• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Prediction of Thermophoretic Deposition Efficiency of Particles in a Laminar Gas Flow along a Concentric Annulus: A Comparison of Developing and Fully Developed Flows

    2009-05-15 06:17:16SamiraHashemiandAtaallahSoltaniGoharrizi

    Samira Hashemi and Ataallah Soltani Goharrizi

    ?

    Prediction of Thermophoretic Deposition Efficiency of Particles in a Laminar Gas Flow along a Concentric Annulus: A Comparison of Developing and Fully Developed Flows

    Samira Hashemi and Ataallah Soltani Goharrizi*

    Department of Chemical Engineering, Shahid Bahonar University, Kerman, Iran

    Thermophoresis is an important mechanism of micro-particle transport due to temperature gradients in the surrounding medium. It has numerous applications, especially in the field of aerosol technology. This study has numerically investigated the thermophoretic deposition efficiency of particles in a laminar gas flow in a concentric annulus using the critical trajectory method. The governing equations are the momentum and energy equations for the gas and the particle equations of motion. The effects of the annulus size, particle diameter, the ratio of inner to outer radius of tube and wall temperature on the deposition efficiency were studied for both developing and fully-developed flows. Simulation results suggest that thermophoretic deposition increases by increasing thermal gradient, deposition distance, and the ratio of inner to outer radius, but decreases with increasing particle size. It has been found that by taking into account the effect of developing flow at the entrance region, higher deposition efficiency was obtained, than fully developed flow.

    thermophoresis, thermophoretic deposition efficiency, developing flow, annulus

    1 INTRODUCTION

    Thermophoresis is a physical phenomenon in particle suspension, in which aerosol particles acquire a velocity in the direction of decreasing temperature due to collision with the surrounding gas molecules [1]. Thermophoresis causes the aerosol particles to move toward and deposit on the relatively cool walls in non-isothermal systems. Particle deposition by thermophoresis has been identified as a working principal of many industrial processes such as fabricating optical wave guide in the chemical vapor deposition (CVD), designing thermal precipitators to remove micro-particles from gas stream, and also micro-contamination controlling in the semi-conductor industry [2]. On the negative side, particle deposition by thermophoresis causes undesirable effects on heat exchanger surfaces and turbine blades such as corrosion, fouling and erosion, also reduces thermal conductivity of heat-exchanger pipes, production yield of specialty powders which are manufactured in high temperature aerosol reactors [3].

    Four types of approach have been made to theoretically study thermophoresis. Among them, the equation derived by Brock [4] was more widely used because of their simplicity in calculating thermal force or thermophoretic velocity. The expression for thermal force near a continuum limit is [4]

    this a dimensionless factor called thermophoretic coefficient and defined by Brock as

    The Cunningham slip correction factor,c, was given by Hinds (1982), as follows:

    Thermophoresis effect was reviewed by some researchers including Bakanov [6], Lee and Kim [7], Li and Davis [8, 9], and Talbot[5]. Theoretical study of thermophoretic deposition of aerosols in tube or pipe flows was investigated by several groups such as Butchelor and Shen [10], Chiou [11], He and Ahmadi [12], Lin and Tsai [13], Stratmann. [14], and Walker[15]. For all related works, the system was a cooled laminar flow with the local thermal gradient decreasing in the flow direction. Thermophoretic deposition of particles’ flow in an annulus was studied theoretically by Fiebig. [16] and Weinberg [17]. They considered particle deposition only by thermophoresis and using Eulerian method. Chang. [3] carried out experiments and also numerical simulations (Eulerian method) to quantify thermophoretic deposition in an annular flow system with fixed thermal gradients between two concentric cylinders.

    These previous theories on thermophoretic deposition in laminar annular flow are only restricted to the fully developed flow, and the entrance flow effect had rarely been investigated. Recently, Lin and Tsai [13] found that the gas collection efficiency in a long tube is higher for developing flow than fully developed flow.

    When flow is fully developed, the analytical velocity distribution is available [18] and the developing temperature profile can be numerically solved to obtain the critical particle trajectory and thermophoretic deposition efficiency. However, when both flow and temperature are developing, there is no analytical equation for the velocity and temperature field. In this study, developing velocity field was simulated numerically by the semi-implicit method for pressure- linked equations (SIMPLE) algorithm [19]. Hence, the obtained velocity distribution was used to calculate the developing temperature profile numerically, and then the critical radial position and deposition efficiency was obtained by solving the particle equations of motion.

    2 GOVERNING EQUATIONS

    2.1 Velocity and temperature profiles

    The system under investigation, as depicted in Fig. 1, involves incompressible and laminar flow of a hot gas containing suspended aerosol particles in an annulus with the two concentric cylinders at constant wall temperature.

