• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modeling and Simulation of Production Process on Dimethyl Ether Synthesized from Coal-based Syngas by One-step Method*

    2009-05-14 08:24:12HANYuanyuan韓媛媛ZHANGHaitao張海濤YINGWeiyong應(yīng)衛(wèi)勇andFANGDingye房鼎業(yè)
    關(guān)鍵詞:張海濤

    HAN Yuanyuan (韓媛媛), ZHANG Haitao (張海濤), YING Weiyong (應(yīng)衛(wèi)勇),** and FANG Dingye (房鼎業(yè))

    ?

    Modeling and Simulation of Production Process on Dimethyl Ether Synthesized from Coal-based Syngas by One-step Method*

    HAN Yuanyuan (韓媛媛)1,2, ZHANG Haitao (張海濤)1, YING Weiyong (應(yīng)衛(wèi)勇)1,** and FANG Dingye (房鼎業(yè))1

    1Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China2Department of Chemical Engineering, Huaqiao University, Quanzhou 362021, China

    As a result of shortage supply of oil resources, the process for the alternative coal-based fuel, dimethyl ether (DME), has emerged as an important process in chemical engineering field. With the laboratory experiment data about DME synthesis and separation, the production process for DME with high purity is proposed when one-step synthesis of DME in slurry bed reactor from syngas is adopted. On the basis of experimental research and process analysis, the proper unit modules and thermophysical calculation methods for the simulation process are selected. Incorporated the experimentally determined parameters of reaction dynamic model for DME synthesis, regression constants of parameters in non-random two-liquid equation (NRTL) model for binary component in DME separation system with built-in properties model, the process flowsheet is developed and simulated on the Aspen Plus platform. The simulation results coincide well with data obtained in laboratory experiment. Accordingly, the accurate simulation results offer useful references to similar equipment design and process operation optimization.

    dimethyl ether, process simulation, Aspen Plus

    1 INTRODUCTION

    It is important for china to develop process technology for coal-based chemical products since China is a country with abundant coal, whereas lack in oil and natural gas. Syngas is first obtained from coal, and then alcohol, ether, and other chemical products are synthesized, which is the deep processing for coal in chemical engineering [1]. Among the ether products, great interest is focused on dimethyl ether (DME) because of the advantages the fuel offered and many researches are being carried out on this clean-burning fuel [2]. New processes for DME product is in a single stepautothermal reactors or slurry phase reactors from syngas. Compared with the methanol dehydration process for DME, the separation process for high purity DME are relatively more complex because unreacted syngas and produced CO2are in the one-step synthesis process for DME. Unit operations of chemical engineering are commonly used to separate DME from the one-step reaction resultants in the synthesis process. Through absorption, flash, and distillation unit process [3-6], H2, N2, CH4, and CO2are removed; methanol is recovered and the final DME product is obtained.

    Process simulation technology in chemical engineering is one of the effective tools to analyze performance of the flow. The resultful adjustment and control on the process can be obtained using simulation and analysis on chemical engineering process. The operative effect in some fields of chemical engineering is significant [7-9]. DME is synthesized in slurry bed reactor by one-step method from syngas, and then certain separation process is adopted to gain high purity DME product. Presently, the relative flowsheet research is in exploiting stage in China [1]. Simulation technique is not sufficiently applied and demonstrated. Combined with the process simulation technology, experimental research results about DME synthesis and separation, the purpose of this article is to simulate and analyze the production process for pure DME using the software Aspen Plus.

    2 A PROCESS FOR DME WITH HIGH PURITY

    DME is synthesized in slurry bed reactor from coal-based syngas. After one-step reaction, the main components in the system are H2, N2, CO, CO2, CH4, CH3OH, DME, and H2O. The aim of the separation is to make the final DME product with mole concentration of greater than or equal to 99%.

    Compared with other components in condensed gas phase stream of one-step reaction resultants, DME has the highest solubility in methanol or water [10], so the unreacted gas and other inert gases is removed when the solvent absorption method is carried out. The difficulty in the separation system is to detach CO2from DME. Generally, DME has low boiling point at ambient temperature and normal pressure, so it can be easily liquefied. DME and CO2can be separated by means of pressurized distillation.

    According to the synthesis principle about reaction separation [11], ordinary phase separation will be first carried out by partial condensation or vaporization, and then next separation step proceeds if volatility of the components in reaction resultants stream is in wide bound. Chen [12] found that in the research system with DME, CO2, and water, at 323K, when CO2partial pressure is 0.25 MPa, the separation coefficient for DME and CO2is 35; whereas in the DME, CO2, and methanol system, at 310 K, the value becomes much smaller and comes to 1.5, although at the same CO2partial pressure. The results indicate that there is more difficulty in separation of DME and CO2when methanol is in system. So methanol and water in one-step reaction resultants are first removed by condensation, then gas stream of condensed reaction resultants is absorbed by water; liquid stream containing DME is distillated for final DME product. This separation process for DME with high purity is feasible.

