• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhanced Methane Adsorption in Catenated Metal-organic Frameworks: A Molecular Simulation Study*

    2009-05-14 12:29:18XUEChunyu薛春瑜ZHOUZi周子娥YANGQingyuan陽(yáng)慶元andZHONGChongli仲崇立
    關(guān)鍵詞:慶元

    XUE Chunyu (薛春瑜), ZHOU Zi’e (周子娥), YANG Qingyuan (陽(yáng)慶元) and ZHONG Chongli(仲崇立)

    ?

    Enhanced Methane Adsorption in Catenated Metal-organic Frameworks: A Molecular Simulation Study*

    XUE Chunyu (薛春瑜), ZHOU Zi’e (周子娥), YANG Qingyuan (陽(yáng)慶元)**and ZHONG Chongli(仲崇立)

    Laboratory of Computational Chemistry, Department of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China

    A systematic molecular simulation study was performed to investigate the effect of catenation on methane adsorption in metal-organic frameworks (MOFs). Four pairs of isoreticular MOFs (IRMOFs) with and without catenation were adopted and their capacities for methane adsorption were compared at room temperature. The present work showed that catenation could greatly enhance the storage capacity of methane in MOFs, due to the formation of additional small pores and adsorption sites formed by the catenation of frameworks. In addition, the simulation results obtained at 298 K and 3.5 MPa showed that catenated MOFs could easily meet the requirement for methane storage in porous materials.

    methane, adsorption, catenation, metal-organic frameworks, molecular simulation

    1 INTRODUCTION

    Currently, great efforts are being made to search for alternative fuels to gasoline and diesel used in vehicles. Natural gas, which consists mainly of methane, is a good candidate and widely available in many countries. In current practice, it is mainly stored as compressed natural gas (CNG) in pressure vessels at 20.7 MPa and requires an expensive multistage compression. Thus, an effective, economic, and safe on-board storage system is necessary, which will lead to methane-driven automobiles substituting for the traditional ones. An attractive alternative to CNG is the adsorbed natural gas (ANG), which is usually stored in porous materials at a lower pressure. To promote the vehicular application of methane, US Department of Energy (DOE) has set the target for adsorbed methane storage as 180 v(STP)/v (STP: 298 K, 0.1 MPa) at 3.5 MPa and 298 K. A variety of porous materials, including single-walled carbon nanotubes [1], zeolites [2], and activated carbon [3], have been extensively evaluated as the potential materials for methane storage, but few of them can meet the DOE target. The highest methane storage capacity obtained in activated carbons was ca. 200 v/v [4], although significant efforts were made on processing activated carbons. It seems that there is still a very long way to go for developing the efficient storage materials. Metal-organic frameworks (MOFs), a new family of nanoporous materials, have emerged as the promising materials for gas storage, separation, catalysis,. [5-7]. A variety of MOFs have been screened for methane storage [8-13], but only a few can reach the DOE target. For example, Düren. [12] proposed a theoretical MOF (IRMOF-993) with a methane adsorption capacity of 181 v(STP)/v. Ma. [13] synthesized a MOF named PCN-14 that gave the highest methane adsorption capacity of 230 v(STP)/v so far. It seems that MOFs are a class of promising materials with practical applications in methane storage. Catenated MOFs [14-17] are composed of two mutually catenated frameworks that generate additional pores with various sizes. The catenation structure strengthens the gas affinity for the material by an entrapment mechanism that improves the gas adsorption capacity [18] and separation [19]. Thus, catenation appears to be a useful strategy for designing new MOFs as efficient methane storage materials. Based on this consideration, a systematic molecular simulation study is performed in this work to investigate the effect of catenation on methane storage capacity to provide useful information for further MOFs development with improved methane storage capacity.

    2 MODELS and COMPUTATIONAL METHOD

    2.1 MOF structures

    In this work, eight isoreticular metal-organic frameworks (IRMOFs) synthesized by Eddaoudi.[20] are adopted as representatives of MOFs. IRMOFs-10, 12, 14, 16 have the same cubic topology with the octahedral Zn4O(CO2)6clusters [Fig. 1 (a)] linked by different organic dicarboxylate linkers [Fig. 1 (b)], while IRMOFs-9, 11, 13, and 15 are their corresponding catenated counterparts. The crystal structures of IRMOF-9 and 10 are shown in Fig. 1 (c) as an example. Details of those structures and their properties can be found elsewhere [20, 21].