    Figure 1 Schematic of the physical configuration of the investigated system

    2.1.1

    The steady state momentum balance for a fully developed, laminar and incompressible fluid flowing through the annular region between two coaxial circular cylinders has been solved and presented by Bird[18]. The solution for velocity is,

    whereis the ratio of inner to outer radius of the cylinders andmis the bulk mean velocity.

    When the flow is fully developed, the temperature could still be developing when there is a sudden temperature jump in the annulus walls. Explanatorily assume the gas enters with a uniform particle concentration and temperatureeand flow through an annulus with both wall temperatures equal toe. At some distance far enough downstream such that the flow is fully developed, the wall temperatures are decreased suddenly toiando, which are different frome. This creates a “temperature jump” and the temperature field will start to develop from there [13]. The developing temperature gradient in the radial direction is higher near the position of temperature jump, and the deposition efficiency is then expected to be higher than in the fully developed case.

    Equation (5) is used to calculate the developing temperature field numerically by solving the 2-D cylindrical energy equation:

    SinceVis equal to zero in a fully developed flow, Eq. (6) is reduced to

    with boundary conditions,

    In writing Eq. (7) we have ignored the axial conduction of heat. This will be a good approximation if let the Peclet number,, be about 100 or greater [17].

    Equation (7) can be non-dimensionalized assuming all relevant physical properties are constant, as follows:

    where

    2.1.2

    The steady state equations of continuity and momentum for a laminar incompressible fluid flowing through a circular cylinder take the following form:

    Since the axial conduction of heat is negligible relies on the fact that Peclet number is taken to be large, Eq. (6) can be reduced and non-dimensionalized as follows, assuming all relevant physical properties are constant.

    with

    2.2 Particle trajectory and thermophoretic deposition efficiency

    The Lagrangian approach is used for predicting the trajectory of a single particle in the fluid. The Lagrangian approach predicts the trajectory of a single particle in the fluid flow as a result of various forces acting on the particle, in which the Newton’s law of motion is used to find the velocity of every particle in the flow domain. Integration of the velocity with time gives the particle trajectory.

    Particle equations of motion were solved to obtain the particle trajectory and thermophoretic deposition efficiency. In cylindrical coordinates, the particle equations of motion in the(axial) and(radial) directions are

    whereDis the drag coefficient and was given by Rader and Marple [20] as

    The particle Reynolds number is

    Particles are assumed to be mono-disperse and spherical. In Eq. (14) the axial thermophoretic motion of particles was ignored. This assumption also relies on the fact thatis taken to be large. Since the typical particle size is about 1 μm, particle Brownian diffusion may be neglected in the bulk of the gas [17].

    The first term on the right hand side of Eqs. (14) and (15) is the drag force due to relative motion between particle and fluid. The second term in Eq. (15) is the thermophoretic force. The particle equations of motion were integrated numerically through the domain of interest by Fourth-order Rung-Kutta method. It is assumed that the initial velocity of particles at the entrance is the same as the gas flow velocity at that point. The procedure is repeated until the particle hits the walls or leaves the calculation domain.

    In this work, the thermophoretic deposition efficiency in an annulus was calculated for a gas flow in a concentric annulus by the critical particle trajectory method. The critical particle trajectory is shown in Fig. 2. The critical particle trajectory is defined as the one a particle starting from critical radial position,c, at the entrance, will deposit just at the end of the annulus length[13].

    After obtaining the particle trajectories by solving Eqs. (14) and (15), the critical radial positions are simply found.

    The thermophoretic deposition efficiency is defined as the ratio of the rate of particle deposition on the wall to the rate of particle entering the annulus, assuming particle concentration based on the particle number density, is uniform at the inlet of annulus.

    Figure 2 Critical particle trajectory

    For fully developed flow, the velocity profile (V) is calculated by Eq. (5) and therefore the deposition efficiency can be obtained by analytical integration of

    For developing flow, the velocity field is assumed to be uniform at the entrance of the annulus, and therefore the efficiency of thermophoretic deposition can be calculated as

    2.3 Numerical procedure

    For the numerical solution, the governing Eqs. (10) to (12) are discritized using finite volume method (FVM) [19]. The velocity components are defined on staggered grids and the other dependent variables are located at the nodal points of the main grid.

    The grid is non-uniform in the-direction within the domain, with the grid spacing reduced as one moves toward the inlet of the tube. There is also a refined grid region in the-direction, adjacent to the walls. The grid spacing is larger far from the entrance region, where the flow does not vary considerably. The main grid is shown in Fig. 3.

    Figure 3 Schematic of the main grid used to calculate the flow field

    The simultaneous numerical solution of Eqs. (10) to (12) by means of the SIMPLE algorithm provides the developing velocity field which was used to calculate the developing temperature field numerically by solving the 2-D cylindrical energy equation in form of Eq. (6).

    The governing equation of energy balance is solved on the same non-uniform grid.