    Condensed gases of one-step reaction resultants were absorbed by water in the packed absorber with CY 700 corrugated packing [13]. The influence on DME absorption, caused by operating pressure, temperature, the ratio of volume loading between gas and liquid, gas velocity, and CO2concentration, were researched. With the absorption experimental results, appropriate range of operating pressure, temperature, and absorbent flow can be determined. Liquid feed containing DME, CO2, methanol, and water was introduced to the distillator for DME product with high purity [14]. The experimental results indicate the proper separation sequence as following: CO2is discharged as uncondensed gas from the top; final DME product is drawn from the side; bottom stream containing methanol and water is processed.

    Grounded on the experimental research mentioned above, the DME production process is schematically illustrated in Fig. 1. First, disposed coal-based fresh syngas stream mixes with the recovered gas stream from off-gas in the absorber, and then sent into the slurry bed reactor to synthesize DME with an effective bifunctional catalyst. The reaction resultants leave the reactor and enter the condenser to gain gas and liquid phase resultants. Gas phase resultants are introduced into the absorber after reducing pressure, and deionized water is used as absorbent. The gas from the top of the absorber is transported to the recovery equipment. Liquid products from bottom of the absorber mix with the liquid resultants from the condenser and enter into the DME distillator. DME product is as side run-off and drawn out at the proper stage. Uncondensed gas from the DME distillator is conveyed to fuel gas pipe and the liquid stream from the bottom is fed to the methanol distillator. Methanol product is obtained on the top of the distillator and water from the bottom is used as absorbent after heat exchange.

    3 MODELING AND SIMULATION OF THE WHOLE PROCESS

    In this work, the production process of DME is simulated using Aspen Plus software. Dynamics of the reaction system and gas-liquid equilibrium of the separation system are in close relation with the process simulation calculation. At certain process conditions, the nonideal nature of gas/liquid phase should be taken into account. Polar compound water and methanol are in the process; the in and out stream in each module are in closeness conjoint. After the whole process is established, the selection of proper representation components, unit module, and thermophysical properties and application of effective simulation strategy is important for carrying out the accurate process simulation.

    3.1 Component selection

    H2, N2, CO, CO2, CH4, CH3OH, DME, and H2O are the main components in the whole process. With the recovery gas stream from off-gas in the absorber, coal-based syngas is desulfated and proportioned, then sent into the slurry bed reactor to synthesize DME. H2/CO ratio in the reactant steam should be proportioned to comply with the requirement of the catalyst. In the simulation process, H2/CO ratio in reactant stream is adjusted to 1.5 or so.

    Figure 1 Process flow diagram of synthesis and separation of high purity DME

    1—reactor; 2—condenser; 3—absorber; 4—mixer; 5—DME distillatory; 6—methanol distillatory; 7—recovery equipment; 8—compressor

    3.2 Unit module selection

    Continuous stirred tank reactor (CSTR) module is used to simulate the reaction synthesis process for DME and the reaction kinetics model provided by user through the built-in reactor model. Absorption and distillation processes are simulated using the rigorous fractionation (RADFRAC) module, which is a rigorous model for simulating multistage vapor-liquid fractionation operation, and the nonideal deviation is modified by Murphree plate efficiency. Flash2, Heater, and Tank module represents condenser, heater or cooler, holder and mixer, respectively.

    3.3 Properties selection and modification

    The flowsheet for the whole process is built. In the whole simulation process, it is important to choose an appropriate thermodynamic model. Meanwhile, the change in the setup of unit modules or operating conditions will lead the simulation calculation divergence. It is imperative to estimate and adjust the parameters of the relative models so that simulation calculations can converge quickly and the final simulation results can describe the actual data.

    The critical modules in the simulation process are reactor, absorber, and distillator. In the modeling process, the experimentally determined reaction kinetics model [15] is applied in the reaction module. BWR-LS model equation is chosen to describe and calculate the properties of reaction system. Except for water and methanol, other components in the separation process are nonpolar. Non-random two-liquid equation (NRTL) is used to calculate liquid phase properties, and vapor phase properties are calculated from the Redlich-Kwong equation of state. Gas-liquid equilibrium of the research system can be accurately predicted when the state equation combines with activity coefficient model. As for absorption module, NRTL-RK properties model is desired, in which binary interaction parameters [16, 17] in NRTL model for binary component in DME separation system are introduced to the properties setup. NRTL-RK properties model is also applied in the distillator module through UNIFAC model and the properties estimation tools in the software to gain the wanting binary interaction parameters between components. Convergence method in absorption and distillation modules is Wegstein and Newton, respectively.

    4 SIMULATION RESULTS AND DISCUSSION

    As can be seen, reactor, absorber, and distillator are major process units. Experimental data in the literature are introduced to perform the reactor simulation, and the comparison between simulation and the experimental results are listed in Table 1. Except for DME and CO2, other components in gas phase stream of condensed reaction resultants hardly dissolves in water; and the influence on DME absorption caused by these inert gases can be represented by N2. Results of absorption experiment and simulation on gas phase components are given in Table 2, and data in table 3 detail the results between distillation experiment and simulation for high purity DME as well.

