• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modeling and Simulation of Production Process on Dimethyl Ether Synthesized from Coal-based Syngas by One-step Method*

    2009-05-14 08:24:12HANYuanyuan韓媛媛ZHANGHaitao張海濤YINGWeiyong應(yīng)衛(wèi)勇andFANGDingye房鼎業(yè)
    關(guān)鍵詞:張海濤

    HAN Yuanyuan (韓媛媛), ZHANG Haitao (張海濤), YING Weiyong (應(yīng)衛(wèi)勇),** and FANG Dingye (房鼎業(yè))

    ?

    Modeling and Simulation of Production Process on Dimethyl Ether Synthesized from Coal-based Syngas by One-step Method*

    HAN Yuanyuan (韓媛媛)1,2, ZHANG Haitao (張海濤)1, YING Weiyong (應(yīng)衛(wèi)勇)1,** and FANG Dingye (房鼎業(yè))1

    1Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China2Department of Chemical Engineering, Huaqiao University, Quanzhou 362021, China

    As a result of shortage supply of oil resources, the process for the alternative coal-based fuel, dimethyl ether (DME), has emerged as an important process in chemical engineering field. With the laboratory experiment data about DME synthesis and separation, the production process for DME with high purity is proposed when one-step synthesis of DME in slurry bed reactor from syngas is adopted. On the basis of experimental research and process analysis, the proper unit modules and thermophysical calculation methods for the simulation process are selected. Incorporated the experimentally determined parameters of reaction dynamic model for DME synthesis, regression constants of parameters in non-random two-liquid equation (NRTL) model for binary component in DME separation system with built-in properties model, the process flowsheet is developed and simulated on the Aspen Plus platform. The simulation results coincide well with data obtained in laboratory experiment. Accordingly, the accurate simulation results offer useful references to similar equipment design and process operation optimization.

    dimethyl ether, process simulation, Aspen Plus

    1 INTRODUCTION

    It is important for china to develop process technology for coal-based chemical products since China is a country with abundant coal, whereas lack in oil and natural gas. Syngas is first obtained from coal, and then alcohol, ether, and other chemical products are synthesized, which is the deep processing for coal in chemical engineering [1]. Among the ether products, great interest is focused on dimethyl ether (DME) because of the advantages the fuel offered and many researches are being carried out on this clean-burning fuel [2]. New processes for DME product is in a single stepautothermal reactors or slurry phase reactors from syngas. Compared with the methanol dehydration process for DME, the separation process for high purity DME are relatively more complex because unreacted syngas and produced CO2are in the one-step synthesis process for DME. Unit operations of chemical engineering are commonly used to separate DME from the one-step reaction resultants in the synthesis process. Through absorption, flash, and distillation unit process [3-6], H2, N2, CH4, and CO2are removed; methanol is recovered and the final DME product is obtained.

    Process simulation technology in chemical engineering is one of the effective tools to analyze performance of the flow. The resultful adjustment and control on the process can be obtained using simulation and analysis on chemical engineering process. The operative effect in some fields of chemical engineering is significant [7-9]. DME is synthesized in slurry bed reactor by one-step method from syngas, and then certain separation process is adopted to gain high purity DME product. Presently, the relative flowsheet research is in exploiting stage in China [1]. Simulation technique is not sufficiently applied and demonstrated. Combined with the process simulation technology, experimental research results about DME synthesis and separation, the purpose of this article is to simulate and analyze the production process for pure DME using the software Aspen Plus.

    2 A PROCESS FOR DME WITH HIGH PURITY

    DME is synthesized in slurry bed reactor from coal-based syngas. After one-step reaction, the main components in the system are H2, N2, CO, CO2, CH4, CH3OH, DME, and H2O. The aim of the separation is to make the final DME product with mole concentration of greater than or equal to 99%.

    Compared with other components in condensed gas phase stream of one-step reaction resultants, DME has the highest solubility in methanol or water [10], so the unreacted gas and other inert gases is removed when the solvent absorption method is carried out. The difficulty in the separation system is to detach CO2from DME. Generally, DME has low boiling point at ambient temperature and normal pressure, so it can be easily liquefied. DME and CO2can be separated by means of pressurized distillation.

    According to the synthesis principle about reaction separation [11], ordinary phase separation will be first carried out by partial condensation or vaporization, and then next separation step proceeds if volatility of the components in reaction resultants stream is in wide bound. Chen [12] found that in the research system with DME, CO2, and water, at 323K, when CO2partial pressure is 0.25 MPa, the separation coefficient for DME and CO2is 35; whereas in the DME, CO2, and methanol system, at 310 K, the value becomes much smaller and comes to 1.5, although at the same CO2partial pressure. The results indicate that there is more difficulty in separation of DME and CO2when methanol is in system. So methanol and water in one-step reaction resultants are first removed by condensation, then gas stream of condensed reaction resultants is absorbed by water; liquid stream containing DME is distillated for final DME product. This separation process for DME with high purity is feasible.