    In the finite volume method, using smaller meshing yields more accurate results but longer calculating time. To optimize the size of meshing, we investigated 3 different mesh sizes: 30×50, 50×100 and 70×200. Low accuracy and divergences of the results was seen for the first coarse mesh and long time of calculating on the third finer one. So the optimum meshing was chosen as 50×100 for the condition of this study. In addition the dimensional radius and length of the domain are 1 cm and 10 cm respectively.

    3 RESULTS AND DISCUSSION

    The numerical solution of developing temperatureis compared with analytical solution presented by Kakac. [21] in Fig. 4. Kakac. have estimated the fluid bulk mean temperature or “mixing cup”,m, for a finite number ofand dimensionless axial distance:

    wherecis the cross section area of the annulus. Good agreement indicates that the present simulation is accurate.

    ——?Kakac.;▲?this study

    The validity of the numerical solution was checked by comparing simulation result with analytical one previously published by Weinberg [17] for a fully developed annular flow as shown in Fig. 5, considering particle deposition only by thermophoresis. The results are shown to be in a good agreement with that simulation since the percent deviation is less than 5%.

    Figures 6 and 7 show the effect of entrance region (developing flow) on particles trajectory for two various particle diameters. It can be seen from these figures, the thermophoretic deposition of particles is more for developing flow than fully developed flow. In the other hand, one can see for both cases, more smaller particles are deposited near the inlet of annulus.

    this study; ——?Weinberg

    Figure 6 Particles trajectory for developing flow at=0.5and=1.0

    Figure 7 Particles trajectory for fully developed flow at=0.5 and=1.0

    Small particles were found deposited more easily near the position of temperature jump or inlet of annulus. It should be noted that smaller particles receive a more remarkable thermophoretic effect than larger ones, since decreasing the particle size will decrease the particle relaxation time and particle inertia, so that it will response faster to the fluid flowing variations.

    According to Figs. 8 to 13, in all cases almost 100% collection might be easily realized.

    10, developing;10, fully developed

    In addition, one can observe the effect of developing flow in an annulus on thermophoretic deposition efficiency by comparing Figs. 8, 10 and 12 for fully developed flow with Figs. 9, 11 and 13 for developing flow.

    4 CONCLUSIONS

    The thermophoretic deposition efficiency for a model system is studied where gas flows in an annular region between two concentric cylinders. It was shown that, by maintaining the temperature gradient in the gas, complete deposition may be readily achieved. The results of present work indicates that for increasing the thermophoretic deposition efficiency, one would need a higher thermal gradient, longer deposition distance, larger tube radius ratio or smaller particle diameter. Furthermore, it is found that by taking into account the effect of developing flow at the entrance region, higher deposition efficiency is obtained than fully developed flow.

    NOMENCLATURE

    dynamic mobility [c/(3πp)]

    cCunningham slip correction factor

    Ddrag coefficient

    mmomentum exchange coefficient

    sthermal slip coefficient

    ttemperature jump coefficient

    pparticle diameter, m

    ththermophoretic force, N

    ththermophoretic coefficient

    ggas thermal conductivity, W·m-1·°C-1

    pparticle thermal conductivity, W·m-1·K-1

    annular length, m

    pmass of particle, kg

    gas Reynolds number

    pparticle Reynolds number

    iinner tube radius, m

    oouter tube radius, m

    radial coordinate, m

    ccritical radial position, m

    egas temperature at the entrance of annulus, K

    iinner tube temperature, K

    oouter tube temperature, K

    wwall temperature (defined aswoi), K

    mbulk mean velocity of gas, m·s-1

    Vgas velocity (-component), m·s-1

    ththermophoretic velocity

    Vgas velocity (-component), m·s-1

    axial coordinate, m

    gas thermal diffusivity, m2·s-1

    dthermophoretic deposition efficiency for developing flow

    fthermophoretic deposition efficiency for fully developed flow

    gas mean-free-path, m

    gas dynamic viscosity, kg·m-1·s-1

    gas kinematic viscosity, m2·s-1

    1 Walsh, J.K., Weimer, A.W., Hrenya, C.M., “Thermophoretic deposition of aerosol particles in laminar tube flow with mixed convection”,.., 37, 715-734 (2006).

    2 Zheng, F., “Thermophoresis of spherical and non-spherical particles: A review of theories and experiments”,.., 97, 255-278 (2002).

    3 Chang, Y.C., Ranade, M.B., Gentry, J.W., “Thermophoretic deposition in flow along an annular cross-section: Experimental & simulation”,.., 26 (3), 407-428 (1995).

    4 Brock, J.R., “On the theory of thermal forces acting on aerosol particles”,.., 17, 768-780 (1962).

    5 Talbot, L., Cheng, R.K., Schefer, R.W., Willis, D.R., “Thermophoresis of particles in a heated boundary layer”,.., 101 (4), 737-758 (1980).