    The simulation results are compared with the experimental data to verify the reliability of the simulation. As the comparison results show, the simulation module selection and calculation strategy presented in Section 3 could predict the behavior of the main unit process. In this way, the whole process, one-step reaction in a slurry bed reactor from syngas for high purity DME product, can be simulated at actual process conditions. The whole process simulation is carried out on the methods mentioned above, and final DME product with content no less than 99.9%. In the case of production time of 300 days per year, namely 7200 hours, the output of product DME of about 60 thousands tons, detailed data of the main streams including components, flow, temperature, and pressure are obtained and given in Table 4.

    Table 1 Simulation results of reactor module versus experiment data

    Table 2 Simulation results of absorber module versus experiment data

    Table 3 Simulation results of distillator module versus experiment data

    Table 4 Properties and components of the main stream in the simulation process

    The whole process simulation results provide the outputs of the key units, properties data about the main streams between equipments or in columns, and offer reference for actual process design and operation. As shown in Table 4, DME mole fraction in the absorption liquid stream reaches 0.0319; after distillation, the purity of DME is no less than 99.9%. The content of DME in condensed reaction gas phase is 0.1154 or so; after absorbed by water, the DME mole fraction in off-gas from top of the absorber is 0.0086 and the absorptivity is greater than 93%. The heat duty of the condenser in DME distillator is from engineering water, and any extra cryogen is undesired. DME product with purity no less than 99.9% is as object, the DME yield by the separation process is 83.9%; water from the methanol distillator has no impurity and reused as absorbent after heat exchange, avoiding wastewater pollution and reducing charge of public project.

    One-step reaction from syngas is exothermic [18], and the reaction heat is moved away in time for assuring operating reaction temperature at certain range. After heat change, water from the methanol distillator is reused as absorbent in the absorption column. So the main two distillator in the process is the heat providing objects. Without consideration to the heat integration, for final 99.91% DME product with flow 0.05 kmol·s-1, the thermal load in the top and bottom of the DME distillator is 30.5 and 36.8 GJ·h-1; the number for methanol distillator is 24.7 and 20.9 GJ·h-1. In terms of the reduced coefficient of 1 kW steam corresponding to 0.18 kg standard coal per hour [19], the separation expenditure of energy for 1 kg DME is 0.71 kg standard coal.

    Sensitivity analysis is carried out on absorber and DME distillator modules, results are shown in Figs. 2 and 3.

    Figure 2 Influence of absorbent flow on DME absorption

    ■?DME concentration;▲?DME yield

    Figure 2 indicates that the DME concentration in bottom liquid stream of the absorber and DME yield decrease with the increasing absorbent flow at given gas flow. Fig. 3 demonstrates that side run-off position has obvious impact on content and yield of product DME. As shown in Fig. 2, flow of absorbent water should be controlled in a proper range so that the low content of DME in off-gas of the absorber is guarantee, and the flow of bottom liquid stream is not increased in large scale to add load on the follow process unit. As the simulation and experiment results for reference, DME content in input gas is at 0.08-0.15, the mole flow ratio between absorbent water and absorption gas is better at 3-4. The heat duty of the condenser in DME distillator is from engineering water, and plate numbers, feed flow, and thermal load of the distillator are definite, the proper side position is at 3-5 theory tray. Exploiting the process simulation results and using the analysis tools in the software, the improvement on the whole process and optimization operation on the key units are on reliable platform. The analysis and corresponding strategy for modification of the sticking point in the process can be offered.

    Figure 3 Influence of produced position on the distillation

    ■?DME concentration;▲?DME yield

    5 CONCLUSIONS

    (1) On the experiment research about one-step reaction, gas mixture with DME absorption, and liquid stream containing DME distillation, the whole process for high purity DME synthesized in a slurry bed reactor from coal-based syngas is developed.

    (2) Combined the parameters of reaction dynamic model for DME synthesis reaction, regression constants of parameters in NRTL model for binary component in DME separation system with properties model in the simulation software, the flowsheet for accurate describing the whole process is built on Aspen Plus platform.

    (3) To different modules in the process, with experimental results for reference, corresponding thermophysical models and calculation strategy are applied in the simulation process. In such way, simulation calculation quickly converges, and the simulation results are in good agreement with that in previous work. The module selection and calculation strategy for the process simulation are suitable. On the foundation of successful simulation for the process, some suitable strategy can be expediently and quickly executed for better control on the fluctuant process parameters using sensitivity analysis tool. Simulator is proved helpful for operational modifications as well as design considerations.

    1 Tang, H.Q., Introduction of New Technology for C-1 Chemical Chemistry, Nitrogen Fertilizer and Methanol Newsroom, Chengdu (2006). (in Chinese)

    2 Troy, A.S., Rodney, L.B., Howard, L.G., “Dimethyl ether (DME) as an alternative fuel”,, 156, 497-511 (2006).

    3 Kohl, G., Becker, K., Holm, R., Timm, D., Schmidt, G., “Direct prepn. of dimethyl ether from synthesis gas with controllable purity, useful for aerosols or for domestic and industrial heating”, DE 4222655 (1994).