    Condensed gases of one-step reaction resultants were absorbed by water in the packed absorber with CY 700 corrugated packing [13]. The influence on DME absorption, caused by operating pressure, temperature, the ratio of volume loading between gas and liquid, gas velocity, and CO2concentration, were researched. With the absorption experimental results, appropriate range of operating pressure, temperature, and absorbent flow can be determined. Liquid feed containing DME, CO2, methanol, and water was introduced to the distillator for DME product with high purity [14]. The experimental results indicate the proper separation sequence as following: CO2is discharged as uncondensed gas from the top; final DME product is drawn from the side; bottom stream containing methanol and water is processed.

    Grounded on the experimental research mentioned above, the DME production process is schematically illustrated in Fig. 1. First, disposed coal-based fresh syngas stream mixes with the recovered gas stream from off-gas in the absorber, and then sent into the slurry bed reactor to synthesize DME with an effective bifunctional catalyst. The reaction resultants leave the reactor and enter the condenser to gain gas and liquid phase resultants. Gas phase resultants are introduced into the absorber after reducing pressure, and deionized water is used as absorbent. The gas from the top of the absorber is transported to the recovery equipment. Liquid products from bottom of the absorber mix with the liquid resultants from the condenser and enter into the DME distillator. DME product is as side run-off and drawn out at the proper stage. Uncondensed gas from the DME distillator is conveyed to fuel gas pipe and the liquid stream from the bottom is fed to the methanol distillator. Methanol product is obtained on the top of the distillator and water from the bottom is used as absorbent after heat exchange.

    3 MODELING AND SIMULATION OF THE WHOLE PROCESS

    In this work, the production process of DME is simulated using Aspen Plus software. Dynamics of the reaction system and gas-liquid equilibrium of the separation system are in close relation with the process simulation calculation. At certain process conditions, the nonideal nature of gas/liquid phase should be taken into account. Polar compound water and methanol are in the process; the in and out stream in each module are in closeness conjoint. After the whole process is established, the selection of proper representation components, unit module, and thermophysical properties and application of effective simulation strategy is important for carrying out the accurate process simulation.

    3.1 Component selection

    H2, N2, CO, CO2, CH4, CH3OH, DME, and H2O are the main components in the whole process. With the recovery gas stream from off-gas in the absorber, coal-based syngas is desulfated and proportioned, then sent into the slurry bed reactor to synthesize DME. H2/CO ratio in the reactant steam should be proportioned to comply with the requirement of the catalyst. In the simulation process, H2/CO ratio in reactant stream is adjusted to 1.5 or so.

    Figure 1 Process flow diagram of synthesis and separation of high purity DME

    1—reactor; 2—condenser; 3—absorber; 4—mixer; 5—DME distillatory; 6—methanol distillatory; 7—recovery equipment; 8—compressor

    3.2 Unit module selection

    Continuous stirred tank reactor (CSTR) module is used to simulate the reaction synthesis process for DME and the reaction kinetics model provided by user through the built-in reactor model. Absorption and distillation processes are simulated using the rigorous fractionation (RADFRAC) module, which is a rigorous model for simulating multistage vapor-liquid fractionation operation, and the nonideal deviation is modified by Murphree plate efficiency. Flash2, Heater, and Tank module represents condenser, heater or cooler, holder and mixer, respectively.

    3.3 Properties selection and modification

    The flowsheet for the whole process is built. In the whole simulation process, it is important to choose an appropriate thermodynamic model. Meanwhile, the change in the setup of unit modules or operating conditions will lead the simulation calculation divergence. It is imperative to estimate and adjust the parameters of the relative models so that simulation calculations can converge quickly and the final simulation results can describe the actual data.

    The critical modules in the simulation process are reactor, absorber, and distillator. In the modeling process, the experimentally determined reaction kinetics model [15] is applied in the reaction module. BWR-LS model equation is chosen to describe and calculate the properties of reaction system. Except for water and methanol, other components in the separation process are nonpolar. Non-random two-liquid equation (NRTL) is used to calculate liquid phase properties, and vapor phase properties are calculated from the Redlich-Kwong equation of state. Gas-liquid equilibrium of the research system can be accurately predicted when the state equation combines with activity coefficient model. As for absorption module, NRTL-RK properties model is desired, in which binary interaction parameters [16, 17] in NRTL model for binary component in DME separation system are introduced to the properties setup. NRTL-RK properties model is also applied in the distillator module through UNIFAC model and the properties estimation tools in the software to gain the wanting binary interaction parameters between components. Convergence method in absorption and distillation modules is Wegstein and Newton, respectively.

    4 SIMULATION RESULTS AND DISCUSSION

    As can be seen, reactor, absorber, and distillator are major process units. Experimental data in the literature are introduced to perform the reactor simulation, and the comparison between simulation and the experimental results are listed in Table 1. Except for DME and CO2, other components in gas phase stream of condensed reaction resultants hardly dissolves in water; and the influence on DME absorption caused by these inert gases can be represented by N2. Results of absorption experiment and simulation on gas phase components are given in Table 2, and data in table 3 detail the results between distillation experiment and simulation for high purity DME as well.