    6 Bakanov, S.P., “Future directions for experiments in thermophoresis: A commentary”,.., 26, 1-4 (1995).

    7 Lee, W., Kim, S.S., “Thermophoresis in the cryogenic temperature range”,.., 32, 107-119 (2001).

    8 Li, W., Davis, E.J., “Measurement of the thermophoretic force by electrodynamic levitation: Microspheres in air”,.., 26, 1063-1083 (1995).

    9 Li, W., Davis, E.J., “The effects of gas and particle properties on thermophoresis”,.., 26, 1085-1099 (1995).

    10 Butchelor, G.K., Shen, C., “Thermophoretic deposition of particles in gas flowing over cold surface”,.., 107 (1), 21-37 (1985).

    11 Chiou, M.C., “Random eddy model for prediction of thermophoretic effects on particle deposition processes”,....., 17 (3), 21-37 (1996).

    12 He, C., Ahmadi, G., “Particle deposition with thermophoresis in laminar and turbulent duct flows”,.., 29, 525-546 (1998).

    13 Lin, J.S., Tsai, C.J., “Thermophoretic deposition efficiency in a cylindrical tube taking into account developing flow at the entrance region”,.., 34, 569-583 (2003).

    14 Stratmann, F., Otto, E., Fissan, H., “Thermophoretic and diffusional particle transport in cooled laminar tube flow”,.., 25 (7), 1305-1319 (1994).

    15 Walker, K.L., Homsy, G.M., Geyling, R.T., “Thermophoretic deposition of small particles in laminar tube flow”,.., 69 (1), 138-147 (1979).

    16 Fiebig, M., Hilgenstock, M., Riemann, H.A., “The modified chemical vapor deposition process in a concentric annulus”,.., 9, 237-249 (1988).

    17 Weinberg, M.C., “Thermophoretic deposition of particles in laminar flow in concentric annulus”,...., 66 (6), 439-443 (1983).

    18 Bird, R.B., Stewart, W.E., Lightfoot, E.N., Transport Phenomena, Wiley, New York (1960).

    19 Patankar, S.V., Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York (1980).

    20 Rader, D.J., Marple, V.A., “Effect of ultra-Stokesian drag and particle interception on impaction characteristics”,.., 4, 141-156 (1985).

    21 Kakac, S., Shah, R.K., Aung, W., Handbook of Single-Phase Convective Heat Transfer, Wiley, New York (1987).

    2008-08-03,

    2009-06-14.

    * To whom correspondence should be addressed. E-mail: a.soltani@mail.uk.ac.ir; fsolti@yahoo.com