    Figure 1 The crystal structures of IRMOFs

    2.2 GCMC simulation

    Grand canonical Monte Carlo (GCMC) simulations were carried out to calculate the adsorption of methane in the MOFs studied. The number of the unit cells of IRMOFs adopted in the simulation cell varied from 2′2′2 to 3′3′3, so that enough molecules were accommodated to guarantee the simulation accuracy. A cutoff radius of 1.5 nm was applied to the Lennard- Jones (LJ) interactions, and periodic boundary conditions were applied in all three dimensions. For each state point, GCMC simulation consisted of 1′107steps to guarantee equilibration followed by 1′107steps to sample the desired thermodynamic properties. To estimate the statistical uncertainty, the production phase of each state point was divided into 10 blocks and the standard deviation of the block average was calculated. The uncertainties on the final results, including the ensemble averages of the number of adsorbate molecules in the simulation cell and the total potential energy, were estimated on average to be within±2%. Details of the method were given elsewhere [22].

    3 RESULTS AND DISCUSSION

    3.1 Validation of the force field

    The above set of force fields has been successfully employed to depict alkane adsorption [12, 25], separation [19, 26, 27] and diffusion [28] in MOFs. In our previous work [19], the above force fields have been shown to well consistent with the experimental data [20] of CH4adsorption in IRMOF-1. To further confirm the reliability of the above set of force fields adopted in this work, the adsorption isotherms of CH4in IRMOF-6 were simulated, as shown in Fig. 2. The simulation results are very similar to that obtained by Düren. [12], and both of them are in good agreement with experimental data [20]. This demonstrates that the set of force fields can give reliable calculated results for methane adsorption in IRMOFs, and thus can be used to predict the methane storage capacity of the IRMOFs considered.

    3.2 Adsorption of methane

    With the above parameters, adsorption isotherms of methane in the four catenated IRMOFs as well as their corresponding non-catenated counterparts were predicted with GCMC simulations, as a function of pressure up to 10 MPa. The results were converted into v(STP)/v using crystallographic density, as displayed in Fig. 3. The volumetric capacities for methane in all the MOFs increase with pressure, and the increasing trends in catenated ones are much steeper in the lower pressure range. Apart from the saturated region, the adsorption capacities in the catenated IRMOFs are much larger than those in their correspondingnon-catenated counterparts on a volume basis. The above observations indicate that, attributing to the formation of the additional small pores with different sizes and adsorptions sites, catenated structures can greatly enhance the storage capacity of methane in MOFs.

    Figure 2 Experimental and simulated isotherms of methane adsorption in IRMOF-6 at 298 K■?IRMOF-6 (exp);□?IRMOF-6 (sim)

    Figure 3 Adsorption isotherms for the eight IRMOFs at 298 K■?IRMOF-9;□?IRMOF-10;●?IRMOF-11;○?IRMOF-12;▲?IRMOF-13;△?IRMOF-14;▼?IRMOF-15;▽?IRMOF-16

    As the amount adsorbed in porous media at 3.5 MPa and 298 K is a primary target for methane storage in vehicular applications, we focus on the methane storage under this condition. Based on adsorption literature [8, 12, 29], the following properties of absorbents are the important factors to determine their adsorption capacities: accessible surface (acc), adsorbent framework density (crys), free volume (free), and energetic interactions between the framework and adsorbed molecules. The last one is usually characterized by the isosteric heat of adsorption at infinite dilution (st). Based on an examination of all the properties of the absorbent listed above and the adsorbed amount under above conditions, the relationship of methane storage capacity of the eight IRMOFs with their surface area is studied and the results are listed in Fig. 4. Obviously, a linear relationship exists for the four non-catenated IRMOFs, while a deviation is observed for the catenated IRMOFs with larger methane adsorption capacity per surface area (except for IRMOF-15 with a lower value). The reason may be that, various smaller pores (4 in IRMOF-9, 6 in IRMOF-11 and 5 in IRMOF-13) are formed in the catenated frameworks, leading to a tighter package of methane molecules under the same condition. The isosteric heat of adsorption at infinite dilution (st) can support this conclusion: the values ofstin catenated IRMOFs (15.03, 18.38, 18.45, and 9.21 kJ·mol-1for IRMOF-9, 11, 13 and 15, respectively) are much larger than those in their corresponding non-catenated counterparts (8.42, 10.12, 9.67, and 7.47 kJ·mol-1for IRMOF-10, 12, 14, and 16, respectively).

    Figure 4 Adsorbed amount of methane at 3.5 MPa and 298 Kaccessible surface area ■?IRMOF-9;□?IRMOF-10;●?IRMOF-11;○?IRMOF-12; ▲?IRMOF-13;△?IRMOF-14;▼?IRMOF-15;▽?IRMOF-16

    To further understand the occupying situation of methane molecules in the studied MOFs, the probability distributions of center of mass (COM) for CH4in IRMOF-9 and its non-catenated counterpart IRMOF-10 at 3.5 MPa and 298 K are depicted in Fig. 5. For IRMOF-10, methane molecules mainly accumulate in the metal cluster regions, and there is still much space in the pores of the material up to 3.5 MPa. On the contrary, methane molecules are much more strongly adsorbed in IRMOF-9, with strongest accumulation in the small pores formed by two metal clusters and organic linkers, and second strongest adsorption in the pores formed by a metal cluster and an organic linker in another chain. Fig. 5 shows that, the density of methane in IRMOF-9 is much larger than that in IRMOF-10, and methane molecules distribute more uniformly in the former, due to the presence of various small pores of different sizes and additional adsorption sites. This figure clearly illustrates the advantage of catenated MOFs for methane storage over the non-catenated ones, and provides a better understanding of methane distributions in MOFs with and without catenation.