    The simulation results are compared with the experimental data to verify the reliability of the simulation. As the comparison results show, the simulation module selection and calculation strategy presented in Section 3 could predict the behavior of the main unit process. In this way, the whole process, one-step reaction in a slurry bed reactor from syngas for high purity DME product, can be simulated at actual process conditions. The whole process simulation is carried out on the methods mentioned above, and final DME product with content no less than 99.9%. In the case of production time of 300 days per year, namely 7200 hours, the output of product DME of about 60 thousands tons, detailed data of the main streams including components, flow, temperature, and pressure are obtained and given in Table 4.

    Table 1 Simulation results of reactor module versus experiment data

    Table 2 Simulation results of absorber module versus experiment data

    Table 3 Simulation results of distillator module versus experiment data

    Table 4 Properties and components of the main stream in the simulation process

    The whole process simulation results provide the outputs of the key units, properties data about the main streams between equipments or in columns, and offer reference for actual process design and operation. As shown in Table 4, DME mole fraction in the absorption liquid stream reaches 0.0319; after distillation, the purity of DME is no less than 99.9%. The content of DME in condensed reaction gas phase is 0.1154 or so; after absorbed by water, the DME mole fraction in off-gas from top of the absorber is 0.0086 and the absorptivity is greater than 93%. The heat duty of the condenser in DME distillator is from engineering water, and any extra cryogen is undesired. DME product with purity no less than 99.9% is as object, the DME yield by the separation process is 83.9%; water from the methanol distillator has no impurity and reused as absorbent after heat exchange, avoiding wastewater pollution and reducing charge of public project.

    One-step reaction from syngas is exothermic [18], and the reaction heat is moved away in time for assuring operating reaction temperature at certain range. After heat change, water from the methanol distillator is reused as absorbent in the absorption column. So the main two distillator in the process is the heat providing objects. Without consideration to the heat integration, for final 99.91% DME product with flow 0.05 kmol·s-1, the thermal load in the top and bottom of the DME distillator is 30.5 and 36.8 GJ·h-1; the number for methanol distillator is 24.7 and 20.9 GJ·h-1. In terms of the reduced coefficient of 1 kW steam corresponding to 0.18 kg standard coal per hour [19], the separation expenditure of energy for 1 kg DME is 0.71 kg standard coal.

    Sensitivity analysis is carried out on absorber and DME distillator modules, results are shown in Figs. 2 and 3.

    Figure 2 Influence of absorbent flow on DME absorption

    ■?DME concentration;▲?DME yield

    Figure 2 indicates that the DME concentration in bottom liquid stream of the absorber and DME yield decrease with the increasing absorbent flow at given gas flow. Fig. 3 demonstrates that side run-off position has obvious impact on content and yield of product DME. As shown in Fig. 2, flow of absorbent water should be controlled in a proper range so that the low content of DME in off-gas of the absorber is guarantee, and the flow of bottom liquid stream is not increased in large scale to add load on the follow process unit. As the simulation and experiment results for reference, DME content in input gas is at 0.08-0.15, the mole flow ratio between absorbent water and absorption gas is better at 3-4. The heat duty of the condenser in DME distillator is from engineering water, and plate numbers, feed flow, and thermal load of the distillator are definite, the proper side position is at 3-5 theory tray. Exploiting the process simulation results and using the analysis tools in the software, the improvement on the whole process and optimization operation on the key units are on reliable platform. The analysis and corresponding strategy for modification of the sticking point in the process can be offered.

    Figure 3 Influence of produced position on the distillation

    ■?DME concentration;▲?DME yield

    5 CONCLUSIONS

    (1) On the experiment research about one-step reaction, gas mixture with DME absorption, and liquid stream containing DME distillation, the whole process for high purity DME synthesized in a slurry bed reactor from coal-based syngas is developed.

    (2) Combined the parameters of reaction dynamic model for DME synthesis reaction, regression constants of parameters in NRTL model for binary component in DME separation system with properties model in the simulation software, the flowsheet for accurate describing the whole process is built on Aspen Plus platform.

    (3) To different modules in the process, with experimental results for reference, corresponding thermophysical models and calculation strategy are applied in the simulation process. In such way, simulation calculation quickly converges, and the simulation results are in good agreement with that in previous work. The module selection and calculation strategy for the process simulation are suitable. On the foundation of successful simulation for the process, some suitable strategy can be expediently and quickly executed for better control on the fluctuant process parameters using sensitivity analysis tool. Simulator is proved helpful for operational modifications as well as design considerations.

    1 Tang, H.Q., Introduction of New Technology for C-1 Chemical Chemistry, Nitrogen Fertilizer and Methanol Newsroom, Chengdu (2006). (in Chinese)

    2 Troy, A.S., Rodney, L.B., Howard, L.G., “Dimethyl ether (DME) as an alternative fuel”,, 156, 497-511 (2006).

    3 Kohl, G., Becker, K., Holm, R., Timm, D., Schmidt, G., “Direct prepn. of dimethyl ether from synthesis gas with controllable purity, useful for aerosols or for domestic and industrial heating”, DE 4222655 (1994).