    4 Sosna, M.K., Sokolinskij, J.A., Shilkina, M.P., “Dimethyl ether production process”, RU 2277528 (2006).

    5 Tang, H.Q., Fang, D.Y., Tang, J.W., Zheng, M.F., “The separation method of dimethyl ether synthesized by one-step technologysyngas”, CN Pat., 1548411 A (2004). (in Chinese)

    6 Dong, D.F., Zhang, Y.G., Wang, S.C., “Separation method of DME products in the DME preparation process”, CN Pat., 1377871 A (2002). (in Chinese)

    7 Yu, J.C., Ki, W.C., Byung, W.C., Yeong-Koo, Y., “Optimization of the sulfolane extraction plant based on modeling and simulation”,...., 41, 5504-5509 (2002).

    8 Lee, D., Lee, J.M., Lee, S.Y., Lee, I.B., “Dynamic simulation of the sour water stripping progress and modeling structure for effective pressure control”,.., 80 (A2),167-177 (2002).

    9 Christina, B.D.F., Karl, T.C., “Simulation studies of catalytic distillation for remove of water from ethanol using a rate-based kinetic model”,...., 43, 762-768 (2004).

    10 Yaw, C.L., Chemical Properties Handbook, McGraw-Hill, New York (1990).

    11 Smith, R., Chemical Process Design, Wang, B.G., Wang, C.Y., Li, H.Q., Shi, L., trans., Chemical Industry Press, Beijing (2002). (in Chinese)

    12 Chen, J., Yu, Y.M., Tang, H.Q., “Phase equilibrium calculation for binary system with dimethyl ether and the effect on its separation process”,, 30, 71-78 (2005). (in Chinese)

    13 Han, Y.Y., Gao, Y., Zhang, H.T., Ying, W.Y., Fang, D.Y., “The absorption of dimethyl ether in tower with structured packing”,, 32, 1-4 (2007). (in Chinese)

    14 Han, Y.Y., Zhang, H.T., Ying, W.Y., Fang, D.Y., “Separation process on dimethyl ether synthesized by one-step method from syngas”,, 27, 954-958 (2008). (in Chinese)

    15 Zhang, H.T., Liu, D.H., Xu, J., Fang, D.Y., “Mathematical simulation for dimethyl ether directly synthesis from syngas in three-phase slurry reactor”,, 28,477-481(2002). (in Chinese)

    16 Song, H.J., Zhang, H.T., Ying, W.Y., Fang, D.Y., “Study on vapor-liquid equilibrium for dimethyl ether/water binary system”,, 30, 67-71 (2005). (in Chinese)

    17 Song, H.J., Zhang, H.T., Ying, W.Y., Fang, D.Y., “Measurement and calculation of vapor-liquid equilibrium for dimethyl ether-methanol- water ternary system”,(), 57, 1871-1876 (2006). (in Chinese)

    18 Hu, J.L., Wang, Y., Cao, C.S., Elliott, D.C., Stevens, D.J., White, J.F., “Conversion of biomass syngas to DME using a microchannel reactor”,...., 44, 1722-1727 (2005).

    19 Zheng, D.X., Jin, H.G., Cao, W., Gao, L., “Economical energy process for dimethyl ether refining and CO2recovery”, CN Pat., 1459442A (2003). (in Chinese)

    2008-03-13,

    2008-06-17.

    the National Technology Support Program of China (2006BAE02B02), and the National Basic Research Program of China (2005CB221205).