    Figure 5 Contour plots of the COM probability densities of methane in the-plane for all of the methane molecules in IRMOF-9 and IRMOF-10

    4 ConclusionS

    In summary, the simulation results obtained in this work shows that the amount of adsorbed methane is greatly enhanced in the four catenated IRMOFs compared with their non-catenated counterparts, due to the additional small pores and adsorption sites formed by the catenation of the two separate frameworks. This work also shows that catenated MOFs can meet the DOE target easily for methane storage, indicating that the creation of catenated frameworks is a promising strategy for developing MOF-based efficient methane storage materials in vehicular applications. As a result, a rational combination of catenation with chemical composition may lead to new MOFs with large methane storage capacity.

    1 Muris, M., Dupont-Pavlovsky, N., Bienfait, M., Zeppenfeld, P., “Where are the molecules adsorbed on single-walled nanotubes?”,.., 492, 67-74 (2001).

    2 Dunn, J.A., Rao, M., Sircar, S., Gorte, R.J., Myers, A.L., “Calorimetric heats of adsorption and adsorption isotherms. 2. O2, N2, Ar, CO2, CH4, C2H6, and SF6on NaX, H-ZSM-5, and Na-ZSM-5 Zeolites”,, 12, 5896-5904 (1996).

    3 Quinn, D.F., MacDonald, J.A., “Natural-gas storage”,, 30, 1097-1103 (1992).

    4 Wegrzyn, J., Gurevich, M., Wegrzyn, J., Gurevich, M., “Adsorbent storage of natural gas”,., 55, 71-83 (1996).

    5 Snurr, R.Q., Hupp, J.T., Nguyen, S.T., “Prospects for nanoporous metal-organic materials in advanced separations processes”,., 50, 1090-1095 (2004).

    6 Schlichte, K., Kratzke, T., Kaskel, S., “Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2”,..., 73, 81-88 (2004).

    7 Rowsell, J.L.C., Yaghi, O.M., “Strategies for hydrogen storage in metal-organic frameworks”,...., 44, 4670-4679 (2005).

    8 Wang, S., “Comparative molecular simulation study of methane adsorption in metal-organic frameworks”,, 21, 953-956 (2007).

    9 Noro, S., Kitagawa, S., Kondo, M., Seki, K., “A new, methane adsorbent, porous coordination polymer [{CuSiF6(4,4′-bipyridine)2}]”,...., 39, 2081-2084 (2000).

    10 Kondo, M., Shimamura, M., Noro, S.I., Minakoshi, S., Asami, A., Seki, K., Kitagawa, S., “Microporous materials constructed from the interpenetrated coordination networks. Structures and methane adsorption properties”,.., 12, 1288-1299 (2000).

    11 Bourrelly, S., Llewellyn, P.L., Serre, C., Millange, F., Loiseau, T., Ferey, G., “Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47”,...., 127, 13519-13521 (2005).

    12 Düren, T., Sarkisov, L., Yaghi, O.M., Snurr, R.Q., “Design of new materials for methane storage”,, 20, 2683-2689 (2004).

    13 Ma, S., Sun, D., Simmons, J.M., Collier, C.D., Yuan, D., Zhou, H.C., “Metal-organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake”,...., 130, 1012-1016 (2008).

    14 Sun, D., Ma, S., Ke, Y., Collins, D.J., Zhou, H.C., “An interweaving MOF with high hydrogen uptake”,...., 128, 3896-3897 (2006).

    15 Ma, S., Sun, D., Ambrogio, M., Fillinger, J.A., Parkin, S., Zhou, H.C., “Framework-catenation isomerism in metal-organic frameworks and its impact on hydrogen uptake”,...., 129, 1858-1859 (2007).

    16 Kesanli, B., Cui, Y., Smith, M.R., Bittner, E.W., Bockrath B.C., Lin, W., “Highly interpenetrated metal-organic frameworks for hydrogen storage”,...., 44, 72-75 (2005).

    17 Jung, D.H., Kim, D., Lee, T.B., Choi, S.B., Yoon, J.H., Kim, J., Choi, K., Choi, S.H., “Grand canonical Monte Carlo simulation study on the catenation effect on hydrogen adsorption onto the interpenetrating metal-organic frameworks”,...., 110, 22987-22990 (2006).

    18 Rowsell, J.L., Yaghi, O.M., “Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks”,...., 128, 1304-1315 (2006).

    19 Liu, B., Yang, Q., Xue, C., Zhong, C., Chen, B., Smit, B., “Enhanced adsorption selectivity of hydrogen/methane mixtures in metal-organic frameworks with interpenetration: A molecular simulation study”,...., 112, 9854-9860 (2008).

