• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhanced Methane Adsorption in Catenated Metal-organic Frameworks: A Molecular Simulation Study*

    2009-05-14 12:29:18XUEChunyu薛春瑜ZHOUZi周子娥YANGQingyuan陽(yáng)慶元andZHONGChongli仲崇立
    關(guān)鍵詞:慶元

    XUE Chunyu (薛春瑜), ZHOU Zi’e (周子娥), YANG Qingyuan (陽(yáng)慶元) and ZHONG Chongli(仲崇立)

    ?

    Enhanced Methane Adsorption in Catenated Metal-organic Frameworks: A Molecular Simulation Study*

    XUE Chunyu (薛春瑜), ZHOU Zi’e (周子娥), YANG Qingyuan (陽(yáng)慶元)**and ZHONG Chongli(仲崇立)

    Laboratory of Computational Chemistry, Department of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China

    A systematic molecular simulation study was performed to investigate the effect of catenation on methane adsorption in metal-organic frameworks (MOFs). Four pairs of isoreticular MOFs (IRMOFs) with and without catenation were adopted and their capacities for methane adsorption were compared at room temperature. The present work showed that catenation could greatly enhance the storage capacity of methane in MOFs, due to the formation of additional small pores and adsorption sites formed by the catenation of frameworks. In addition, the simulation results obtained at 298 K and 3.5 MPa showed that catenated MOFs could easily meet the requirement for methane storage in porous materials.

    methane, adsorption, catenation, metal-organic frameworks, molecular simulation

    1 INTRODUCTION

    Currently, great efforts are being made to search for alternative fuels to gasoline and diesel used in vehicles. Natural gas, which consists mainly of methane, is a good candidate and widely available in many countries. In current practice, it is mainly stored as compressed natural gas (CNG) in pressure vessels at 20.7 MPa and requires an expensive multistage compression. Thus, an effective, economic, and safe on-board storage system is necessary, which will lead to methane-driven automobiles substituting for the traditional ones. An attractive alternative to CNG is the adsorbed natural gas (ANG), which is usually stored in porous materials at a lower pressure. To promote the vehicular application of methane, US Department of Energy (DOE) has set the target for adsorbed methane storage as 180 v(STP)/v (STP: 298 K, 0.1 MPa) at 3.5 MPa and 298 K. A variety of porous materials, including single-walled carbon nanotubes [1], zeolites [2], and activated carbon [3], have been extensively evaluated as the potential materials for methane storage, but few of them can meet the DOE target. The highest methane storage capacity obtained in activated carbons was ca. 200 v/v [4], although significant efforts were made on processing activated carbons. It seems that there is still a very long way to go for developing the efficient storage materials. Metal-organic frameworks (MOFs), a new family of nanoporous materials, have emerged as the promising materials for gas storage, separation, catalysis,. [5-7]. A variety of MOFs have been screened for methane storage [8-13], but only a few can reach the DOE target. For example, Düren. [12] proposed a theoretical MOF (IRMOF-993) with a methane adsorption capacity of 181 v(STP)/v. Ma. [13] synthesized a MOF named PCN-14 that gave the highest methane adsorption capacity of 230 v(STP)/v so far. It seems that MOFs are a class of promising materials with practical applications in methane storage. Catenated MOFs [14-17] are composed of two mutually catenated frameworks that generate additional pores with various sizes. The catenation structure strengthens the gas affinity for the material by an entrapment mechanism that improves the gas adsorption capacity [18] and separation [19]. Thus, catenation appears to be a useful strategy for designing new MOFs as efficient methane storage materials. Based on this consideration, a systematic molecular simulation study is performed in this work to investigate the effect of catenation on methane storage capacity to provide useful information for further MOFs development with improved methane storage capacity.

    2 MODELS and COMPUTATIONAL METHOD

    2.1 MOF structures

    In this work, eight isoreticular metal-organic frameworks (IRMOFs) synthesized by Eddaoudi.[20] are adopted as representatives of MOFs. IRMOFs-10, 12, 14, 16 have the same cubic topology with the octahedral Zn4O(CO2)6clusters [Fig. 1 (a)] linked by different organic dicarboxylate linkers [Fig. 1 (b)], while IRMOFs-9, 11, 13, and 15 are their corresponding catenated counterparts. The crystal structures of IRMOF-9 and 10 are shown in Fig. 1 (c) as an example. Details of those structures and their properties can be found elsewhere [20, 21].

    Figure 1 The crystal structures of IRMOFs

    2.2 GCMC simulation

    Grand canonical Monte Carlo (GCMC) simulations were carried out to calculate the adsorption of methane in the MOFs studied. The number of the unit cells of IRMOFs adopted in the simulation cell varied from 2′2′2 to 3′3′3, so that enough molecules were accommodated to guarantee the simulation accuracy. A cutoff radius of 1.5 nm was applied to the Lennard- Jones (LJ) interactions, and periodic boundary conditions were applied in all three dimensions. For each state point, GCMC simulation consisted of 1′107steps to guarantee equilibration followed by 1′107steps to sample the desired thermodynamic properties. To estimate the statistical uncertainty, the production phase of each state point was divided into 10 blocks and the standard deviation of the block average was calculated. The uncertainties on the final results, including the ensemble averages of the number of adsorbate molecules in the simulation cell and the total potential energy, were estimated on average to be within±2%. Details of the method were given elsewhere [22].