    ** To whom correspondence should be addressed. E-mail: wying@ecust.edu.cn

    猜你喜歡
    張海濤
    植物尿素代謝及穩(wěn)態(tài)調(diào)節(jié)機(jī)制研究進(jìn)展
    棉花精量穴播器取種狀態(tài)監(jiān)測系統(tǒng)設(shè)計與試驗
    周末騎行圣境山
    解答兩類直線與橢圓問題的思路
    銅綠微囊藻對鋅、鎘脅迫的生理響應(yīng)
    “田忌”賽“跑”
    代孕之悲劇,讓血脈“摻水”的荒唐
    女士(2014年6期)2014-07-23 19:38:10
    張海濤
    “隱親”表妹引發(fā)官場升遷血案
    黨員文摘(2012年12期)2012-04-29 00:44:03
    2006年中考作文預(yù)測
    一区二区三区四区激情视频| 麻豆成人午夜福利视频| 国产片特级美女逼逼视频| 国产爽快片一区二区三区| 日韩一区二区视频免费看| 国产在线免费精品| 亚洲熟女精品中文字幕| 校园人妻丝袜中文字幕| 18禁动态无遮挡网站| 久久久精品免费免费高清| 欧美三级亚洲精品| 97超视频在线观看视频| 卡戴珊不雅视频在线播放| 热re99久久精品国产66热6| av在线老鸭窝| 高清午夜精品一区二区三区| 日韩大片免费观看网站| 一本一本综合久久| 亚洲国产精品国产精品| 国产有黄有色有爽视频| 国产伦精品一区二区三区视频9| 久久久久久久精品精品| 三上悠亚av全集在线观看 | 日本爱情动作片www.在线观看| 精品人妻熟女av久视频| 国产日韩欧美在线精品| 欧美xxⅹ黑人| 国产成人精品婷婷| 国产精品一区www在线观看| 国产亚洲av片在线观看秒播厂| 久久久精品免费免费高清| 人体艺术视频欧美日本| 五月玫瑰六月丁香| 国产片特级美女逼逼视频| 国产成人精品一,二区| 精品国产露脸久久av麻豆| 成人国产麻豆网| 亚洲欧美日韩卡通动漫| 伊人久久国产一区二区| 你懂的网址亚洲精品在线观看| 精品国产乱码久久久久久小说| 人人澡人人妻人| 国产精品国产三级国产专区5o| 男女无遮挡免费网站观看| 成人综合一区亚洲| 五月玫瑰六月丁香| 久久久精品94久久精品| 国产日韩一区二区三区精品不卡 | 久久久久精品久久久久真实原创| 国产欧美另类精品又又久久亚洲欧美| 国产有黄有色有爽视频| 午夜福利,免费看| 国产又色又爽无遮挡免| 国产精品一区www在线观看| 国产一区二区在线观看av| 国产黄频视频在线观看| 最黄视频免费看| 日韩大片免费观看网站| 一区二区三区四区激情视频| 亚洲精品日本国产第一区| 亚洲欧美日韩另类电影网站| 我的女老师完整版在线观看| 色婷婷av一区二区三区视频| 亚洲自偷自拍三级| 久久人人爽人人爽人人片va| 久久久精品94久久精品| 亚洲欧美日韩卡通动漫| 乱系列少妇在线播放| 久久久久久久大尺度免费视频| 成人综合一区亚洲| 成年人免费黄色播放视频 | 国产精品成人在线| 97超视频在线观看视频| 久久久久久久精品精品| 男人爽女人下面视频在线观看| 18禁动态无遮挡网站| 秋霞伦理黄片| 国产精品一区二区三区四区免费观看| 亚洲成人av在线免费| 日韩中字成人| 啦啦啦在线观看免费高清www| 亚洲婷婷狠狠爱综合网| 国产精品麻豆人妻色哟哟久久| 亚洲欧美精品自产自拍| 久久人人爽人人爽人人片va| 亚洲精品中文字幕在线视频 | 男女边吃奶边做爰视频| 亚洲成人一二三区av| 99re6热这里在线精品视频| 午夜av观看不卡| 久久99热这里只频精品6学生| 美女视频免费永久观看网站| 精品国产一区二区三区久久久樱花| 97超视频在线观看视频| 国产精品国产三级国产专区5o| 99国产精品免费福利视频| 日本午夜av视频| 卡戴珊不雅视频在线播放| 97在线人人人人妻| 欧美日韩一区二区视频在线观看视频在线| 一级毛片电影观看| 欧美3d第一页| 久久鲁丝午夜福利片| 亚洲av成人精品一二三区| 男男h啪啪无遮挡| 国产黄色视频一区二区在线观看| 男女边摸边吃奶| 九九在线视频观看精品| 久久女婷五月综合色啪小说| 久久久久国产网址| 午夜福利,免费看| 国产探花极品一区二区| 大陆偷拍与自拍| 欧美亚洲 丝袜 人妻 在线| 十分钟在线观看高清视频www | 国语对白做爰xxxⅹ性视频网站| 国产一级毛片在线| 80岁老熟妇乱子伦牲交| 在线天堂最新版资源| 精华霜和精华液先用哪个| 国国产精品蜜臀av免费| 亚洲国产最新在线播放| 国产一级毛片在线| 久久av网站| 91久久精品电影网| 亚洲av成人精品一二三区| 日韩欧美精品免费久久| 