    20 Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O’Keefe, M., Yaghi, O.M., “Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage”,, 295, 469-472 (2002).

    21 Liu, B., Yang, Q., Xue, C., Zhong, C., Smit, B., “Molecular simulation of hydrogen diffusion in interpenetrated metal-organic frameworks”,..., 10, 3244-3249 (2008).

    22 Allen, M.P., Tildesley, D.J., Computer Simulation of Liquids, Oxford University Press, Oxford (1987).

    23 Goodbody, S.J., Watanabe, K., MacGowan, D., Walton, J.P.R.B., Quirke, N., “Molecular simulation of methane and butane in silicalite”,...,., 87, 1951-1958 (1991).

    24 Rappé, A.K., Casewit, C.J., Colwell, K.S., Goddard III, W.A., Skiff, W.M., “UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations”,...., 114, 10024-10035 (1992).

    25 Garberoglio, G., Skoulidas, A.I., Johnson, J.K., “Adsorption of gases in metal organic materials: Comparison of simulations and experiments”,...., 109, 13094-13103 (2005).

    26 Babarao, R., Hu, Z., Jiang, J., “Storage and Separation of CO2and CH4in Silicalite, C168Schwarzite, and IRMOF-1: A comparative study from Monte Carlo simulation”,, 23, 659-666 (2007).

    27 Jiang, J., Sandler, S.I., “Monte Carlo simulation for the adsorption and separation of linear and branched alkanes in IRMOF-1”,, 22, 5702-5707 (2006).

    28 Jhon, Y.H., Cho, M., Jeon, H.R., Park, I., Chang, R., Rowsell, J.L.C., Kim, J., “Simulations of methane adsorption and diffusion within alkoxy-functionalized IRMOFs exhibiting severely disordered crystal structures”,...., 111, 16618-16625 (2007).

    29 Ruthven, D.M., Principles of Adsorption and Adsorption Processes, VCH, New York (1984).

    2008-10-21,

    2009-04-16.

    the National Natural Science Foundation of China (20706002, 20725622, 20876006) and Beijing Nova Program (2008B15).