    3 RESULTS AND DISCUSSION

    3.1 Validation of the force field

    The above set of force fields has been successfully employed to depict alkane adsorption [12, 25], separation [19, 26, 27] and diffusion [28] in MOFs. In our previous work [19], the above force fields have been shown to well consistent with the experimental data [20] of CH4adsorption in IRMOF-1. To further confirm the reliability of the above set of force fields adopted in this work, the adsorption isotherms of CH4in IRMOF-6 were simulated, as shown in Fig. 2. The simulation results are very similar to that obtained by Düren. [12], and both of them are in good agreement with experimental data [20]. This demonstrates that the set of force fields can give reliable calculated results for methane adsorption in IRMOFs, and thus can be used to predict the methane storage capacity of the IRMOFs considered.

    3.2 Adsorption of methane

    With the above parameters, adsorption isotherms of methane in the four catenated IRMOFs as well as their corresponding non-catenated counterparts were predicted with GCMC simulations, as a function of pressure up to 10 MPa. The results were converted into v(STP)/v using crystallographic density, as displayed in Fig. 3. The volumetric capacities for methane in all the MOFs increase with pressure, and the increasing trends in catenated ones are much steeper in the lower pressure range. Apart from the saturated region, the adsorption capacities in the catenated IRMOFs are much larger than those in their correspondingnon-catenated counterparts on a volume basis. The above observations indicate that, attributing to the formation of the additional small pores with different sizes and adsorptions sites, catenated structures can greatly enhance the storage capacity of methane in MOFs.

    Figure 2 Experimental and simulated isotherms of methane adsorption in IRMOF-6 at 298 K■?IRMOF-6 (exp);□?IRMOF-6 (sim)

    Figure 3 Adsorption isotherms for the eight IRMOFs at 298 K■?IRMOF-9;□?IRMOF-10;●?IRMOF-11;○?IRMOF-12;▲?IRMOF-13;△?IRMOF-14;▼?IRMOF-15;▽?IRMOF-16

    As the amount adsorbed in porous media at 3.5 MPa and 298 K is a primary target for methane storage in vehicular applications, we focus on the methane storage under this condition. Based on adsorption literature [8, 12, 29], the following properties of absorbents are the important factors to determine their adsorption capacities: accessible surface (acc), adsorbent framework density (crys), free volume (free), and energetic interactions between the framework and adsorbed molecules. The last one is usually characterized by the isosteric heat of adsorption at infinite dilution (st). Based on an examination of all the properties of the absorbent listed above and the adsorbed amount under above conditions, the relationship of methane storage capacity of the eight IRMOFs with their surface area is studied and the results are listed in Fig. 4. Obviously, a linear relationship exists for the four non-catenated IRMOFs, while a deviation is observed for the catenated IRMOFs with larger methane adsorption capacity per surface area (except for IRMOF-15 with a lower value). The reason may be that, various smaller pores (4 in IRMOF-9, 6 in IRMOF-11 and 5 in IRMOF-13) are formed in the catenated frameworks, leading to a tighter package of methane molecules under the same condition. The isosteric heat of adsorption at infinite dilution (st) can support this conclusion: the values ofstin catenated IRMOFs (15.03, 18.38, 18.45, and 9.21 kJ·mol-1for IRMOF-9, 11, 13 and 15, respectively) are much larger than those in their corresponding non-catenated counterparts (8.42, 10.12, 9.67, and 7.47 kJ·mol-1for IRMOF-10, 12, 14, and 16, respectively).

    Figure 4 Adsorbed amount of methane at 3.5 MPa and 298 Kaccessible surface area ■?IRMOF-9;□?IRMOF-10;●?IRMOF-11;○?IRMOF-12; ▲?IRMOF-13;△?IRMOF-14;▼?IRMOF-15;▽?IRMOF-16

    To further understand the occupying situation of methane molecules in the studied MOFs, the probability distributions of center of mass (COM) for CH4in IRMOF-9 and its non-catenated counterpart IRMOF-10 at 3.5 MPa and 298 K are depicted in Fig. 5. For IRMOF-10, methane molecules mainly accumulate in the metal cluster regions, and there is still much space in the pores of the material up to 3.5 MPa. On the contrary, methane molecules are much more strongly adsorbed in IRMOF-9, with strongest accumulation in the small pores formed by two metal clusters and organic linkers, and second strongest adsorption in the pores formed by a metal cluster and an organic linker in another chain. Fig. 5 shows that, the density of methane in IRMOF-9 is much larger than that in IRMOF-10, and methane molecules distribute more uniformly in the former, due to the presence of various small pores of different sizes and additional adsorption sites. This figure clearly illustrates the advantage of catenated MOFs for methane storage over the non-catenated ones, and provides a better understanding of methane distributions in MOFs with and without catenation.