18+在线观看网站| 黄片无遮挡物在线观看| 午夜91福利影院| 中文字幕久久专区| 亚洲精品亚洲一区二区| 嫩草影院新地址| 国产在线一区二区三区精| 亚洲欧美一区二区三区黑人 | 国产欧美亚洲国产| 在线观看三级黄色| 丝袜脚勾引网站| 亚洲图色成人| 久久国产精品男人的天堂亚洲 | 中文字幕制服av| 成人美女网站在线观看视频| 亚洲经典国产精华液单| 日本av免费视频播放| 国产精品免费大片| 国产亚洲精品久久久com| 午夜精品国产一区二区电影| 18+在线观看网站| 亚洲av日韩在线播放| 菩萨蛮人人尽说江南好唐韦庄| 欧美日韩视频高清一区二区三区二| 99热6这里只有精品| 青春草视频在线免费观看| 免费观看在线日韩| 日韩不卡一区二区三区视频在线| 91在线精品国自产拍蜜月| 国产69精品久久久久777片| 成人综合一区亚洲| 免费看不卡的av| 一区二区三区免费毛片| 久久久久国产精品人妻一区二区| 免费看日本二区| 国产日韩欧美在线精品| 国产在线免费精品| 欧美精品一区二区大全| 亚洲av.av天堂| 91精品伊人久久大香线蕉| 婷婷色av中文字幕| 亚洲无线观看免费| 日产精品乱码卡一卡2卡三| 久久久国产一区二区| 插阴视频在线观看视频| 亚洲人成网站在线播| 黄色配什么色好看| 国产黄频视频在线观看| 青春草亚洲视频在线观看| 精品人妻熟女av久视频| 免费少妇av软件| 两个人的视频大全免费| 国产精品国产三级国产av玫瑰| 国产免费一区二区三区四区乱码| 自线自在国产av| 老司机影院毛片| 汤姆久久久久久久影院中文字幕| 青春草视频在线免费观看| 91在线精品国自产拍蜜月| 久久人人爽人人片av| 99热这里只有是精品在线观看| 国产精品国产av在线观看| 一级,二级,三级黄色视频| 自拍欧美九色日韩亚洲蝌蚪91 | 成年av动漫网址| 国产成人午夜福利电影在线观看| 午夜福利网站1000一区二区三区| 精品一区二区免费观看| 午夜老司机福利剧场| 国产在线一区二区三区精| av福利片在线观看| 日本wwww免费看| 大片免费播放器 马上看| 蜜桃久久精品国产亚洲av| 国产精品.久久久| av福利片在线| 卡戴珊不雅视频在线播放| 乱人伦中国视频| 久久国产精品大桥未久av | 免费黄频网站在线观看国产| 国产av码专区亚洲av| 日本wwww免费看| 水蜜桃什么品种好| 人体艺术视频欧美日本| 国产精品欧美亚洲77777| 特大巨黑吊av在线直播| av在线观看视频网站免费| av国产久精品久网站免费入址| 国产淫语在线视频| av免费在线看不卡| 精品99又大又爽又粗少妇毛片| 美女脱内裤让男人舔精品视频| 久久午夜综合久久蜜桃| 欧美97在线视频| 五月伊人婷婷丁香| 99热这里只有是精品在线观看| 在线天堂最新版资源| 免费大片18禁| 成人综合一区亚洲| 99久久中文字幕三级久久日本| 国产中年淑女户外野战色| 最近中文字幕2019免费版| 丰满迷人的少妇在线观看| 观看免费一级毛片| 亚洲怡红院男人天堂| 久久精品夜色国产| 制服丝袜香蕉在线| 成人无遮挡网站| 97超碰精品成人国产| 国产成人免费观看mmmm| 免费黄网站久久成人精品| 日韩av不卡免费在线播放| 最后的刺客免费高清国语| 欧美+日韩+精品| xxx大片免费视频| 香蕉精品网在线| 亚洲精品aⅴ在线观看| 国精品久久久久久国模美| 久久这里有精品视频免费| 国产精品秋霞免费鲁丝片| 在线免费观看不下载黄p国产| 久久女婷五月综合色啪小说| 天堂8中文在线网| 国产免费又黄又爽又色| 亚洲伊人久久精品综合| 国产精品蜜桃在线观看| av在线观看视频网站免费| 国产亚洲精品久久久com| 欧美激情极品国产一区二区三区 | 亚洲精品色激情综合| 91精品国产九色| 伊人亚洲综合成人网| 欧美日韩国产mv在线观看视频| 欧美高清成人免费视频www| 国产精品国产三级国产av玫瑰| 如何舔出高潮| 自拍偷自拍亚洲精品老妇| 亚洲四区av| 人妻一区二区av| 亚洲美女黄色视频免费看| 精品少妇黑人巨大在线播放| 亚洲久久久国产精品| a级毛片在线看网站| 黄色毛片三级朝国网站 | av天堂中文字幕网| 中文欧美无线码| 亚洲av中文av极速乱| 黄色怎么调成土黄色| 成年av动漫网址| 日本-黄色视频高清免费观看| 2018国产大陆天天弄谢| 99热6这里只有精品| 久久鲁丝午夜福利片| 女人精品久久久久毛片| 国产淫片久久久久久久久| 日韩在线高清观看一区二区三区| 成人黄色视频免费在线看| 亚洲国产最新在线播放| 日韩一区二区视频免费看| av免费观看日本| 99九九在线精品视频 | 久久久久久伊人网av| 国产片特级美女逼逼视频| 色5月婷婷丁香| 草草在线视频免费看| 