    4 Sosna, M.K., Sokolinskij, J.A., Shilkina, M.P., “Dimethyl ether production process”, RU 2277528 (2006).

    5 Tang, H.Q., Fang, D.Y., Tang, J.W., Zheng, M.F., “The separation method of dimethyl ether synthesized by one-step technologysyngas”, CN Pat., 1548411 A (2004). (in Chinese)

    6 Dong, D.F., Zhang, Y.G., Wang, S.C., “Separation method of DME products in the DME preparation process”, CN Pat., 1377871 A (2002). (in Chinese)

    7 Yu, J.C., Ki, W.C., Byung, W.C., Yeong-Koo, Y., “Optimization of the sulfolane extraction plant based on modeling and simulation”,...., 41, 5504-5509 (2002).

    8 Lee, D., Lee, J.M., Lee, S.Y., Lee, I.B., “Dynamic simulation of the sour water stripping progress and modeling structure for effective pressure control”,.., 80 (A2),167-177 (2002).

    9 Christina, B.D.F., Karl, T.C., “Simulation studies of catalytic distillation for remove of water from ethanol using a rate-based kinetic model”,...., 43, 762-768 (2004).

    10 Yaw, C.L., Chemical Properties Handbook, McGraw-Hill, New York (1990).

    11 Smith, R., Chemical Process Design, Wang, B.G., Wang, C.Y., Li, H.Q., Shi, L., trans., Chemical Industry Press, Beijing (2002). (in Chinese)

    12 Chen, J., Yu, Y.M., Tang, H.Q., “Phase equilibrium calculation for binary system with dimethyl ether and the effect on its separation process”,, 30, 71-78 (2005). (in Chinese)

    13 Han, Y.Y., Gao, Y., Zhang, H.T., Ying, W.Y., Fang, D.Y., “The absorption of dimethyl ether in tower with structured packing”,, 32, 1-4 (2007). (in Chinese)

    14 Han, Y.Y., Zhang, H.T., Ying, W.Y., Fang, D.Y., “Separation process on dimethyl ether synthesized by one-step method from syngas”,, 27, 954-958 (2008). (in Chinese)

    15 Zhang, H.T., Liu, D.H., Xu, J., Fang, D.Y., “Mathematical simulation for dimethyl ether directly synthesis from syngas in three-phase slurry reactor”,, 28,477-481(2002). (in Chinese)

    16 Song, H.J., Zhang, H.T., Ying, W.Y., Fang, D.Y., “Study on vapor-liquid equilibrium for dimethyl ether/water binary system”,, 30, 67-71 (2005). (in Chinese)

    17 Song, H.J., Zhang, H.T., Ying, W.Y., Fang, D.Y., “Measurement and calculation of vapor-liquid equilibrium for dimethyl ether-methanol- water ternary system”,(), 57, 1871-1876 (2006). (in Chinese)

    18 Hu, J.L., Wang, Y., Cao, C.S., Elliott, D.C., Stevens, D.J., White, J.F., “Conversion of biomass syngas to DME using a microchannel reactor”,...., 44, 1722-1727 (2005).

    19 Zheng, D.X., Jin, H.G., Cao, W., Gao, L., “Economical energy process for dimethyl ether refining and CO2recovery”, CN Pat., 1459442A (2003). (in Chinese)

    2008-03-13,

    2008-06-17.

    the National Technology Support Program of China (2006BAE02B02), and the National Basic Research Program of China (2005CB221205).