    大码成人一级视频| av天堂在线播放| 欧美成人免费av一区二区三区 | 久久人妻福利社区极品人妻图片| ponron亚洲| av电影中文网址| av国产精品久久久久影院| 国产成人精品久久二区二区免费| 丝瓜视频免费看黄片| 久久人人97超碰香蕉20202| 久久久久久久国产电影| 国产又色又爽无遮挡免费看| 日韩欧美三级三区| 久久精品91无色码中文字幕| 夫妻午夜视频| 在线十欧美十亚洲十日本专区| 国产男靠女视频免费网站| 精品国产美女av久久久久小说| 高清黄色对白视频在线免费看| 国产成人免费观看mmmm| 中文字幕精品免费在线观看视频| 国产成人系列免费观看| 国产伦人伦偷精品视频| 色综合欧美亚洲国产小说| 香蕉久久夜色| 在线观看一区二区三区激情| 亚洲av熟女| 欧美黄色淫秽网站| 久久人妻av系列| 一二三四在线观看免费中文在| 美女午夜性视频免费| 中文字幕另类日韩欧美亚洲嫩草| 欧美一级毛片孕妇| 手机成人av网站| 亚洲第一av免费看| 精品福利永久在线观看| 久久久久精品国产欧美久久久| 亚洲午夜精品一区,二区,三区| 亚洲国产精品sss在线观看 | 一夜夜www| 女人精品久久久久毛片| 看片在线看免费视频| 一区二区三区激情视频| 天堂√8在线中文| 欧美成狂野欧美在线观看| 国产aⅴ精品一区二区三区波| 亚洲专区国产一区二区| 免费在线观看完整版高清| 又大又爽又粗| 久久久久精品国产欧美久久久| 变态另类成人亚洲欧美熟女 | 亚洲美女黄片视频| 久久精品国产亚洲av高清一级| 欧美丝袜亚洲另类 | 黄片播放在线免费| 身体一侧抽搐| 亚洲精品粉嫩美女一区| 免费不卡黄色视频| 色老头精品视频在线观看| 在线观看一区二区三区激情| 18在线观看网站| 国产男女内射视频| 国产视频一区二区在线看| 一进一出好大好爽视频| 欧美日韩一级在线毛片| 在线观看舔阴道视频| 日本五十路高清| 国产精品自产拍在线观看55亚洲 | avwww免费| 黄频高清免费视频| 夫妻午夜视频| 美女视频免费永久观看网站| 19禁男女啪啪无遮挡网站| 别揉我奶头~嗯~啊~动态视频| 欧美最黄视频在线播放免费 | 欧美在线黄色| 欧美亚洲 丝袜 人妻 在线| av天堂久久9| 亚洲三区欧美一区| 成人免费观看视频高清| 可以免费在线观看a视频的电影网站| 国产成+人综合+亚洲专区| 色在线成人网| 国产精品久久视频播放| 一级毛片女人18水好多| av中文乱码字幕在线| 精品国产一区二区三区久久久樱花| 亚洲欧美激情综合另类| 亚洲一区中文字幕在线| 国产av一区二区精品久久| 丝袜人妻中文字幕| 一级毛片精品| 在线视频色国产色| 一边摸一边抽搐一进一小说 | 天堂√8在线中文| 国产精品香港三级国产av潘金莲| 叶爱在线成人免费视频播放| 免费av中文字幕在线| 一二三四在线观看免费中文在| a级片在线免费高清观看视频| 亚洲五月婷婷丁香| 久久影院123| 国产亚洲一区二区精品| 露出奶头的视频| 国产成人免费观看mmmm| 精品少妇一区二区三区视频日本电影| 亚洲男人天堂网一区| 亚洲色图 男人天堂 中文字幕| 国产激情欧美一区二区| 成人国产一区最新在线观看| 国产精品av久久久久免费| 中出人妻视频一区二区| 黄网站色视频无遮挡免费观看| 深夜精品福利| 操美女的视频在线观看| 水蜜桃什么品种好| 在线天堂中文资源库| 99久久国产精品久久久| 热99国产精品久久久久久7| 久久狼人影院| 久久精品成人免费网站| 黄色a级毛片大全视频| 天天躁夜夜躁狠狠躁躁| 久久亚洲真实| 日日爽夜夜爽网站| 午夜福利欧美成人| 欧美日韩视频精品一区| 老司机深夜福利视频在线观看| 欧美黑人精品巨大| 操出白浆在线播放| 亚洲一区中文字幕在线| 天堂√8在线中文| 日本vs欧美在线观看视频| 国产精品乱码一区二三区的特点 | 村上凉子中文字幕在线| 十八禁人妻一区二区| 怎么达到女性高潮| 99re在线观看精品视频| 免费观看a级毛片全部| 成人精品一区二区免费| 亚洲片人在线观看| 桃红色精品国产亚洲av| 欧美乱色亚洲激情| 在线免费观看的www视频| 中文字幕人妻熟女乱码| 欧美激情久久久久久爽电影 | av在线播放免费不卡| 这个男人来自地球电影免费观看| 色综合婷婷激情| 亚洲第一av免费看| 99精品久久久久人妻精品| 91在线观看av| 亚洲精品久久成人aⅴ小说| 国产精品成人在线| 丝袜美足系列| 亚洲第一青青草原| 18禁裸乳无遮挡动漫免费视频| 