    Figure 5 Contour plots of the COM probability densities of methane in the-plane for all of the methane molecules in IRMOF-9 and IRMOF-10

    4 ConclusionS

    In summary, the simulation results obtained in this work shows that the amount of adsorbed methane is greatly enhanced in the four catenated IRMOFs compared with their non-catenated counterparts, due to the additional small pores and adsorption sites formed by the catenation of the two separate frameworks. This work also shows that catenated MOFs can meet the DOE target easily for methane storage, indicating that the creation of catenated frameworks is a promising strategy for developing MOF-based efficient methane storage materials in vehicular applications. As a result, a rational combination of catenation with chemical composition may lead to new MOFs with large methane storage capacity.

    1 Muris, M., Dupont-Pavlovsky, N., Bienfait, M., Zeppenfeld, P., “Where are the molecules adsorbed on single-walled nanotubes?”,.., 492, 67-74 (2001).

    2 Dunn, J.A., Rao, M., Sircar, S., Gorte, R.J., Myers, A.L., “Calorimetric heats of adsorption and adsorption isotherms. 2. O2, N2, Ar, CO2, CH4, C2H6, and SF6on NaX, H-ZSM-5, and Na-ZSM-5 Zeolites”,, 12, 5896-5904 (1996).

    3 Quinn, D.F., MacDonald, J.A., “Natural-gas storage”,, 30, 1097-1103 (1992).

    4 Wegrzyn, J., Gurevich, M., Wegrzyn, J., Gurevich, M., “Adsorbent storage of natural gas”,., 55, 71-83 (1996).

    5 Snurr, R.Q., Hupp, J.T., Nguyen, S.T., “Prospects for nanoporous metal-organic materials in advanced separations processes”,., 50, 1090-1095 (2004).

    6 Schlichte, K., Kratzke, T., Kaskel, S., “Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2”,..., 73, 81-88 (2004).

    7 Rowsell, J.L.C., Yaghi, O.M., “Strategies for hydrogen storage in metal-organic frameworks”,...., 44, 4670-4679 (2005).

    8 Wang, S., “Comparative molecular simulation study of methane adsorption in metal-organic frameworks”,, 21, 953-956 (2007).

    9 Noro, S., Kitagawa, S., Kondo, M., Seki, K., “A new, methane adsorbent, porous coordination polymer [{CuSiF6(4,4′-bipyridine)2}]”,...., 39, 2081-2084 (2000).

    10 Kondo, M., Shimamura, M., Noro, S.I., Minakoshi, S., Asami, A., Seki, K., Kitagawa, S., “Microporous materials constructed from the interpenetrated coordination networks. Structures and methane adsorption properties”,.., 12, 1288-1299 (2000).

    11 Bourrelly, S., Llewellyn, P.L., Serre, C., Millange, F., Loiseau, T., Ferey, G., “Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47”,...., 127, 13519-13521 (2005).

    12 Düren, T., Sarkisov, L., Yaghi, O.M., Snurr, R.Q., “Design of new materials for methane storage”,, 20, 2683-2689 (2004).

    13 Ma, S., Sun, D., Simmons, J.M., Collier, C.D., Yuan, D., Zhou, H.C., “Metal-organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake”,...., 130, 1012-1016 (2008).

    14 Sun, D., Ma, S., Ke, Y., Collins, D.J., Zhou, H.C., “An interweaving MOF with high hydrogen uptake”,...., 128, 3896-3897 (2006).

    15 Ma, S., Sun, D., Ambrogio, M., Fillinger, J.A., Parkin, S., Zhou, H.C., “Framework-catenation isomerism in metal-organic frameworks and its impact on hydrogen uptake”,...., 129, 1858-1859 (2007).

    16 Kesanli, B., Cui, Y., Smith, M.R., Bittner, E.W., Bockrath B.C., Lin, W., “Highly interpenetrated metal-organic frameworks for hydrogen storage”,...., 44, 72-75 (2005).

    17 Jung, D.H., Kim, D., Lee, T.B., Choi, S.B., Yoon, J.H., Kim, J., Choi, K., Choi, S.H., “Grand canonical Monte Carlo simulation study on the catenation effect on hydrogen adsorption onto the interpenetrating metal-organic frameworks”,...., 110, 22987-22990 (2006).

    18 Rowsell, J.L., Yaghi, O.M., “Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks”,...., 128, 1304-1315 (2006).

    19 Liu, B., Yang, Q., Xue, C., Zhong, C., Chen, B., Smit, B., “Enhanced adsorption selectivity of hydrogen/methane mixtures in metal-organic frameworks with interpenetration: A molecular simulation study”,...., 112, 9854-9860 (2008).