    ** To whom correspondence should be addressed. E-mail: wying@ecust.edu.cn

    猜你喜歡
    張海濤
    植物尿素代謝及穩(wěn)態(tài)調(diào)節(jié)機(jī)制研究進(jìn)展
    棉花精量穴播器取種狀態(tài)監(jiān)測系統(tǒng)設(shè)計與試驗
    周末騎行圣境山
    解答兩類直線與橢圓問題的思路
    銅綠微囊藻對鋅、鎘脅迫的生理響應(yīng)
    “田忌”賽“跑”
    代孕之悲劇,讓血脈“摻水”的荒唐
    女士(2014年6期)2014-07-23 19:38:10
    張海濤
    “隱親”表妹引發(fā)官場升遷血案
    黨員文摘(2012年12期)2012-04-29 00:44:03
    2006年中考作文預(yù)測
    高清在线国产一区| 一本大道久久a久久精品| 中出人妻视频一区二区| 自拍欧美九色日韩亚洲蝌蚪91| 老司机午夜十八禁免费视频| 亚洲av熟女| 午夜福利在线观看吧| 中文欧美无线码| 亚洲人成电影观看| 一区二区三区精品91| 69精品国产乱码久久久| 欧美日韩视频精品一区| 99riav亚洲国产免费| 成年人黄色毛片网站| 日本a在线网址| 久久久水蜜桃国产精品网| 亚洲精品国产精品久久久不卡| 宅男免费午夜| 欧美午夜高清在线| 丝瓜视频免费看黄片| 丝瓜视频免费看黄片| 久久精品国产a三级三级三级| 老熟妇仑乱视频hdxx| 午夜两性在线视频| 丰满饥渴人妻一区二区三| 12—13女人毛片做爰片一| 亚洲专区中文字幕在线| 少妇粗大呻吟视频| 久久久久久人人人人人| 男人舔女人的私密视频| 亚洲av成人不卡在线观看播放网| 国产精品免费视频内射| 欧美人与性动交α欧美软件| 两性午夜刺激爽爽歪歪视频在线观看 | 午夜老司机福利片| 国产单亲对白刺激| 成人影院久久| av电影中文网址| 亚洲国产欧美日韩在线播放| 国产成人免费观看mmmm| 操美女的视频在线观看| 男女高潮啪啪啪动态图| 国产亚洲精品一区二区www | 成在线人永久免费视频| 在线看a的网站| 国产熟女午夜一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲 欧美一区二区三区| 午夜91福利影院| 一边摸一边抽搐一进一出视频| 真人做人爱边吃奶动态| 成在线人永久免费视频| 亚洲一码二码三码区别大吗| 午夜老司机福利片| 国产亚洲欧美精品永久| 久久久国产成人精品二区 | 女人精品久久久久毛片| 国产精品欧美亚洲77777| 久久热在线av| 黑人欧美特级aaaaaa片| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品美女久久久久99蜜臀| 天天影视国产精品| 精品国产一区二区三区四区第35| 在线视频色国产色| 精品国产一区二区三区四区第35| 久久国产精品男人的天堂亚洲| 精品人妻1区二区| 激情视频va一区二区三区| 激情视频va一区二区三区| 国产深夜福利视频在线观看| 亚洲少妇的诱惑av| 99re在线观看精品视频| 午夜福利,免费看| 国产一区二区激情短视频| 一个人免费在线观看的高清视频| 大型av网站在线播放| 日韩大码丰满熟妇| 精品国产一区二区久久| x7x7x7水蜜桃| av网站在线播放免费| 亚洲 欧美一区二区三区| 咕卡用的链子| 久久国产精品影院| av线在线观看网站| 一区福利在线观看| 女人被躁到高潮嗷嗷叫费观| 999久久久国产精品视频| 成人av一区二区三区在线看| 日韩制服丝袜自拍偷拍| 深夜精品福利| 男女之事视频高清在线观看| 视频区图区小说| 免费在线观看日本一区| 一二三四在线观看免费中文在| 天天躁狠狠躁夜夜躁狠狠躁| 久久国产精品大桥未久av| 中文字幕人妻熟女乱码| 亚洲欧洲精品一区二区精品久久久| 久久国产亚洲av麻豆专区| 亚洲欧美一区二区三区久久| 热re99久久精品国产66热6| 午夜福利乱码中文字幕| 欧美黑人精品巨大| 欧美在线黄色| 国产xxxxx性猛交| 他把我摸到了高潮在线观看| 国产xxxxx性猛交| 日韩欧美国产一区二区入口| 每晚都被弄得嗷嗷叫到高潮| 国产精品99久久99久久久不卡| 超碰成人久久| 9191精品国产免费久久| 少妇猛男粗大的猛烈进出视频| 亚洲午夜精品一区,二区,三区| 国产精品98久久久久久宅男小说| 亚洲欧美精品综合一区二区三区| 日韩制服丝袜自拍偷拍| 久久精品国产清高在天天线| 露出奶头的视频| 亚洲av熟女| 精品熟女少妇八av免费久了| 欧美日韩亚洲国产一区二区在线观看 | 久9热在线精品视频| 女人被狂操c到高潮| 丰满人妻熟妇乱又伦精品不卡| 