    ** To whom correspondence should be addressed. E-mail: qyyang@mail.buct.edu.cn

    猜你喜歡
    慶元
    龍慶元作品
    曹慶元
    浙江慶元寫(xiě)生記
    慶元縣野生大型真菌資源調(diào)查報(bào)告
    食藥用菌(2020年6期)2020-12-23 08:30:12
    給一只癩蛤蟆送葬
    百善孝為先
    浦城慶元山革命歷史博物館開(kāi)館
    紅土地(2019年10期)2019-10-30 03:35:06
    衢寧鐵路慶元隧道菊水斜井長(zhǎng)獨(dú)頭施工通風(fēng)技術(shù)
    一夜鄉(xiāng)思
    浙江慶元高山薄殼田螺品種鑒定及營(yíng)養(yǎng)分析
    亚洲午夜理论影院| 精品人妻1区二区| 少妇人妻精品综合一区二区 | 亚洲色图av天堂| 国产探花极品一区二区| 国产在线男女| 国内精品久久久久精免费| 亚洲美女搞黄在线观看 | 亚洲av成人精品一区久久| 超碰av人人做人人爽久久| 国产一区二区亚洲精品在线观看| 黄片小视频在线播放| 日本精品一区二区三区蜜桃| 久久精品影院6| 搡女人真爽免费视频火全软件 | 国产av在哪里看| 国产色婷婷99| 亚洲av不卡在线观看| 婷婷丁香在线五月| 国产精品乱码一区二三区的特点| 18禁黄网站禁片免费观看直播| 乱人视频在线观看| 色视频www国产| 国产激情偷乱视频一区二区| 欧美又色又爽又黄视频| 噜噜噜噜噜久久久久久91| 嫁个100分男人电影在线观看| 亚洲国产精品久久男人天堂| 亚洲av二区三区四区| 久久国产乱子伦精品免费另类| 国产一区二区三区在线臀色熟女| 首页视频小说图片口味搜索| 午夜视频国产福利| 日韩人妻高清精品专区| 中文字幕熟女人妻在线| 美女高潮的动态| 国产精品不卡视频一区二区 | 99久国产av精品| 精品久久久久久成人av| 少妇熟女aⅴ在线视频| 欧美成人a在线观看| 日本a在线网址| 日本与韩国留学比较| 国语自产精品视频在线第100页| 搞女人的毛片| 少妇熟女aⅴ在线视频| 亚洲电影在线观看av| 人妻夜夜爽99麻豆av| 亚洲美女视频黄频| 男插女下体视频免费在线播放| 国产大屁股一区二区在线视频| 一级黄色大片毛片| 黄片小视频在线播放| 亚洲五月婷婷丁香| 日韩大尺度精品在线看网址| 99久久久亚洲精品蜜臀av| www.999成人在线观看| 欧美色视频一区免费| 亚洲三级黄色毛片| 午夜免费成人在线视频| 亚洲av成人精品一区久久| 精品一区二区三区视频在线观看免费| 精品午夜福利在线看| 亚洲欧美日韩高清专用| 欧美高清成人免费视频www| 欧美+亚洲+日韩+国产| 亚洲无线在线观看| 三级毛片av免费| 在线国产一区二区在线| 亚洲欧美日韩无卡精品| 91久久精品国产一区二区成人| 国产精品伦人一区二区| 婷婷亚洲欧美| av欧美777| 欧美zozozo另类| 亚洲avbb在线观看| 精品一区二区三区视频在线观看免费| 亚洲最大成人av| 一级黄片播放器| 在线国产一区二区在线| 国产一区二区在线观看日韩| а√天堂www在线а√下载| 婷婷丁香在线五月| 少妇高潮的动态图| 日本 av在线| 国产精品久久久久久人妻精品电影| 亚洲欧美精品综合久久99| 国产黄片美女视频| www.999成人在线观看| 国产人妻一区二区三区在| 欧美潮喷喷水| 亚洲国产精品999在线| 国产伦人伦偷精品视频| 天堂影院成人在线观看| 97碰自拍视频| 制服丝袜大香蕉在线| 国产v大片淫在线免费观看| 成人国产综合亚洲| 精品午夜福利在线看| 精品人妻熟女av久视频| 在线播放无遮挡| 久久国产乱子伦精品免费另类| 成人午夜高清在线视频| 一本精品99久久精品77| 国产精品98久久久久久宅男小说| 又黄又爽又免费观看的视频| 熟妇人妻久久中文字幕3abv| 欧美日韩综合久久久久久 | 老司机午夜福利在线观看视频| 最近最新中文字幕大全电影3| 国产亚洲精品av在线| 黄色一级大片看看| 亚洲专区中文字幕在线| 丁香欧美五月| 亚洲av免费在线观看| 天堂√8在线中文| 国产高清有码在线观看视频| 日本一二三区视频观看| 国产69精品久久久久777片| 男女那种视频在线观看| 乱码一卡2卡4卡精品| 欧美乱色亚洲激情| 国产视频一区二区在线看| 久久国产乱子伦精品免费另类| 欧美zozozo另类| 亚洲久久久久久中文字幕| 国产精品99久久久久久久久| 无遮挡黄片免费观看| 乱人视频在线观看| 亚洲人成伊人成综合网2020| 国产 一区 欧美 日韩| 欧美激情久久久久久爽电影| 亚洲成人中文字幕在线播放| 国产一区二区三区在线臀色熟女| 禁无遮挡网站| 亚洲人成网站在线播| 中文字幕高清在线视频| 国产探花极品一区二区| 国产精品1区2区在线观看.