    20 Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O’Keefe, M., Yaghi, O.M., “Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage”,, 295, 469-472 (2002).

    21 Liu, B., Yang, Q., Xue, C., Zhong, C., Smit, B., “Molecular simulation of hydrogen diffusion in interpenetrated metal-organic frameworks”,..., 10, 3244-3249 (2008).

    22 Allen, M.P., Tildesley, D.J., Computer Simulation of Liquids, Oxford University Press, Oxford (1987).

    23 Goodbody, S.J., Watanabe, K., MacGowan, D., Walton, J.P.R.B., Quirke, N., “Molecular simulation of methane and butane in silicalite”,...,., 87, 1951-1958 (1991).

    24 Rappé, A.K., Casewit, C.J., Colwell, K.S., Goddard III, W.A., Skiff, W.M., “UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations”,...., 114, 10024-10035 (1992).

    25 Garberoglio, G., Skoulidas, A.I., Johnson, J.K., “Adsorption of gases in metal organic materials: Comparison of simulations and experiments”,...., 109, 13094-13103 (2005).

    26 Babarao, R., Hu, Z., Jiang, J., “Storage and Separation of CO2and CH4in Silicalite, C168Schwarzite, and IRMOF-1: A comparative study from Monte Carlo simulation”,, 23, 659-666 (2007).

    27 Jiang, J., Sandler, S.I., “Monte Carlo simulation for the adsorption and separation of linear and branched alkanes in IRMOF-1”,, 22, 5702-5707 (2006).

    28 Jhon, Y.H., Cho, M., Jeon, H.R., Park, I., Chang, R., Rowsell, J.L.C., Kim, J., “Simulations of methane adsorption and diffusion within alkoxy-functionalized IRMOFs exhibiting severely disordered crystal structures”,...., 111, 16618-16625 (2007).

    29 Ruthven, D.M., Principles of Adsorption and Adsorption Processes, VCH, New York (1984).

    2008-10-21,

    2009-04-16.

    the National Natural Science Foundation of China (20706002, 20725622, 20876006) and Beijing Nova Program (2008B15).

