,三级黄色视频| 久久韩国三级中文字幕| 日韩视频在线欧美| 久久国产乱子免费精品| 国产精品熟女久久久久浪| 亚洲国产日韩一区二区| 亚洲国产欧美在线一区| 欧美 日韩 精品 国产| 国产女主播在线喷水免费视频网站| 亚洲精品久久午夜乱码| 成人美女网站在线观看视频| 日本午夜av视频| 亚洲欧美清纯卡通| 内射极品少妇av片p| 桃花免费在线播放| 久久99热6这里只有精品| 最近中文字幕2019免费版| 黑人猛操日本美女一级片| 高清在线视频一区二区三区| 国产亚洲5aaaaa淫片| 国语对白做爰xxxⅹ性视频网站| 国产午夜精品一二区理论片| 日本wwww免费看| 99热这里只有是精品在线观看| 国产男女超爽视频在线观看| 欧美另类一区| 国产乱人偷精品视频| 男人舔奶头视频| 美女内射精品一级片tv| 久久亚洲国产成人精品v| 日韩三级伦理在线观看| 中文字幕制服av| 两个人的视频大全免费| 高清不卡的av网站| 人妻 亚洲 视频| 菩萨蛮人人尽说江南好唐韦庄| 亚洲欧美日韩另类电影网站| 精品国产露脸久久av麻豆| 久久综合国产亚洲精品| 国产在线一区二区三区精| 男女啪啪激烈高潮av片| 久久午夜福利片| 内射极品少妇av片p| 有码 亚洲区| 日本91视频免费播放| 久久99精品国语久久久| 亚洲四区av| 五月开心婷婷网| 亚洲欧洲精品一区二区精品久久久 | 免费av中文字幕在线| 亚洲美女搞黄在线观看| 日本与韩国留学比较| 男人和女人高潮做爰伦理| 国产成人精品福利久久| 伦理电影免费视频| 又爽又黄a免费视频| 国产午夜精品久久久久久一区二区三区| av女优亚洲男人天堂| 久久国产精品大桥未久av | 久久久欧美国产精品| 免费不卡的大黄色大毛片视频在线观看| 亚洲国产精品999| 亚洲av不卡在线观看| 在线观看av片永久免费下载| 性色avwww在线观看| 久久国产精品大桥未久av | 97在线人人人人妻| 街头女战士在线观看网站| 成年人午夜在线观看视频| 亚洲中文av在线| 久久影院123| 日韩精品免费视频一区二区三区 | 日韩一区二区三区影片| 免费av不卡在线播放| 在线观看国产h片| 国产淫语在线视频| 色婷婷av一区二区三区视频| 亚洲av综合色区一区| 亚洲精品自拍成人| 中文乱码字字幕精品一区二区三区| 波野结衣二区三区在线| 人人妻人人添人人爽欧美一区卜| 少妇被粗大的猛进出69影院 | 亚洲国产成人一精品久久久| 日产精品乱码卡一卡2卡三| 最后的刺客免费高清国语| 黄色配什么色好看| 久久久久人妻精品一区果冻| 欧美97在线视频| 中国三级夫妇交换| 熟妇人妻不卡中文字幕| 国产 一区精品| 在线免费观看不下载黄p国产| 在线天堂最新版资源| 亚洲成人手机| 黄色一级大片看看| 天堂8中文在线网| 欧美老熟妇乱子伦牲交| 夫妻午夜视频| 欧美97在线视频| 国产精品国产三级国产av玫瑰| 在线亚洲精品国产二区图片欧美 | 观看av在线不卡| 99热这里只有是精品在线观看| 男的添女的下面高潮视频| 亚洲四区av| 欧美三级亚洲精品| 国产免费一区二区三区四区乱码| 人妻制服诱惑在线中文字幕| 9色porny在线观看| 亚洲精华国产精华液的使用体验| 久久ye,这里只有精品| av视频免费观看在线观看| 最近最新中文字幕免费大全7| 99久久人妻综合| 草草在线视频免费看| 午夜精品国产一区二区电影| 精品久久久久久久久亚洲| 亚洲成人一二三区av| 蜜臀久久99精品久久宅男| 国产亚洲精品久久久com| 人体艺术视频欧美日本| videossex国产| 高清午夜精品一区二区三区| 久久国产亚洲av麻豆专区| 大香蕉久久网| 日日爽夜夜爽网站| 国产毛片在线视频| 少妇裸体淫交视频免费看高清| 97超碰精品成人国产| 噜噜噜噜噜久久久久久91| 80岁老熟妇乱子伦牲交| 国国产精品蜜臀av免费| 免费人成在线观看视频色| 一级a做视频免费观看| 国产伦精品一区二区三区四那| 国产男人的电影天堂91| 午夜影院在线不卡| xxx大片免费视频| 在线观看人妻少妇| xxx大片免费视频| 成年女人在线观看亚洲视频| 亚洲内射少妇av| 日韩精品免费视频一区二区三区 | 国产爽快片一区二区三区| 欧美日韩精品成人综合77777| 亚洲精品456在线播放app| 亚洲美女黄色视频免费看| 国产无遮挡羞羞视频在线观看| 街头女战士在线观看网站| 妹子高潮喷水视频| 哪个播放器可以免费观看大片| 成人二区视频| av福利片在线| 欧美成人午夜免费资源| 久久久久精品久久久久真实原创| 九九爱精品视频在线观看| 极品人妻少妇av视频| videos熟女内射| 99久久中文字幕三级久久日本| 极品少妇高潮喷水抽搐| 十分钟在线观看高清视频www | 熟女电影av网| 99久国产av精品国产电影| 日韩欧美 国产精品| 久久精品夜色国产| 只有这里有精品99| 男人狂女人下面高潮的视频| 久久精品国产自在天天线| 成年av动漫网址| 女人精品久久久久毛片| 国产亚洲av片在线观看秒播厂| av又黄又爽大尺度在线免费看| 大又大粗又爽又黄少妇毛片口| √禁漫天堂资源中文www| 久热这里只有精品99| 91久久精品国产一区二区三区| 亚洲人成网站在线观看播放| 狂野欧美激情性xxxx在线观看| 久久av网站| 一区二区三区四区激情视频| 色94色欧美一区二区| 国产在视频线精品| 午夜福利网站1000一区二区三区| 亚洲av免费高清在线观看| av.在线天堂| 曰老女人黄片| 22中文网久久字幕| 一级黄片播放器| 久久国产乱子免费精品| 午夜精品国产一区二区电影| 亚洲综合色惰| 黄色欧美视频在线观看| 国产精品免费大片| 国产精品不卡视频一区二区| 久久久久久久精品精品| 性高湖久久久久久久久免费观看| 性色avwww在线观看| 中文天堂在线官网| 天堂俺去俺来也www色官网| 观看av在线不卡| 97在线人人人人妻| 欧美精品国产亚洲| 亚洲欧美成人精品一区二区| av在线播放精品| 亚洲成色77777| 亚洲四区av| 国产黄色免费在线视频| 如何舔出高潮| 成人国产av品久久久| 少妇被粗大的猛进出69影院 | 黄色欧美视频在线观看| 97在线视频观看| 亚洲在久久综合| av国产久精品久网站免费入址| 亚洲欧美一区二区三区黑人 | 少妇被粗大的猛进出69影院 | 亚洲人成网站在线观看播放| 校园人妻丝袜中文字幕| 国产精品一区二区在线观看99| 午夜老司机福利剧场| 国产永久视频网站|