国产精品伦人一区二区| 欧美日韩在线观看h| 熟女人妻精品中文字幕| 国产免费一级a男人的天堂| 能在线免费看毛片的网站| 岛国毛片在线播放| 国产高清有码在线观看视频| 伦精品一区二区三区| 免费av中文字幕在线| 国产一区有黄有色的免费视频| 久久精品久久久久久噜噜老黄| 国产精品国产三级国产专区5o| 欧美精品人与动牲交sv欧美| 简卡轻食公司| 天天躁夜夜躁狠狠久久av| 在现免费观看毛片| 亚洲国产精品一区二区三区在线| 人人澡人人妻人| 人妻系列 视频| 99久国产av精品国产电影| 尾随美女入室| 亚洲精品亚洲一区二区| 男男h啪啪无遮挡| 日韩视频在线欧美| 亚洲av成人精品一二三区| 人妻少妇偷人精品九色| 久久狼人影院| 天天躁夜夜躁狠狠久久av| 久久99热这里只频精品6学生| 国产一区有黄有色的免费视频| 国产精品国产三级专区第一集| 99九九在线精品视频 | 五月伊人婷婷丁香| 好男人视频免费观看在线| 免费人成在线观看视频色| 中文欧美无线码| 春色校园在线视频观看| 尾随美女入室| 国产男女内射视频| 狠狠精品人妻久久久久久综合| 亚洲一区二区三区欧美精品| 美女cb高潮喷水在线观看| 亚洲,欧美,日韩| 国产国拍精品亚洲av在线观看| 啦啦啦啦在线视频资源| 久久久久久久久久久久大奶| 精品国产国语对白av| 美女中出高潮动态图| 国产 一区精品| 五月天丁香电影| 人人妻人人澡人人爽人人夜夜| 久久ye,这里只有精品| 观看免费一级毛片| 久久久久久久久久久久大奶| 日韩免费高清中文字幕av| 日韩,欧美,国产一区二区三区| 一级a做视频免费观看| 乱人伦中国视频| 午夜av观看不卡| 97精品久久久久久久久久精品| 亚洲成人av在线免费| 日本av手机在线免费观看| 久久久精品免费免费高清| 久久久久久久久大av| 妹子高潮喷水视频| 午夜福利网站1000一区二区三区| 亚洲va在线va天堂va国产| 精品酒店卫生间| 久久久久人妻精品一区果冻| 高清在线视频一区二区三区| 永久免费av网站大全| 啦啦啦视频在线资源免费观看| 99久久精品一区二区三区| 日日撸夜夜添| 人妻少妇偷人精品九色| 美女中出高潮动态图| 女人精品久久久久毛片| 国产欧美日韩一区二区三区在线 | 亚洲精品亚洲一区二区| 国产在视频线精品| 人人妻人人看人人澡| 久久久久视频综合| 狂野欧美激情性bbbbbb| 成人亚洲精品一区在线观看| 噜噜噜噜噜久久久久久91| 在线观看人妻少妇| 日本免费在线观看一区| 久久青草综合色| 日韩电影二区| 亚洲伊人久久精品综合| 亚洲av综合色区一区| 男的添女的下面高潮视频| av国产精品久久久久影院| 18+在线观看网站| 午夜激情久久久久久久| 在线亚洲精品国产二区图片欧美 | 草草在线视频免费看| 99热6这里只有精品| 永久免费av网站大全| 精品国产国语对白av| 看十八女毛片水多多多| 久久精品久久精品一区二区三区| 色5月婷婷丁香| 久久ye,这里只有精品| 亚洲丝袜综合中文字幕| 日韩中文字幕视频在线看片| 九九爱精品视频在线观看| 男女啪啪激烈高潮av片| 成年人午夜在线观看视频| 成人亚洲精品一区在线观看| √禁漫天堂资源中文www| 国产乱人偷精品视频| 天堂中文最新版在线下载| 18禁在线无遮挡免费观看视频| 熟女av电影| 亚洲欧洲日产国产| 免费少妇av软件| av福利片在线| 日本黄色片子视频| 亚洲精品久久久久久婷婷小说| 午夜免费鲁丝| 高清视频免费观看一区二区| 精品久久久久久久久av| 久久久久久久大尺度免费视频| 欧美精品一区二区大全| 性色avwww在线观看| 免费大片黄手机在线观看| 搡老乐熟女国产| 日韩视频在线欧美| 久久久久久伊人网av| 亚洲不卡免费看| 26uuu在线亚洲综合色| 人妻系列 视频| 精品国产露脸久久av麻豆| 国产高清有码在线观看视频| 99久久精品一区二区三区| 十分钟在线观看高清视频www | 日韩欧美一区视频在线观看 | 乱人伦中国视频| 一级,二级,三级黄色视频| 国产成人免费无遮挡视频| 日韩在线高清观看一区二区三区| 亚洲av福利一区| 中文字幕制服av| 国产亚洲5aaaaa淫片| 丝袜脚勾引网站| 成人毛片60女人毛片免费| 成年人午夜在线观看视频| 全区人妻精品视频| 一区二区三区四区激情视频| 老熟女久久久| 亚洲精品一区蜜桃| 国产亚洲5aaaaa淫片| 婷婷色综合www| 人人妻人人澡人人爽人人夜夜| 国产高清国产精品国产三级| 国产亚洲av片在线观看秒播厂| 国产中年淑女户外野战色| 国产熟女欧美一区二区| 91久久精品国产一区二区成人| 大香蕉久久网| 大片电影免费在线观看免费| 又黄又爽又刺激的免费视频.