    ** To whom correspondence should be addressed. E-mail: qyyang@mail.buct.edu.cn

    猜你喜歡
    慶元
    龍慶元作品
    曹慶元
    浙江慶元寫(xiě)生記
    慶元縣野生大型真菌資源調(diào)查報(bào)告
    食藥用菌(2020年6期)2020-12-23 08:30:12
    給一只癩蛤蟆送葬
    百善孝為先
    浦城慶元山革命歷史博物館開(kāi)館
    紅土地(2019年10期)2019-10-30 03:35:06
    衢寧鐵路慶元隧道菊水斜井長(zhǎng)獨(dú)頭施工通風(fēng)技術(shù)
    一夜鄉(xiāng)思
    浙江慶元高山薄殼田螺品種鑒定及營(yíng)養(yǎng)分析
    视频区图区小说| 国产精品女同一区二区软件| 国产成人午夜福利电影在线观看| 十八禁高潮呻吟视频| 色婷婷久久久亚洲欧美| av电影中文网址| 午夜福利影视在线免费观看| 男男h啪啪无遮挡| 亚洲婷婷狠狠爱综合网| 日韩欧美精品免费久久| 精品卡一卡二卡四卡免费| 一二三四中文在线观看免费高清| 男女国产视频网站| 国产成人91sexporn| 国产精品秋霞免费鲁丝片| 成人国产麻豆网| 精品一区二区免费观看| 国产精品一国产av| 日韩av在线免费看完整版不卡| av有码第一页| 秋霞伦理黄片| 久久狼人影院| 精品亚洲成a人片在线观看| 欧美成人精品欧美一级黄| 丰满饥渴人妻一区二区三| 日韩免费高清中文字幕av| 色视频在线一区二区三区| 91在线精品国自产拍蜜月| 黄片无遮挡物在线观看| 亚洲精品,欧美精品| 美女大奶头黄色视频| 永久网站在线| 国产一区二区激情短视频 | 欧美丝袜亚洲另类| 国产国拍精品亚洲av在线观看| 国产免费福利视频在线观看| 亚洲丝袜综合中文字幕| 免费日韩欧美在线观看| 一本色道久久久久久精品综合| 久久精品国产自在天天线| 亚洲国产精品一区二区三区在线| 最近最新中文字幕大全免费视频 | 久久久久久久精品精品| 精品一区在线观看国产| 亚洲欧洲精品一区二区精品久久久 | 2018国产大陆天天弄谢| 久久精品久久久久久噜噜老黄| 亚洲精品日韩在线中文字幕| 免费女性裸体啪啪无遮挡网站| 国产免费现黄频在线看| 亚洲精品美女久久久久99蜜臀 | 免费黄频网站在线观看国产| 我要看黄色一级片免费的| 亚洲av在线观看美女高潮| 国产精品99久久99久久久不卡 | 亚洲人成77777在线视频| 久久久久久久久久成人| 18+在线观看网站| 亚洲精品美女久久av网站| 国产白丝娇喘喷水9色精品| 国产白丝娇喘喷水9色精品| 99精国产麻豆久久婷婷| 亚洲性久久影院| av视频免费观看在线观看| 亚洲欧美清纯卡通| 少妇猛男粗大的猛烈进出视频| 日本猛色少妇xxxxx猛交久久| 成人国产av品久久久| 男女午夜视频在线观看 | 欧美日韩视频精品一区| 日韩av在线免费看完整版不卡| 永久免费av网站大全| av在线观看视频网站免费| 国产女主播在线喷水免费视频网站| 久久久久久久久久成人| 成年人免费黄色播放视频| 国产免费现黄频在线看| 国产av码专区亚洲av| 亚洲av欧美aⅴ国产| 如日韩欧美国产精品一区二区三区| 亚洲精品乱码久久久久久按摩| 亚洲精品自拍成人| 两性夫妻黄色片 | 久久国产亚洲av麻豆专区| xxxhd国产人妻xxx| 9热在线视频观看99| 欧美 亚洲 国产 日韩一| 国产高清国产精品国产三级| 亚洲熟女精品中文字幕| 亚洲成色77777| tube8黄色片| 一二三四在线观看免费中文在 | 久久影院123| 午夜av观看不卡| 国产福利在线免费观看视频| 免费看不卡的av| 女的被弄到高潮叫床怎么办| 91精品国产国语对白视频| 亚洲av.av天堂| 久久99一区二区三区| 久久久久久久久久久久大奶| av播播在线观看一区| 99热网站在线观看| 亚洲欧洲日产国产| 丰满迷人的少妇在线观看| 欧美日韩视频高清一区二区三区二| 91精品伊人久久大香线蕉| 丝袜脚勾引网站| 亚洲国产欧美日韩在线播放| 一级爰片在线观看| 国产成人一区二区在线| 欧美成人午夜精品| 欧美+日韩+精品| 精品人妻在线不人妻| 下体分泌物呈黄色| av视频免费观看在线观看| 日韩一区二区视频免费看| 深夜精品福利| 成年人免费黄色播放视频| 交换朋友夫妻互换小说| 欧美精品一区二区免费开放| 爱豆传媒免费全集在线观看| 久久人人爽av亚洲精品天堂| 97人妻天天添夜夜摸| 亚洲少妇的诱惑av| av视频免费观看在线观看| 制服丝袜香蕉在线| 亚洲av男天堂| 久久韩国三级中文字幕| 亚洲av综合色区一区| 精品人妻在线不人妻| 插逼视频在线观看| 十八禁网站网址无遮挡| 亚洲av日韩在线播放| 超色免费av| 视频区图区小说| 777米奇影视久久| 久久人人爽av亚洲精品天堂| 精品卡一卡二卡四卡免费| 最近2019中文字幕mv第一页| 亚洲伊人色综图| 秋霞伦理黄片| 亚洲在久久综合| 欧美最新免费一区二区三区| 亚洲精品视频女| 草草在线视频免费看| 制服人妻中文乱码| 咕卡用的链子| 另类精品久久| 九九爱精品视频在线观看| 高清在线视频一区二区三区| 蜜桃在线观看..