| 日本五十路高清| 一a级毛片在线观看| 国产成人福利小说| 日韩av在线大香蕉| 最近在线观看免费完整版| 色综合欧美亚洲国产小说| 午夜精品一区二区三区免费看| 99久久99久久久精品蜜桃| 全区人妻精品视频| 五月伊人婷婷丁香| 一二三四社区在线视频社区8| 夜夜爽天天搞| 美女被艹到高潮喷水动态| 无遮挡黄片免费观看| 久久午夜福利片| 怎么达到女性高潮| av天堂在线播放| 女人十人毛片免费观看3o分钟| 尤物成人国产欧美一区二区三区| 欧美又色又爽又黄视频| 国产精品久久视频播放| 在线播放无遮挡| 国内揄拍国产精品人妻在线| 狂野欧美白嫩少妇大欣赏| 亚洲va日本ⅴa欧美va伊人久久| 精品一区二区免费观看| xxxwww97欧美| 亚洲专区国产一区二区| 午夜福利免费观看在线| 久久久久精品国产欧美久久久| 小说图片视频综合网站| 亚洲国产精品999在线| 一边摸一边抽搐一进一小说| 尤物成人国产欧美一区二区三区| 亚洲中文字幕一区二区三区有码在线看| 成人特级av手机在线观看| 男人狂女人下面高潮的视频| 三级男女做爰猛烈吃奶摸视频| 变态另类丝袜制服| 精品日产1卡2卡| 精品一区二区三区视频在线观看免费| 欧美激情在线99| 高潮久久久久久久久久久不卡| 2021天堂中文幕一二区在线观| 欧美xxxx黑人xx丫x性爽| 日日夜夜操网爽| 深夜a级毛片| 毛片女人毛片| 亚洲,欧美,日韩| 高清日韩中文字幕在线| 99热6这里只有精品| 国产乱人伦免费视频| 国产中年淑女户外野战色| 色尼玛亚洲综合影院| 国产又黄又爽又无遮挡在线| 网址你懂的国产日韩在线| 日日摸夜夜添夜夜添小说| 老熟妇仑乱视频hdxx| 噜噜噜噜噜久久久久久91| 亚洲最大成人手机在线| 欧美潮喷喷水| 欧美高清成人免费视频www| 麻豆久久精品国产亚洲av| 日韩成人在线观看一区二区三区| 欧美日韩中文字幕国产精品一区二区三区| 国产美女午夜福利| 91九色精品人成在线观看| 草草在线视频免费看| 亚洲五月天丁香| 久久精品国产亚洲av天美| 久久精品91蜜桃| 有码 亚洲区| 亚洲精品久久国产高清桃花| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲精品一区av在线观看| 国产精品爽爽va在线观看网站| 琪琪午夜伦伦电影理论片6080| 国产精品久久久久久人妻精品电影| 特大巨黑吊av在线直播| 一本综合久久免费| 国产精品久久久久久亚洲av鲁大| 长腿黑丝高跟| 国产亚洲av嫩草精品影院| 日本一本二区三区精品| 熟女电影av网| 草草在线视频免费看| 免费人成视频x8x8入口观看| 高清在线国产一区| 国产精品1区2区在线观看.| 亚洲国产精品sss在线观看| 亚洲自偷自拍三级| 亚洲精华国产精华精| 色播亚洲综合网| 好男人在线观看高清免费视频| 久久久国产成人精品二区| 脱女人内裤的视频| 婷婷亚洲欧美| 男人舔女人下体高潮全视频| 欧美性猛交╳xxx乱大交人| 国产亚洲欧美98| 国产伦一二天堂av在线观看| 两个人的视频大全免费| 亚洲av.av天堂| 嫩草影院新地址| 极品教师在线视频| 国产免费男女视频| 自拍偷自拍亚洲精品老妇| 偷拍熟女少妇极品色| 欧美色视频一区免费| a级一级毛片免费在线观看| 熟女电影av网| 99在线人妻在线中文字幕| 色精品久久人妻99蜜桃| 国产精品永久免费网站| 免费av不卡在线播放| 日本五十路高清| 国产精品女同一区二区软件 | 特大巨黑吊av在线直播| 国产成+人综合+亚洲专区| 亚洲成人中文字幕在线播放| 嫩草影院新地址| 精品99又大又爽又粗少妇毛片 | 国产亚洲精品久久久久久毛片| 国产av不卡久久| 精品人妻熟女av久视频| 窝窝影院91人妻| 日韩人妻高清精品专区| 欧美精品国产亚洲| 嫁个100分男人电影在线观看| 亚洲在线观看片| 亚洲 欧美 日韩 在线 免费| 深夜精品福利| 亚洲人与动物交配视频| 又黄又爽又免费观看的视频| 天堂动漫精品| 精品欧美国产一区二区三| 久久久久久久亚洲中文字幕 | 国产一区二区三区在线臀色熟女| 国产精品嫩草影院av在线观看 | 成年女人毛片免费观看观看9| 看免费av毛片| 99久久久亚洲精品蜜臀av| eeuss影院久久| 男女之事视频高清在线观看| 婷婷丁香在线五月| 精品久久久久久久人妻蜜臀av| 悠悠久久av| 国产亚洲欧美在线一区二区| 亚洲人成电影免费在线| 国产高清三级在线| 91午夜精品亚洲一区二区三区 | 