欧美精品亚洲一区二区| 视频区欧美日本亚洲| 欧美丝袜亚洲另类 | 欧美激情久久久久久爽电影 | 午夜福利一区二区在线看| 中文欧美无线码| 成人精品一区二区免费| 午夜福利欧美成人| 国产av又大| 在线观看舔阴道视频| 精品人妻在线不人妻| 99精品久久久久人妻精品| 99国产精品一区二区三区| 丰满的人妻完整版| 精品国产一区二区久久| 又黄又爽又免费观看的视频| 人妻一区二区av| 两人在一起打扑克的视频| 欧美日韩av久久| 天堂√8在线中文| 久久精品国产99精品国产亚洲性色 | 亚洲全国av大片| 大陆偷拍与自拍| 丰满人妻熟妇乱又伦精品不卡| 久久久久久人人人人人| 夜夜爽天天搞| 久久精品国产综合久久久| av在线播放免费不卡| 久久久国产成人免费| 中文字幕精品免费在线观看视频| 国产欧美亚洲国产| 日韩欧美在线二视频 | 18禁裸乳无遮挡动漫免费视频| 国产亚洲av高清不卡| 久久久久久久午夜电影 | 老熟妇乱子伦视频在线观看| 色94色欧美一区二区| 亚洲国产中文字幕在线视频| 国产精品影院久久| 亚洲色图 男人天堂 中文字幕| 欧美乱色亚洲激情| 久久久久久久午夜电影 | 一级黄色大片毛片| 免费女性裸体啪啪无遮挡网站| 欧美大码av| 日韩欧美国产一区二区入口| 超色免费av| 啦啦啦视频在线资源免费观看| 国产在线观看jvid| 一进一出抽搐动态| 亚洲中文字幕日韩| 叶爱在线成人免费视频播放| 中文字幕av电影在线播放| 国产xxxxx性猛交| 中文欧美无线码| 欧美 亚洲 国产 日韩一| 亚洲男人天堂网一区| 久久久国产成人精品二区 | 99国产精品免费福利视频| 在线av久久热| 日韩免费av在线播放| 亚洲七黄色美女视频| 亚洲色图综合在线观看| 丰满的人妻完整版| 国产成人欧美在线观看 | 久久久精品国产亚洲av高清涩受| 妹子高潮喷水视频| 亚洲一区二区三区欧美精品| www日本在线高清视频| 国产一区二区三区综合在线观看| av天堂久久9| 久久国产乱子伦精品免费另类| 午夜精品在线福利| 黑人巨大精品欧美一区二区mp4| 成在线人永久免费视频| 99热国产这里只有精品6| 757午夜福利合集在线观看| 久久久久精品人妻al黑| 亚洲精品国产色婷婷电影| 国产在线一区二区三区精| 十八禁人妻一区二区| 中文字幕精品免费在线观看视频| 久久精品人人爽人人爽视色| 50天的宝宝边吃奶边哭怎么回事| 久久精品国产亚洲av香蕉五月 | 亚洲片人在线观看| 老司机午夜福利在线观看视频| 亚洲精品国产区一区二| 亚洲人成电影观看| 老司机深夜福利视频在线观看| 欧美日本中文国产一区发布| 最近最新中文字幕大全电影3 | 亚洲人成伊人成综合网2020| 美女视频免费永久观看网站| 亚洲精华国产精华精| 国产亚洲精品一区二区www | 色老头精品视频在线观看| 亚洲中文av在线| 丰满人妻熟妇乱又伦精品不卡| 91成人精品电影| 久久久国产成人免费| 一级a爱视频在线免费观看| 精品久久久久久久毛片微露脸| 国产精品一区二区免费欧美| 国产不卡av网站在线观看| 中文字幕色久视频| 亚洲精品在线观看二区| 精品熟女少妇八av免费久了| 丰满饥渴人妻一区二区三| а√天堂www在线а√下载 | 母亲3免费完整高清在线观看| 99久久99久久久精品蜜桃| 人妻一区二区av| 国产激情久久老熟女| 亚洲精品在线观看二区| 三级毛片av免费| 精品一区二区三区视频在线观看免费 | 久久久久精品人妻al黑| 国产精品一区二区免费欧美| 亚洲成人国产一区在线观看| www.熟女人妻精品国产| avwww免费| 国产成人免费观看mmmm| 人人妻,人人澡人人爽秒播| 国产色视频综合| 国产精品1区2区在线观看. | 精品久久久精品久久久| 午夜福利免费观看在线| 国精品久久久久久国模美| 另类亚洲欧美激情| 午夜成年电影在线免费观看| 嫩草影视91久久| 香蕉丝袜av| 免费观看a级毛片全部| 丝瓜视频免费看黄片| 亚洲国产看品久久| 在线观看午夜福利视频| 亚洲欧美一区二区三区久久| 亚洲成av片中文字幕在线观看| 两人在一起打扑克的视频| 手机成人av网站| 日韩视频一区二区在线观看| 欧美国产精品一级二级三级| 纯流量卡能插随身wifi吗| 一夜夜www| av天堂久久9| 国产精品99久久99久久久不卡| 丰满的人妻完整版| 丝袜人妻中文字幕| 窝窝影院91人妻| 亚洲美女黄片视频| 午夜福利在线观看吧| 精品国内亚洲2022精品成人 | 免费在线观看完整版高清| 