| 精品国产一区二区三区久久久樱花| 一级,二级,三级黄色视频| 亚洲成国产人片在线观看| 中文字幕最新亚洲高清| 精品一区二区三卡| 97在线人人人人妻| 欧美变态另类bdsm刘玥| 久久国产精品大桥未久av| 欧美日韩一区二区视频在线观看视频在线| 国产精品偷伦视频观看了| 日韩制服骚丝袜av| 亚洲国产精品一区三区| www日本在线高清视频| 男人舔女人的私密视频| 80岁老熟妇乱子伦牲交| 日本黄色日本黄色录像| 亚洲精品中文字幕一二三四区| 国产精品 国内视频| 精品一区二区三区四区五区乱码| 国产人伦9x9x在线观看| 老熟妇乱子伦视频在线观看| 老汉色∧v一级毛片| 男女午夜视频在线观看| 在线视频色国产色| 中文字幕人妻丝袜一区二区| 男女之事视频高清在线观看| 后天国语完整版免费观看| 在线av久久热| 午夜免费鲁丝| 9191精品国产免费久久| 国产亚洲一区二区精品| 巨乳人妻的诱惑在线观看| 国产蜜桃级精品一区二区三区 | 精品国产乱码久久久久久男人| 嫁个100分男人电影在线观看| 亚洲精品国产一区二区精华液| 亚洲av成人一区二区三| 亚洲欧美激情在线| 精品一区二区三卡| 久久久国产精品麻豆| 久久精品亚洲av国产电影网| 婷婷丁香在线五月| 国产成人精品久久二区二区免费| 亚洲欧美激情在线| 亚洲美女黄片视频| 色94色欧美一区二区| 久久亚洲真实| 大码成人一级视频| 亚洲成人手机| 12—13女人毛片做爰片一| 久久中文看片网| 91av网站免费观看| 国产精品偷伦视频观看了| 99久久综合精品五月天人人| 淫妇啪啪啪对白视频| 老熟妇乱子伦视频在线观看| 韩国精品一区二区三区| 天堂动漫精品| 母亲3免费完整高清在线观看| 亚洲欧美激情综合另类| 啦啦啦视频在线资源免费观看| 一二三四在线观看免费中文在| 伊人久久大香线蕉亚洲五| 人人妻人人爽人人添夜夜欢视频| 狠狠狠狠99中文字幕| 免费在线观看亚洲国产| 一级毛片女人18水好多| 搡老熟女国产l中国老女人| 久久久久久人人人人人| 久久久国产欧美日韩av| 岛国毛片在线播放| 嫁个100分男人电影在线观看| 99久久综合精品五月天人人| 丝袜美足系列| 热re99久久精品国产66热6| 久久精品国产清高在天天线| 最近最新免费中文字幕在线| 777米奇影视久久| 不卡av一区二区三区| 欧美 日韩 精品 国产| 久热这里只有精品99| 亚洲七黄色美女视频| 99久久精品国产亚洲精品| 中文字幕高清在线视频| 老汉色∧v一级毛片| 国产精品国产av在线观看| 视频区欧美日本亚洲| 中文字幕人妻熟女乱码| 正在播放国产对白刺激| 免费一级毛片在线播放高清视频 | 大香蕉久久成人网| 色综合欧美亚洲国产小说| 超碰成人久久| 久久久精品区二区三区| 他把我摸到了高潮在线观看| 亚洲精华国产精华精| 午夜久久久在线观看| 免费日韩欧美在线观看| 国产亚洲精品第一综合不卡| 亚洲精品国产精品久久久不卡| 久久性视频一级片| 国产人伦9x9x在线观看| 亚洲欧美日韩另类电影网站| 精品亚洲成a人片在线观看| 一个人免费在线观看的高清视频| 精品久久久久久电影网| 久久久久精品国产欧美久久久| 亚洲欧美日韩另类电影网站| 国产91精品成人一区二区三区| 大型av网站在线播放| 热99re8久久精品国产| 亚洲av片天天在线观看| 韩国精品一区二区三区| 露出奶头的视频| 亚洲人成伊人成综合网2020| 香蕉久久夜色| 男人舔女人的私密视频| 日韩熟女老妇一区二区性免费视频| 久久午夜亚洲精品久久| 国产精品电影一区二区三区 | 国产成人精品无人区| 亚洲少妇的诱惑av| 中文字幕人妻丝袜制服| 国产精品免费大片| 国产视频一区二区在线看| 亚洲av美国av| 久久这里只有精品19| 国产成人免费无遮挡视频| 婷婷精品国产亚洲av在线 | 啦啦啦视频在线资源免费观看| 亚洲成人免费av在线播放| 精品福利永久在线观看| 50天的宝宝边吃奶边哭怎么回事| 国产欧美日韩一区二区三| 欧美一级毛片孕妇| 搡老岳熟女国产| 亚洲人成伊人成综合网2020| 韩国精品一区二区三区| 热99re8久久精品国产| 超碰97精品在线观看| 