| 国产精品国产三级国产av玫瑰| 欧美成人午夜免费资源| 亚洲欧洲国产日韩| 中文字幕免费在线视频6| 免费观看a级毛片全部| 久久99热6这里只有精品| 伊人亚洲综合成人网| 国产亚洲精品久久久com| 欧美最新免费一区二区三区| 亚洲国产精品一区三区| 一级毛片aaaaaa免费看小| 一区二区av电影网| 精品99又大又爽又粗少妇毛片| 少妇人妻一区二区三区视频| 麻豆乱淫一区二区| 亚洲精品日韩在线中文字幕| 人妻少妇偷人精品九色| 国产成人精品久久久久久| 春色校园在线视频观看| 在线天堂最新版资源| 丰满少妇做爰视频| 看十八女毛片水多多多| 中文字幕av电影在线播放| 午夜福利,免费看| 在线观看国产h片| 99久久精品一区二区三区| 国产精品免费大片| 久久精品熟女亚洲av麻豆精品| 18禁裸乳无遮挡动漫免费视频| 日日啪夜夜爽| 精品国产一区二区久久| 在线观看www视频免费| av网站免费在线观看视频| 性色avwww在线观看| 成人免费观看视频高清| 久久97久久精品| 中国美白少妇内射xxxbb| 久久久久人妻精品一区果冻| 在线播放无遮挡| 成人18禁高潮啪啪吃奶动态图 | 国产片特级美女逼逼视频| 午夜福利网站1000一区二区三区| 国产老妇伦熟女老妇高清| av.在线天堂| 我要看黄色一级片免费的| 国产熟女欧美一区二区| 丰满少妇做爰视频| 国产av码专区亚洲av| 能在线免费看毛片的网站| 免费观看av网站的网址| 亚洲四区av| 亚洲国产精品一区二区三区在线| 国产老妇伦熟女老妇高清| 欧美精品人与动牲交sv欧美| 最近2019中文字幕mv第一页| 日韩av在线免费看完整版不卡| 日韩一区二区三区影片| 亚洲av男天堂| 日韩在线高清观看一区二区三区| 国模一区二区三区四区视频| 天天躁夜夜躁狠狠久久av| 久久久久久久国产电影| 国产精品三级大全| 日韩熟女老妇一区二区性免费视频| 国产片特级美女逼逼视频| 国产熟女午夜一区二区三区 | 欧美精品一区二区大全| 三上悠亚av全集在线观看 | 久久鲁丝午夜福利片| 老司机亚洲免费影院| 午夜av观看不卡| 国产成人精品一,二区| 午夜免费鲁丝| 我的老师免费观看完整版| 亚洲精品中文字幕在线视频 | av线在线观看网站| 亚洲精品国产色婷婷电影| 国产精品一区二区在线观看99| 黄色视频在线播放观看不卡| 亚洲av成人精品一二三区| 成人午夜精彩视频在线观看| 亚洲婷婷狠狠爱综合网| 日日啪夜夜撸| 老女人水多毛片| 久久人人爽av亚洲精品天堂| 永久网站在线| 久久久久久久大尺度免费视频| 久久久国产一区二区| 欧美激情极品国产一区二区三区 | 午夜福利影视在线免费观看| 中文欧美无线码| 在线观看一区二区三区激情| 久久99热这里只频精品6学生| 高清黄色对白视频在线免费看 | 在线观看三级黄色| 免费大片黄手机在线观看| 人妻少妇偷人精品九色| 日本wwww免费看| 97超碰精品成人国产| 国语对白做爰xxxⅹ性视频网站| 亚洲精品aⅴ在线观看| 人妻系列 视频| 亚洲精品日韩av片在线观看| a级毛色黄片| 乱码一卡2卡4卡精品| 免费观看a级毛片全部| 色视频www国产| 欧美亚洲 丝袜 人妻 在线| 性色av一级| 国产一区二区三区av在线| 少妇人妻精品综合一区二区| a级毛片在线看网站| 久久99热6这里只有精品| 一个人免费看片子| 免费高清在线观看视频在线观看| 久久人人爽人人片av| 国产一区二区三区av在线| 精品99又大又爽又粗少妇毛片| 高清午夜精品一区二区三区| 国产一区二区在线观看av| 高清在线视频一区二区三区| 七月丁香在线播放| 在线观看人妻少妇| 午夜激情久久久久久久| 欧美变态另类bdsm刘玥| 欧美日韩视频高清一区二区三区二| 久久久久久久久久久免费av| 最后的刺客免费高清国语| 日韩人妻高清精品专区| 在线免费观看不下载黄p国产| 2022亚洲国产成人精品| 晚上一个人看的免费电影| 国产成人91sexporn| 久久精品熟女亚洲av麻豆精品| 亚洲av电影在线观看一区二区三区| 99re6热这里在线精品视频| 久久午夜福利片| 国产成人精品无人区| 爱豆传媒免费全集在线观看| 国产午夜精品一二区理论片| 免费大片18禁| 亚洲av二区三区四区| 国产精品嫩草影院av在线观看| 婷婷色麻豆天堂久久| 女的被弄到高潮叫床怎么办| 九色成人免费人妻av| 最近中文字幕2019免费版| 久热久热在线精品观看| a级毛片免费高清观看在线播放| 夜夜看夜夜爽夜夜摸| 国产爽快片一区二区三区| 欧美性感艳星| 美女大奶头黄色视频| 精品亚洲成a人片在线观看| 嫩草影院新地址| 最新中文字幕久久久久| 18+在线观看网站| 男人和女人高潮做爰伦理| 黄片无遮挡物在线观看| 乱码一卡2卡4卡精品|