黑人欧美特级aaaaaa片| 国产aⅴ精品一区二区三区波| 欧美久久黑人一区二区| 午夜日韩欧美国产| www日本在线高清视频| 亚洲全国av大片| 1024香蕉在线观看| 18禁国产床啪视频网站| 亚洲av美国av| 男女免费视频国产| 久久香蕉激情| 国产精品永久免费网站| 真人做人爱边吃奶动态| 亚洲欧洲精品一区二区精品久久久| 婷婷丁香在线五月| 久久草成人影院| 大香蕉久久网| 国产有黄有色有爽视频| 高清毛片免费观看视频网站 | 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲自偷自拍图片 自拍| 老司机亚洲免费影院| 国产视频一区二区在线看| 伊人久久大香线蕉亚洲五| 日韩制服丝袜自拍偷拍| 国产又爽黄色视频| 久久人妻福利社区极品人妻图片| 在线观看日韩欧美| 91老司机精品| 亚洲精品一卡2卡三卡4卡5卡| av线在线观看网站| 一区二区日韩欧美中文字幕| 国产蜜桃级精品一区二区三区 | 天堂√8在线中文| 精品国产一区二区三区四区第35| 欧美国产精品va在线观看不卡| 一级黄色大片毛片| 久久精品国产a三级三级三级| 国产xxxxx性猛交| 18禁国产床啪视频网站| 亚洲色图av天堂| 久久久精品区二区三区| 国产在线一区二区三区精| 久久国产乱子伦精品免费另类| 飞空精品影院首页| 亚洲国产看品久久| 人人妻人人澡人人爽人人夜夜| 一夜夜www| 黄色视频不卡| 亚洲中文av在线| 人人妻人人澡人人爽人人夜夜| 久久人妻熟女aⅴ| 青草久久国产| 人人妻人人澡人人看| 窝窝影院91人妻| 午夜激情av网站| 丝袜在线中文字幕| 在线免费观看的www视频| 免费观看人在逋| 性色av乱码一区二区三区2| 午夜亚洲福利在线播放| 亚洲一码二码三码区别大吗| 亚洲五月天丁香| 国产黄色免费在线视频| 1024视频免费在线观看| 后天国语完整版免费观看| 性少妇av在线| 99久久精品国产亚洲精品| 国产精品美女特级片免费视频播放器 | 国产真人三级小视频在线观看| www.999成人在线观看| 久久精品国产亚洲av高清一级| 又大又爽又粗| 国产成人av教育| 国产精品 欧美亚洲| 精品国内亚洲2022精品成人 | 无遮挡黄片免费观看| 国产精品免费一区二区三区在线 | 大陆偷拍与自拍| 国产精品美女特级片免费视频播放器 | 很黄的视频免费| 制服人妻中文乱码| 亚洲一区二区三区不卡视频| 日本黄色视频三级网站网址 | 99久久国产精品久久久| 91麻豆av在线| 国产99久久九九免费精品| 美女国产高潮福利片在线看| 男人舔女人的私密视频| 久久精品熟女亚洲av麻豆精品| 亚洲,欧美精品.| 久久中文字幕人妻熟女| 狠狠婷婷综合久久久久久88av| 日韩人妻精品一区2区三区| 如日韩欧美国产精品一区二区三区| 法律面前人人平等表现在哪些方面| 亚洲精品av麻豆狂野| 久久精品国产综合久久久| 欧美亚洲日本最大视频资源| 国产精品久久久人人做人人爽| 老司机影院毛片| 亚洲一卡2卡3卡4卡5卡精品中文| 国产日韩一区二区三区精品不卡| 久久精品亚洲熟妇少妇任你| 亚洲av成人不卡在线观看播放网| 中文字幕人妻丝袜一区二区| 国产黄色免费在线视频| 亚洲精品国产一区二区精华液| 美国免费a级毛片| www.自偷自拍.com| 欧美久久黑人一区二区| a级毛片黄视频| 国产一区在线观看成人免费| 黄频高清免费视频| 极品人妻少妇av视频| 怎么达到女性高潮| 成年版毛片免费区| 国产xxxxx性猛交| 黄频高清免费视频| 俄罗斯特黄特色一大片| 18禁裸乳无遮挡免费网站照片 | 91成年电影在线观看| 免费看十八禁软件| 自拍欧美九色日韩亚洲蝌蚪91| 黑人操中国人逼视频| 亚洲精品国产区一区二| 国产蜜桃级精品一区二区三区 | 精品久久久精品久久久| 国产在视频线精品| 在线观看免费视频日本深夜| 国产深夜福利视频在线观看| 捣出白浆h1v1| 男女免费视频国产| 美女 人体艺术 gogo| 两个人看的免费小视频| 麻豆乱淫一区二区| 亚洲五月色婷婷综合| 无遮挡黄片免费观看| 男女床上黄色一级片免费看| 高清黄色对白视频在线免费看| av片东京热男人的天堂| 91精品国产国语对白视频| 少妇 在线观看| 午夜免费观看网址| 狠狠婷婷综合久久久久久88av| 国产亚洲欧美精品永久| 一级a爱视频在线免费观看| 国产深夜福利视频在线观看| 亚洲人成77777在线视频| 69av精品久久久久久| 91麻豆av在线| 超碰成人久久| 国产精品香港三级国产av潘金莲| 国产精品自产拍在线观看55亚洲 | 亚洲中文日韩欧美视频| 侵犯人妻中文字幕一二三四区| 国产精品影院久久| 亚洲中文字幕日韩| 婷婷精品国产亚洲av在线 | 国产欧美日韩综合在线一区二区| 欧美日韩亚洲国产一区二区在线观看 | 