99国产精品一区二区蜜桃av | 99国产精品一区二区蜜桃av | 国产精品av久久久久免费| 国产高清国产精品国产三级| 一进一出好大好爽视频| 欧美中文综合在线视频| 在线观看一区二区三区激情| 久久久精品国产亚洲av高清涩受| 自线自在国产av| 1024视频免费在线观看| 曰老女人黄片| 大型av网站在线播放| 丁香六月欧美| 五月开心婷婷网| 精品第一国产精品| 久久中文看片网| 国产精品欧美亚洲77777| 国产成人系列免费观看| 久久久国产成人精品二区 | 黄色视频不卡| 国产1区2区3区精品| 天堂动漫精品| 免费在线观看日本一区| 国产精品二区激情视频| 夜夜躁狠狠躁天天躁| 黄色女人牲交| 欧美精品av麻豆av| tube8黄色片| 操美女的视频在线观看| 日本五十路高清| 视频区图区小说| 少妇粗大呻吟视频| 成人手机av| 亚洲三区欧美一区| 欧美精品一区二区免费开放| 超碰97精品在线观看| 99riav亚洲国产免费| 欧美不卡视频在线免费观看 | 国产激情久久老熟女| 亚洲国产毛片av蜜桃av| 女人被狂操c到高潮| 老熟妇仑乱视频hdxx| 欧美成狂野欧美在线观看| 精品少妇一区二区三区视频日本电影| 亚洲一码二码三码区别大吗| 9热在线视频观看99| 亚洲av熟女| 久久精品亚洲熟妇少妇任你| 俄罗斯特黄特色一大片| 免费在线观看视频国产中文字幕亚洲| 亚洲欧美一区二区三区黑人| 亚洲午夜精品一区,二区,三区| 男女之事视频高清在线观看| 亚洲一区中文字幕在线| 母亲3免费完整高清在线观看| 女性被躁到高潮视频| 亚洲欧美一区二区三区黑人| 美女国产高潮福利片在线看| 亚洲五月天丁香| 亚洲国产精品合色在线| av超薄肉色丝袜交足视频| 亚洲一区中文字幕在线| 国产精品久久视频播放| 成人特级黄色片久久久久久久| 十八禁人妻一区二区| 一级黄色大片毛片| 国产色视频综合| 国产亚洲一区二区精品| 国产熟女午夜一区二区三区| 伊人久久大香线蕉亚洲五| bbb黄色大片| 成人国产一区最新在线观看| 亚洲成a人片在线一区二区| 国产日韩欧美亚洲二区| 欧美一级毛片孕妇| 精品人妻在线不人妻| 免费av中文字幕在线| av视频免费观看在线观看| 高清在线国产一区| 1024香蕉在线观看| 亚洲精品久久午夜乱码| 久久久国产精品麻豆| 丝袜美足系列| 叶爱在线成人免费视频播放| 中文字幕精品免费在线观看视频| 99国产精品一区二区蜜桃av | 一级作爱视频免费观看| 国产深夜福利视频在线观看| 女人精品久久久久毛片| 巨乳人妻的诱惑在线观看| 高清av免费在线| 在线观看免费视频网站a站| 夫妻午夜视频| 久久中文看片网| 国产在线精品亚洲第一网站| 国产精品九九99| 色综合婷婷激情| 老司机影院毛片| 国产1区2区3区精品| 国产成人精品在线电影| 两性午夜刺激爽爽歪歪视频在线观看 | 午夜免费成人在线视频| 中出人妻视频一区二区| 80岁老熟妇乱子伦牲交| 最新美女视频免费是黄的| 国产精品二区激情视频| 中文字幕高清在线视频| 性色av乱码一区二区三区2| 欧美性长视频在线观看| 老鸭窝网址在线观看| 在线观看免费视频日本深夜| 久久久国产成人免费| 伊人久久大香线蕉亚洲五| 日本撒尿小便嘘嘘汇集6| tube8黄色片| 校园春色视频在线观看| 国产高清激情床上av| 国产高清国产精品国产三级| 久久久水蜜桃国产精品网| 久久国产精品人妻蜜桃| 国产一区二区三区综合在线观看| 亚洲成人手机| 满18在线观看网站| 精品少妇一区二区三区视频日本电影| 麻豆国产av国片精品| 久久人人97超碰香蕉20202| 极品人妻少妇av视频| 久久久久久久国产电影| 亚洲欧美激情综合另类| 一a级毛片在线观看| 一进一出抽搐动态| 日韩成人在线观看一区二区三区| 人妻久久中文字幕网| 人妻 亚洲 视频| 黄片播放在线免费| 五月开心婷婷网| 午夜福利影视在线免费观看| 国产精品 国内视频| 日韩中文字幕欧美一区二区| 日本一区二区免费在线视频| 村上凉子中文字幕在线| 免费av中文字幕在线| 深夜精品福利| 黑人操中国人逼视频| 国产伦人伦偷精品视频| 一二三四在线观看免费中文在| 两性夫妻黄色片| 自线自在国产av| 久久精品国产99精品国产亚洲性色 | 成人影院久久| 女人久久www免费人成看片| 国产亚洲精品一区二区www | 欧美日韩亚洲高清精品| 国产精品亚洲av一区麻豆| 国产一区有黄有色的免费视频| √禁漫天堂资源中文www| 精品乱码久久久久久99久播| 亚洲中文日韩欧美视频| 亚洲av第一区精品v没综合| 一级毛片高清免费大全| 成年人免费黄色播放视频| 中文字幕最新亚洲高清| 精品人妻熟女毛片av久久网站| 国产激情欧美一区二区| 亚洲av电影在线进入| 欧美国产精品va在线观看不卡| 国内毛片毛片毛片毛片毛片| 亚洲精品一卡2卡三卡4卡5卡| 欧美乱妇无乱码| 大型黄色视频在线免费观看| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲视频免费观看视频| 日日摸夜夜添夜夜添小说| 国产精品.