国产精品秋霞免费鲁丝片| 亚洲午夜精品一区,二区,三区| 一本一本久久a久久精品综合妖精| 免费在线观看亚洲国产| 国产精品一区二区精品视频观看| 99国产精品免费福利视频| 夜夜夜夜夜久久久久| 国产精品1区2区在线观看. | 一区在线观看完整版| 国产视频一区二区在线看| 母亲3免费完整高清在线观看| 免费日韩欧美在线观看| 精品免费久久久久久久清纯 | 色精品久久人妻99蜜桃| av不卡在线播放| 成在线人永久免费视频| 国产在视频线精品| 天堂中文最新版在线下载| 香蕉久久夜色| 性色av乱码一区二区三区2| 王馨瑶露胸无遮挡在线观看| 成在线人永久免费视频| 亚洲专区字幕在线| 中文字幕人妻丝袜制服| 欧美国产精品va在线观看不卡| 久久国产精品大桥未久av| 美女福利国产在线| 91成年电影在线观看| 国产精品电影一区二区三区 | 欧美 亚洲 国产 日韩一| 丝袜美腿诱惑在线| 王馨瑶露胸无遮挡在线观看| 丝袜美腿诱惑在线| 99国产精品一区二区三区| 中文字幕人妻丝袜制服| 老司机亚洲免费影院| 中文字幕另类日韩欧美亚洲嫩草| 超碰成人久久| 交换朋友夫妻互换小说| 国产精品1区2区在线观看. | 亚洲色图av天堂| а√天堂www在线а√下载 | 亚洲人成电影免费在线| 国产深夜福利视频在线观看| 免费在线观看亚洲国产| 天天躁狠狠躁夜夜躁狠狠躁| 一级片'在线观看视频| 天天躁狠狠躁夜夜躁狠狠躁| av网站在线播放免费| 国产精品久久久av美女十八| 777米奇影视久久| 在线视频色国产色| 久久久久国产一级毛片高清牌| 国产精品久久久av美女十八| av网站在线播放免费| 久久久久久人人人人人| 最新的欧美精品一区二区| 在线观看免费视频日本深夜| 欧美乱妇无乱码| 亚洲熟女毛片儿| 久久亚洲真实| 午夜福利影视在线免费观看| 久久精品人人爽人人爽视色| 搡老熟女国产l中国老女人| 男女床上黄色一级片免费看| 国产成人啪精品午夜网站| 99re在线观看精品视频| 男女高潮啪啪啪动态图| 99精品欧美一区二区三区四区| 久久午夜综合久久蜜桃| 美女高潮喷水抽搐中文字幕| 久久人妻av系列| 日本精品一区二区三区蜜桃| 人妻丰满熟妇av一区二区三区 | 丰满人妻熟妇乱又伦精品不卡| 日韩欧美一区二区三区在线观看 | 久久国产精品男人的天堂亚洲| 婷婷丁香在线五月| 亚洲精品久久成人aⅴ小说| 国内久久婷婷六月综合欲色啪| 丰满的人妻完整版| 夜夜躁狠狠躁天天躁| 国产精品二区激情视频| 在线观看免费高清a一片| 成人免费观看视频高清| 欧美日韩国产mv在线观看视频| 中文亚洲av片在线观看爽 | 欧美亚洲日本最大视频资源| 国产国语露脸激情在线看| 自线自在国产av| aaaaa片日本免费| 国产亚洲精品第一综合不卡| 欧美一级毛片孕妇| 国产精品久久久人人做人人爽| 久久ye,这里只有精品| 午夜免费观看网址| 午夜免费鲁丝| 亚洲人成77777在线视频| netflix在线观看网站| 久久久国产精品麻豆| 亚洲av成人一区二区三| 男女免费视频国产| 国产精品亚洲一级av第二区| 如日韩欧美国产精品一区二区三区| 黄色 视频免费看| 99香蕉大伊视频| 老熟妇仑乱视频hdxx| 一进一出抽搐动态| 欧美精品高潮呻吟av久久| 99久久综合精品五月天人人| 亚洲国产精品sss在线观看 | 在线观看免费高清a一片| 久久国产精品大桥未久av| 亚洲自偷自拍图片 自拍| 狠狠狠狠99中文字幕| 国产精品98久久久久久宅男小说| 香蕉国产在线看| 欧美 日韩 精品 国产| 日韩有码中文字幕| 亚洲国产毛片av蜜桃av| 色尼玛亚洲综合影院| 亚洲第一青青草原| 成人精品一区二区免费| 亚洲av第一区精品v没综合| 国产精品一区二区精品视频观看| 制服诱惑二区| 国产男靠女视频免费网站| 色综合欧美亚洲国产小说| 国产蜜桃级精品一区二区三区 | 天天添夜夜摸| 手机成人av网站| 黄片大片在线免费观看| 久久久久久人人人人人| 亚洲精品乱久久久久久| 另类亚洲欧美激情| 一级毛片精品| 亚洲欧美一区二区三区黑人| 一级黄色大片毛片| 操出白浆在线播放| 亚洲第一av免费看| 久久热在线av| 亚洲人成77777在线视频| 国产精品乱码一区二三区的特点 | 高清视频免费观看一区二区| 国产成人av教育| 新久久久久国产一级毛片| 亚洲综合色网址| 欧美午夜高清在线| 国精品久久久久久国模美| 丝袜美腿诱惑在线| 久久国产精品影院| 别揉我奶头~嗯~啊~动态视频| 亚洲少妇的诱惑av| 