国产成人免费观看mmmm| 黄色丝袜av网址大全| 老司机在亚洲福利影院| 老熟妇仑乱视频hdxx| 在线观看免费视频网站a站| 国产精品av久久久久免费| 亚洲熟女精品中文字幕| 国产男女内射视频| 午夜日韩欧美国产| 不卡一级毛片| 午夜福利乱码中文字幕| 国产成人精品在线电影| 青草久久国产| 国产aⅴ精品一区二区三区波| 又紧又爽又黄一区二区| 欧美激情 高清一区二区三区| 99riav亚洲国产免费| 多毛熟女@视频| 曰老女人黄片| 午夜福利乱码中文字幕| 午夜福利免费观看在线| 精品熟女少妇八av免费久了| √禁漫天堂资源中文www| 超碰成人久久| 亚洲av美国av| 欧美成狂野欧美在线观看| 夫妻午夜视频| 激情在线观看视频在线高清 | av超薄肉色丝袜交足视频| 黄色片一级片一级黄色片| 亚洲成人手机| 啦啦啦免费观看视频1| 亚洲七黄色美女视频| av网站在线播放免费| 欧美精品亚洲一区二区| 久久精品国产亚洲av香蕉五月 | 岛国在线观看网站| 免费在线观看亚洲国产| 极品人妻少妇av视频| 高潮久久久久久久久久久不卡| 九色亚洲精品在线播放| 亚洲国产毛片av蜜桃av| 国产三级黄色录像| 久久香蕉激情| 精品第一国产精品| 亚洲五月色婷婷综合| 国产高清激情床上av| 久久精品国产亚洲av高清一级| 夜夜夜夜夜久久久久| 亚洲av片天天在线观看| ponron亚洲| 19禁男女啪啪无遮挡网站| 欧美成狂野欧美在线观看| 国产人伦9x9x在线观看| 国产精品99久久99久久久不卡| 天堂动漫精品| 天天操日日干夜夜撸| 国产麻豆69| 欧美最黄视频在线播放免费 | 久久久久久亚洲精品国产蜜桃av| 美女福利国产在线| 日本五十路高清| 91成年电影在线观看| 热99re8久久精品国产| 美女福利国产在线| 天天躁夜夜躁狠狠躁躁| 亚洲熟妇中文字幕五十中出 | 麻豆国产av国片精品| 色综合婷婷激情| 亚洲少妇的诱惑av| 亚洲av日韩在线播放| 亚洲精品国产一区二区精华液| 激情在线观看视频在线高清 | 亚洲精品乱久久久久久| 又黄又爽又免费观看的视频| av欧美777| 制服诱惑二区| 亚洲成人手机| 黑人巨大精品欧美一区二区蜜桃| 国产精品二区激情视频| 国产欧美日韩一区二区精品| 色综合婷婷激情| 亚洲精品在线观看二区| 黄色视频,在线免费观看| 免费不卡黄色视频| 成人永久免费在线观看视频| 99re在线观看精品视频| 免费看十八禁软件| 91大片在线观看| 丰满饥渴人妻一区二区三| 黄色视频不卡| 一级作爱视频免费观看| 黑人操中国人逼视频| 精品电影一区二区在线| 99re6热这里在线精品视频| 一区在线观看完整版| 99精品在免费线老司机午夜| 91字幕亚洲| 成年人免费黄色播放视频| 国产欧美日韩综合在线一区二区| 亚洲精品av麻豆狂野| 中文字幕制服av| 久久久久久久午夜电影 | 交换朋友夫妻互换小说| 免费久久久久久久精品成人欧美视频| 一区二区三区国产精品乱码| 99国产极品粉嫩在线观看| 欧美日韩亚洲综合一区二区三区_| 老司机午夜福利在线观看视频| 热99国产精品久久久久久7| 在线观看免费视频网站a站| 久久久久国内视频| 国产99久久九九免费精品| 精品人妻1区二区| 男女下面插进去视频免费观看| 亚洲精品国产色婷婷电影| 亚洲精品在线美女| 国产亚洲欧美在线一区二区| 久久久精品国产亚洲av高清涩受| 天天躁日日躁夜夜躁夜夜| 午夜福利欧美成人| 中亚洲国语对白在线视频| 91老司机精品| 亚洲专区中文字幕在线| 国产精品av久久久久免费| 熟女少妇亚洲综合色aaa.| 国产亚洲一区二区精品| 亚洲国产欧美网| 999久久久国产精品视频| 国产av精品麻豆| 一级片'在线观看视频| 动漫黄色视频在线观看| 成人亚洲精品一区在线观看| 久久久久久亚洲精品国产蜜桃av| 国产精品国产高清国产av | 久久这里只有精品19| 欧美国产精品va在线观看不卡| 欧美老熟妇乱子伦牲交| 亚洲一卡2卡3卡4卡5卡精品中文| 丝袜美足系列| 国产又色又爽无遮挡免费看| 在线观看免费日韩欧美大片| 一级毛片高清免费大全| 国产真人三级小视频在线观看| 国产成人影院久久av| 啦啦啦在线免费观看视频4| 久久人人97超碰香蕉20202| 久久人妻福利社区极品人妻图片| 国产单亲对白刺激| 黄网站色视频无遮挡免费观看| 岛国毛片在线播放| 成人国语在线视频| 国产精品1区2区在线观看. | 欧美精品人与动牲交sv欧美| 久久香蕉精品热| 色在线成人网| 亚洲精品自拍成人| 亚洲一区二区三区不卡视频| 宅男免费午夜| 亚洲第一欧美日韩一区二区三区| 婷婷成人精品国产| 国产成人精品久久二区二区91| 免费一级毛片在线播放高清视频 | 精品熟女少妇八av免费久了| 欧美精品亚洲一区二区| 免费高清在线观看日韩| av一本久久久久| 