亚洲一区高清亚洲精品| 97碰自拍视频| 国产美女午夜福利| 国产老妇女一区| 99国产精品一区二区蜜桃av| 国产午夜精品论理片| 国产av不卡久久| 国产aⅴ精品一区二区三区波| 日韩中字成人| 国产精品伦人一区二区| 亚洲国产精品sss在线观看| 中文字幕精品亚洲无线码一区| 精品一区二区三区人妻视频| 男插女下体视频免费在线播放| 亚洲av五月六月丁香网| 成人午夜高清在线视频| 国内精品一区二区在线观看| 男女之事视频高清在线观看| 99国产精品一区二区三区| 一个人免费在线观看的高清视频| 少妇的逼水好多| 一二三四社区在线视频社区8| 午夜久久久久精精品| 日本 av在线| 精品午夜福利视频在线观看一区| 美女免费视频网站| 男人狂女人下面高潮的视频| 亚洲国产精品sss在线观看| aaaaa片日本免费| 老熟妇仑乱视频hdxx| 欧美成狂野欧美在线观看| 精品不卡国产一区二区三区| 99久久九九国产精品国产免费| 天堂√8在线中文| 亚洲人成网站高清观看| 欧美黑人欧美精品刺激| 高潮久久久久久久久久久不卡| 他把我摸到了高潮在线观看| 乱码一卡2卡4卡精品| 九九久久精品国产亚洲av麻豆| 成熟少妇高潮喷水视频| 国内揄拍国产精品人妻在线| 国产久久久一区二区三区| 色噜噜av男人的天堂激情| 中文字幕精品亚洲无线码一区| 老熟妇仑乱视频hdxx| 亚洲欧美日韩高清专用| 每晚都被弄得嗷嗷叫到高潮| 成人av在线播放网站| 亚洲中文字幕日韩| 天美传媒精品一区二区| 啦啦啦观看免费观看视频高清| 日韩免费av在线播放| 日韩欧美三级三区| 精品熟女少妇八av免费久了| 午夜日韩欧美国产| 国产精品免费一区二区三区在线| 婷婷丁香在线五月| 欧美又色又爽又黄视频| 免费搜索国产男女视频| 亚洲欧美日韩高清在线视频| 亚洲av成人不卡在线观看播放网| 亚洲国产精品成人综合色| 天堂影院成人在线观看| 麻豆成人av在线观看| 国产黄a三级三级三级人| 国产麻豆成人av免费视频| 日本熟妇午夜| 天堂动漫精品| 如何舔出高潮| 国产乱人视频| 国模一区二区三区四区视频| 日韩欧美在线乱码| 五月伊人婷婷丁香| 99在线视频只有这里精品首页| 高潮久久久久久久久久久不卡| 丁香欧美五月| 精品人妻熟女av久视频| 成人高潮视频无遮挡免费网站| 成人特级av手机在线观看| 黄色丝袜av网址大全| 在线观看av片永久免费下载| 亚洲精品久久国产高清桃花| 成人高潮视频无遮挡免费网站| 国产一区二区亚洲精品在线观看| 国产在视频线在精品| 五月伊人婷婷丁香| 可以在线观看的亚洲视频| 黄色一级大片看看| 国产91精品成人一区二区三区| 少妇人妻精品综合一区二区 | 国产免费男女视频| 五月玫瑰六月丁香| 热99re8久久精品国产| 免费av不卡在线播放| 国产精品爽爽va在线观看网站| 日本一本二区三区精品| 国产国拍精品亚洲av在线观看| 国产探花在线观看一区二区| 国产精品日韩av在线免费观看| 国产精品野战在线观看| 黄色视频,在线免费观看| 欧美日韩国产亚洲二区| 69人妻影院| 国内精品一区二区在线观看| 97热精品久久久久久| 亚洲中文字幕日韩| 久99久视频精品免费| 精品人妻偷拍中文字幕| 亚洲欧美激情综合另类| 美女大奶头视频| 欧美日韩亚洲国产一区二区在线观看| 久久中文看片网| 精品一区二区三区av网在线观看| 精品乱码久久久久久99久播| 窝窝影院91人妻| 亚洲无线在线观看| 国产探花极品一区二区| 色精品久久人妻99蜜桃| 国产一区二区三区视频了| 最近在线观看免费完整版| 欧美日韩黄片免| 国产成人影院久久av| 国产亚洲精品综合一区在线观看| 婷婷丁香在线五月| 国产精品1区2区在线观看.| 女生性感内裤真人,穿戴方法视频| 欧美成人免费av一区二区三区| 国内精品美女久久久久久| 欧美成人a在线观看| 国产毛片a区久久久久| 黄色视频,在线免费观看| 淫妇啪啪啪对白视频| 亚洲真实伦在线观看| 99国产精品一区二区蜜桃av| a级一级毛片免费在线观看| 久久久久久久久久黄片| 色av中文字幕| 国产三级在线视频| 简卡轻食公司| 动漫黄色视频在线观看| 最近中文字幕高清免费大全6 | 欧美一级a爱片免费观看看| 哪里可以看免费的av片| 欧美日本视频| 亚洲黑人精品在线| 国产一区二区三区视频了| 欧美xxxx性猛交bbbb| 久久国产乱子伦精品免费另类| 中文字幕免费在线视频6| 91麻豆精品激情在线观看国产| 中文字幕久久专区| 嫩草影院精品99| 人妻制服诱惑在线中文字幕| 一本久久中文字幕| 国产三级中文精品| 精品日产1卡2卡| 亚洲av.av天堂| 亚洲人成网站高清观看| 天堂网av新在线| 男人舔女人下体高潮全视频| 