久久久| 国产精品电影一区二区三区 | 国产精品亚洲一级av第二区| 免费在线观看黄色视频的| 女人高潮潮喷娇喘18禁视频| 免费av中文字幕在线| 捣出白浆h1v1| 超碰成人久久| 大香蕉久久成人网| av中文乱码字幕在线| 亚洲国产中文字幕在线视频| 亚洲男人天堂网一区| 国产成人免费无遮挡视频| 性色av乱码一区二区三区2| 亚洲精品成人av观看孕妇| 久9热在线精品视频| 亚洲美女黄片视频| 搡老乐熟女国产| 成人免费观看视频高清| 在线十欧美十亚洲十日本专区| 久久久久久久精品吃奶| 丝袜在线中文字幕| 中出人妻视频一区二区| 美女高潮喷水抽搐中文字幕| 香蕉久久夜色| 国产成人影院久久av| 日韩制服丝袜自拍偷拍| 国产男女内射视频| 亚洲精品美女久久久久99蜜臀| av电影中文网址| 视频在线观看一区二区三区| 国产欧美日韩一区二区三区在线| 自拍欧美九色日韩亚洲蝌蚪91| 午夜福利,免费看| 99久久99久久久精品蜜桃| 亚洲一码二码三码区别大吗| 欧美亚洲日本最大视频资源| 可以免费在线观看a视频的电影网站| 久久天堂一区二区三区四区| 亚洲av片天天在线观看| 性色av乱码一区二区三区2| 女性被躁到高潮视频| 男女下面插进去视频免费观看| 欧美激情久久久久久爽电影 | 国产精品久久久人人做人人爽| 国产激情欧美一区二区| 69av精品久久久久久| 丝袜在线中文字幕| 婷婷丁香在线五月| 欧美日本中文国产一区发布| 欧美日韩瑟瑟在线播放| 久久午夜亚洲精品久久| 女人高潮潮喷娇喘18禁视频| 国产精品一区二区在线不卡| 大陆偷拍与自拍| 亚洲欧美精品综合一区二区三区| 三级毛片av免费| 精品国产一区二区三区四区第35| 久久影院123| 99国产综合亚洲精品| 亚洲五月色婷婷综合| x7x7x7水蜜桃| 国产不卡av网站在线观看| 精品国产国语对白av| 丝袜人妻中文字幕| www.自偷自拍.com| 伦理电影免费视频| 99精国产麻豆久久婷婷| 国产亚洲精品久久久久久毛片 | av欧美777| 国产1区2区3区精品| 久久亚洲真实| 日韩欧美国产一区二区入口| 亚洲欧洲精品一区二区精品久久久| 午夜福利在线免费观看网站| 国产亚洲av高清不卡| 99久久精品国产亚洲精品| 国产91精品成人一区二区三区| 91在线观看av| 在线观看午夜福利视频| 欧美日韩亚洲高清精品| 亚洲国产中文字幕在线视频| 91成年电影在线观看| 亚洲欧美日韩另类电影网站| e午夜精品久久久久久久| 精品乱码久久久久久99久播| 国产精品久久久久成人av| 一区二区三区精品91| 日韩成人在线观看一区二区三区| 亚洲欧美日韩高清在线视频| 男女免费视频国产| 久久久久久人人人人人| 黑人猛操日本美女一级片| 亚洲人成77777在线视频| 久久香蕉精品热| 成人国语在线视频| 欧美黑人欧美精品刺激| 欧美激情久久久久久爽电影 | 国产色视频综合| 国产在线观看jvid| 看免费av毛片| 女性生殖器流出的白浆| 欧美人与性动交α欧美软件| 久久亚洲真实| 自线自在国产av| 中文字幕最新亚洲高清| 欧美日韩乱码在线| 午夜视频精品福利| 国产精品免费大片| 免费高清在线观看日韩| 国产精品1区2区在线观看. | 亚洲av片天天在线观看| 欧美亚洲 丝袜 人妻 在线| 精品久久久久久,| 国产精品 欧美亚洲| 久热这里只有精品99| xxxhd国产人妻xxx| 日韩人妻精品一区2区三区| 日本五十路高清| 精品一区二区三区av网在线观看| 高清黄色对白视频在线免费看| 大型黄色视频在线免费观看| 欧美精品av麻豆av| 黄频高清免费视频| 亚洲国产欧美日韩在线播放| 国产精品欧美亚洲77777| 极品教师在线免费播放| 亚洲精品中文字幕在线视频| 国产精品久久电影中文字幕 | 精品国内亚洲2022精品成人 | 不卡av一区二区三区| 日韩有码中文字幕| 两个人免费观看高清视频| 国产亚洲精品一区二区www | 国产精品久久久av美女十八| 亚洲精品久久午夜乱码| 亚洲五月天丁香| 免费黄频网站在线观看国产| 日日夜夜操网爽| 久久久久国内视频| 天天影视国产精品| 中文字幕高清在线视频| 久久性视频一级片| 精品一品国产午夜福利视频| 咕卡用的链子| 别揉我奶头~嗯~啊~动态视频| 精品国产美女av久久久久小说| 免费在线观看视频国产中文字幕亚洲| 国产极品粉嫩免费观看在线| 一进一出好大好爽视频|