日韩成人在线观看一区二区三区| 久久精品亚洲av国产电影网| 不卡av一区二区三区| 电影成人av| 99国产精品99久久久久| 国产精品免费一区二区三区在线 | 看黄色毛片网站| 美女高潮喷水抽搐中文字幕| 人妻久久中文字幕网| 三上悠亚av全集在线观看| 超色免费av| 免费日韩欧美在线观看| 啦啦啦 在线观看视频| 男女高潮啪啪啪动态图| 国产精品影院久久| 一区在线观看完整版| 亚洲午夜精品一区,二区,三区| 俄罗斯特黄特色一大片| 国产成人av激情在线播放| 国产又爽黄色视频| 免费在线观看黄色视频的| 变态另类成人亚洲欧美熟女 | 99久久99久久久精品蜜桃| 久久天堂一区二区三区四区| 国产亚洲欧美精品永久| 无遮挡黄片免费观看| 99精品久久久久人妻精品| 精品少妇一区二区三区视频日本电影| 成人亚洲精品一区在线观看| 我的亚洲天堂| 他把我摸到了高潮在线观看| 久久久久久亚洲精品国产蜜桃av| 亚洲熟女毛片儿| 亚洲av熟女| 成人永久免费在线观看视频| 精品人妻熟女毛片av久久网站| 亚洲avbb在线观看| 男女午夜视频在线观看| av福利片在线| 精品少妇一区二区三区视频日本电影| 日本a在线网址| 少妇猛男粗大的猛烈进出视频| 午夜免费观看网址| 高清av免费在线| 女人高潮潮喷娇喘18禁视频| 99香蕉大伊视频| 麻豆成人av在线观看| 90打野战视频偷拍视频| 看免费av毛片| a级片在线免费高清观看视频| 成年女人毛片免费观看观看9 | 国产精品久久久人人做人人爽| 可以免费在线观看a视频的电影网站| 超碰97精品在线观看| 欧美在线一区亚洲| 欧美乱色亚洲激情| 91成年电影在线观看| 久久青草综合色| 国产欧美日韩精品亚洲av| 欧美精品av麻豆av| 亚洲国产看品久久| av片东京热男人的天堂| 亚洲av成人不卡在线观看播放网| 制服诱惑二区| 国产无遮挡羞羞视频在线观看| 色精品久久人妻99蜜桃| 一本大道久久a久久精品| 色94色欧美一区二区| 国产成人av激情在线播放| 国产蜜桃级精品一区二区三区 | 亚洲美女黄片视频| 99久久国产精品久久久| 18禁观看日本| 久久久精品国产亚洲av高清涩受| 老熟妇仑乱视频hdxx| 欧美成狂野欧美在线观看| 丰满饥渴人妻一区二区三| 久久久久国内视频| 亚洲一区中文字幕在线| а√天堂www在线а√下载 | 亚洲精品粉嫩美女一区| 黄色怎么调成土黄色| 99精品欧美一区二区三区四区| 久久人妻av系列| 久久精品国产清高在天天线| 国内久久婷婷六月综合欲色啪| 久久精品熟女亚洲av麻豆精品| 婷婷丁香在线五月| 久久精品熟女亚洲av麻豆精品| 欧美中文综合在线视频| 国产精品香港三级国产av潘金莲| 午夜老司机福利片| 一进一出抽搐gif免费好疼 | 亚洲熟女精品中文字幕| 午夜两性在线视频| 最新的欧美精品一区二区| 老司机在亚洲福利影院| 精品免费久久久久久久清纯 | 老汉色av国产亚洲站长工具| 国产高清videossex| 国产淫语在线视频| 亚洲成国产人片在线观看| 国产在线一区二区三区精| 国产欧美日韩综合在线一区二区| 亚洲精品国产区一区二| a在线观看视频网站| 水蜜桃什么品种好| 久久99一区二区三区| 亚洲一区二区三区不卡视频| 色94色欧美一区二区| 免费一级毛片在线播放高清视频 | 久久影院123| 久久久精品免费免费高清| 精品欧美一区二区三区在线| 国产亚洲精品第一综合不卡| 精品国产一区二区久久| 纯流量卡能插随身wifi吗| 亚洲一区二区三区欧美精品| 午夜激情av网站| 交换朋友夫妻互换小说| 欧美日韩精品网址| 99riav亚洲国产免费| 丰满饥渴人妻一区二区三| 制服诱惑二区| 老汉色∧v一级毛片| 制服诱惑二区| 韩国精品一区二区三区| 免费在线观看亚洲国产| 人人妻,人人澡人人爽秒播| 日韩一卡2卡3卡4卡2021年| 亚洲少妇的诱惑av| 18禁裸乳无遮挡动漫免费视频| 欧美在线黄色| 午夜成年电影在线免费观看| 国产蜜桃级精品一区二区三区 | 午夜福利视频在线观看免费| 国产精品久久电影中文字幕 | 麻豆国产av国片精品| 日韩制服丝袜自拍偷拍| 精品午夜福利视频在线观看一区| 丰满的人妻完整版| 成人18禁高潮啪啪吃奶动态图| 免费在线观看完整版高清| 人人澡人人妻人| 久久久久久久午夜电影 | 亚洲人成77777在线视频| 亚洲成a人片在线一区二区| 国产深夜福利视频在线观看| 亚洲人成电影观看| 成人永久免费在线观看视频| 国产精品一区二区在线观看99| 久久 成人 亚洲| 午夜福利在线免费观看网站| 欧美激情久久久久久爽电影 | 黄色 视频免费看| 国产精品秋霞免费鲁丝片| 日韩成人在线观看一区二区三区| 美女扒开内裤让男人捅视频| 国产免费av片在线观看野外av| 最近最新中文字幕大全电影3 | 亚洲七黄色美女视频|