国产69精品久久久久777片| av天堂在线播放| 国内精品久久久久久久电影| 欧美又色又爽又黄视频| 99久久精品国产亚洲精品| av中文乱码字幕在线| 国产中年淑女户外野战色| 波多野结衣高清无吗| 午夜精品在线福利| 亚洲人成网站在线播放欧美日韩| 一个人免费在线观看电影| 国产精品野战在线观看| 亚洲国产欧洲综合997久久,| 国产综合懂色| 草草在线视频免费看| 欧美另类亚洲清纯唯美| 五月伊人婷婷丁香| 如何舔出高潮| 亚洲国产精品sss在线观看| 亚洲成a人片在线一区二区| 在线天堂最新版资源| 午夜影院日韩av| 国产成人av教育| 亚洲成人久久性| 国产成人影院久久av| 在线观看免费视频日本深夜| 午夜亚洲福利在线播放| 国产熟女xx| 99热精品在线国产| 国产精品免费一区二区三区在线| 精品99又大又爽又粗少妇毛片 | 麻豆成人av在线观看| 最近中文字幕高清免费大全6 | 性欧美人与动物交配| 日本与韩国留学比较| 极品教师在线视频| 国产伦精品一区二区三区视频9| 日韩欧美在线二视频| 一区福利在线观看| 国产一区二区在线观看日韩| 真人一进一出gif抽搐免费| 白带黄色成豆腐渣| 超碰av人人做人人爽久久| 小蜜桃在线观看免费完整版高清| 99久久精品热视频| 老司机福利观看| 精品人妻偷拍中文字幕| 精品欧美国产一区二区三| 在线天堂最新版资源| www.www免费av| 在线观看免费视频日本深夜| 国模一区二区三区四区视频| 欧美最新免费一区二区三区 | 高清毛片免费观看视频网站| av福利片在线观看| 亚洲国产精品成人综合色| 国产精品电影一区二区三区| 免费av观看视频| 宅男免费午夜| 一级av片app| 午夜影院日韩av| 女人被狂操c到高潮| 美女大奶头视频| 精品久久久久久成人av| 少妇人妻一区二区三区视频| 18禁黄网站禁片午夜丰满| 亚洲精品在线美女| 久久九九热精品免费| 国产极品精品免费视频能看的| 成人无遮挡网站| 日韩国内少妇激情av| 亚洲无线在线观看| 成人欧美大片| 99热只有精品国产| 国产成人啪精品午夜网站| 无遮挡黄片免费观看| 午夜精品久久久久久毛片777| 亚洲电影在线观看av| 日本 欧美在线| 激情在线观看视频在线高清| 国产伦人伦偷精品视频| 国产伦在线观看视频一区| av在线天堂中文字幕| 成人永久免费在线观看视频| 一夜夜www| 成年版毛片免费区| 嫩草影院入口| 99视频精品全部免费 在线| 俺也久久电影网| 我的老师免费观看完整版| 欧美色视频一区免费| 婷婷精品国产亚洲av| 日韩免费av在线播放| 嫩草影院入口| 在线观看66精品国产| 99riav亚洲国产免费| 欧美区成人在线视频| 久久午夜亚洲精品久久| 不卡一级毛片| 亚洲人与动物交配视频| 日本五十路高清| 国产麻豆成人av免费视频| 婷婷精品国产亚洲av在线| 男人狂女人下面高潮的视频| 最新中文字幕久久久久| 国产在视频线在精品| 琪琪午夜伦伦电影理论片6080| 亚洲va日本ⅴa欧美va伊人久久| 欧美成人一区二区免费高清观看| 人妻夜夜爽99麻豆av| 首页视频小说图片口味搜索| 国产伦精品一区二区三区视频9| 非洲黑人性xxxx精品又粗又长| 嫩草影视91久久| 18禁黄网站禁片午夜丰满| 国产三级在线视频| 蜜桃亚洲精品一区二区三区| 日韩中字成人| 中文字幕人妻熟人妻熟丝袜美| 深夜精品福利| 国产在线男女| 中文字幕熟女人妻在线| 日本熟妇午夜| 中亚洲国语对白在线视频| 九九在线视频观看精品| 欧美丝袜亚洲另类 | 一区福利在线观看| 免费av观看视频| 国产亚洲精品久久久com| 精品久久久久久久久亚洲 | 日韩精品青青久久久久久| 精品久久久久久久久久久久久| 免费看美女性在线毛片视频| 免费在线观看影片大全网站| 久久精品国产亚洲av天美| 国产精品自产拍在线观看55亚洲| 成人特级黄色片久久久久久久| 如何舔出高潮| 亚洲无线在线观看| 亚洲国产高清在线一区二区三| 成年女人毛片免费观看观看9| 精品久久国产蜜桃| 在线观看免费视频日本深夜| 老司机午夜福利在线观看视频| 国产三级黄色录像| 欧美日韩综合久久久久久 | 国产精品一区二区免费欧美| 女人十人毛片免费观看3o分钟| 波多野结衣高清无吗| 久久久久久久亚洲中文字幕 | 12—13女人毛片做爰片一| 蜜桃久久精品国产亚洲av| 一个人免费在线观看的高清视频| 国产极品精品免费视频能看的| 免费黄网站久久成人精品 | av天堂中文字幕网| 久久久国产成人精品二区| 国产三级黄色录像| 全区人妻精品视频| 校园春色视频在线观看| 亚洲狠狠婷婷综合久久图片| 麻豆久久精品国产亚洲av| 国内久久婷婷六月综合欲色啪| 男女之事视频高清在线观看|