色尼玛亚洲综合影院| 一二三四社区在线视频社区8| 王馨瑶露胸无遮挡在线观看| av网站免费在线观看视频| 丰满饥渴人妻一区二区三| 人人妻人人澡人人看| 天天影视国产精品| 国产精品一区二区在线不卡| 国产午夜精品久久久久久| 久久精品亚洲精品国产色婷小说| 在线观看午夜福利视频| 成人国产一区最新在线观看| 欧美另类亚洲清纯唯美| 免费在线观看完整版高清| 一区二区三区国产精品乱码| cao死你这个sao货| 免费在线观看影片大全网站| 亚洲精品乱久久久久久| 欧美激情 高清一区二区三区| 真人做人爱边吃奶动态| 亚洲aⅴ乱码一区二区在线播放 | 捣出白浆h1v1| 国产免费男女视频| 在线观看免费日韩欧美大片| 日韩欧美国产一区二区入口| 午夜成年电影在线免费观看| 国产午夜精品久久久久久| 不卡av一区二区三区| 欧美日韩成人在线一区二区| 亚洲精品在线观看二区| www.熟女人妻精品国产| 欧美日韩中文字幕国产精品一区二区三区 | 大型av网站在线播放| 精品一区二区三区视频在线观看免费 | 欧美亚洲 丝袜 人妻 在线| 大型黄色视频在线免费观看| 美女扒开内裤让男人捅视频| 日韩三级视频一区二区三区| 欧美日韩瑟瑟在线播放| 欧美色视频一区免费| tube8黄色片| 最近最新中文字幕大全电影3 | 一级毛片女人18水好多| 亚洲av第一区精品v没综合| 天堂俺去俺来也www色官网| aaaaa片日本免费| 国产蜜桃级精品一区二区三区 | 天天操日日干夜夜撸| 亚洲精品中文字幕在线视频| 少妇的丰满在线观看| 1024香蕉在线观看| 王馨瑶露胸无遮挡在线观看| 久久精品成人免费网站| 99国产极品粉嫩在线观看| 欧洲精品卡2卡3卡4卡5卡区| 久久久水蜜桃国产精品网| 精品久久久精品久久久| 大香蕉久久成人网| 涩涩av久久男人的天堂| 丰满迷人的少妇在线观看| 久久中文字幕人妻熟女| 成人特级黄色片久久久久久久| 亚洲成a人片在线一区二区| 久久精品国产清高在天天线| 欧美日韩国产mv在线观看视频| 中国美女看黄片| 亚洲全国av大片| √禁漫天堂资源中文www| 黄色视频不卡| 亚洲一区中文字幕在线| 国产欧美日韩综合在线一区二区| 午夜福利欧美成人| 一级毛片精品| a级毛片在线看网站| 韩国精品一区二区三区| 亚洲精品国产色婷婷电影| 免费高清在线观看日韩| 一级黄色大片毛片| 国产区一区二久久| 亚洲第一青青草原| 国产精品久久久久成人av| 国产色视频综合| 国产精品久久久av美女十八| 久久青草综合色| 男女免费视频国产| 纯流量卡能插随身wifi吗| 亚洲国产中文字幕在线视频| 午夜福利免费观看在线| 麻豆乱淫一区二区| 最新在线观看一区二区三区| 国产av一区二区精品久久| 国产在线精品亚洲第一网站| 女人久久www免费人成看片| 不卡av一区二区三区| 麻豆国产av国片精品| 国产一区在线观看成人免费| 国产1区2区3区精品| 1024视频免费在线观看| 婷婷精品国产亚洲av在线 | 午夜福利在线免费观看网站| 又紧又爽又黄一区二区| 在线av久久热| 99re6热这里在线精品视频| 色老头精品视频在线观看| 视频区图区小说| 午夜福利一区二区在线看| 久久精品国产综合久久久| 国产色视频综合| 亚洲国产看品久久| 亚洲国产欧美网| 国产精品成人在线| 久久狼人影院| 99久久99久久久精品蜜桃| 国产精品偷伦视频观看了| 国产xxxxx性猛交| 成人精品一区二区免费| 欧美日韩成人在线一区二区| 免费少妇av软件| 日日爽夜夜爽网站| 久久久久国内视频| 一级a爱片免费观看的视频| 啦啦啦视频在线资源免费观看| 免费看十八禁软件| 国产精品久久久av美女十八| 国产1区2区3区精品| 日韩大码丰满熟妇| 久久国产精品男人的天堂亚洲| 少妇猛男粗大的猛烈进出视频| 1024视频免费在线观看| 侵犯人妻中文字幕一二三四区| 久久久久久亚洲精品国产蜜桃av| 天堂动漫精品| av免费在线观看网站| 色婷婷av一区二区三区视频| 亚洲精品美女久久久久99蜜臀| 国产精品98久久久久久宅男小说| 十分钟在线观看高清视频www| 久久中文看片网| 欧美激情久久久久久爽电影 | 在线观看日韩欧美| 人妻 亚洲 视频| 一本大道久久a久久精品| 操出白浆在线播放| 亚洲第一青青草原| 一边摸一边抽搐一进一出视频| 美女 人体艺术 gogo| 国产精品二区激情视频| 国产精品98久久久久久宅男小说| 国产精品亚洲av一区麻豆| 亚洲中文av在线| 动漫黄色视频在线观看|