• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Effect of Hydrophobic Modification of Zeolites on CO2 Absorption Enhancement*

    2009-05-14 08:24:34LUSumin盧素敏MAYouguang馬友光ZHUChunying朱春英SHENShuhua沈樹華andHEQing何清

    LU Sumin (盧素敏), MA Youguang (馬友光)**, ZHU Chunying (朱春英) SHEN Shuhua (沈樹華) and HE Qing (何清)

    ?

    The Effect of Hydrophobic Modification of Zeolites on CO2Absorption Enhancement*

    LU Sumin (盧素敏)1, MA Youguang (馬友光)2,**, ZHU Chunying (朱春英)2, SHEN Shuhua (沈樹華)2and HE Qing (何清)1

    1Department of Material and Chemical, Tianjin Polytechnic University, Tianjin 300160, China2School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China

    Two methods of the modification of zeolite were employed: framework element modification and surface coating, and the influence of the zeolites before and after modification on the CO2absorption was investigated. It was found that although hydrophobicity of zeolite could be obtained by means of the surficial organic coating in the method of surface coating modification, partial channel of zeolite would be plugged, as a result, leading to the surface area reducing greatly. Distinctively, the framework element modification method could maintain not only complete lattice structure and adsorption capability of zeolite, but would also obtain a good hydrophobic property. Consequently, significant enhancement on gas absorption by this modified zeolite was achieved and up to a maximum enhancement factor of 2.62. This shows that the solid particles with good enhancement role to gas absorption need not only good adsorptive capability but also certain hydrophobicity. An unsteady heterogeneous model was employed to predict enhancement factor and the calculated results agree well with the experimental data.

    zeolite, modification, enhancement of gas absorption, hydrophobicity

    1 INTRODUCTION

    Many researches [1-3] have reported that mass transfer rate may be enhanced significantly by the presence of certain fine solid particles. Various mechanisms and models were developed to explain the effect. According to Demmink. [4] and Wimmer. [5, 6], the solid particles with enhancement effect to gas absorption should be hydrophobic and tend to adhere themselves to the gas-liquid interface. The hydrophobic solid particle commonly used is activated carbon [7, 8], which requires to be pretreated before usage due to the strong adsorption to organic molecules, and accordingly its application is limited. Zeolite is also an adsorbent available commercially and easy to get with a high adsorption affinity to many gases. Undesirably, little enhancement of gas absorption was observed in aqueous solutions due to its strong hydrophilicy. Recently, hydrophobic zeolites have gained much attention due to their ability to selectively remove organic pollutants from the air stream [9]. However, study on their absorption enhancement effect has not been reported. In this study, hydrophobic modification of zeolite was carried out by different methods, and the influence of zeolite before and after modification on gas absorption was investigated experimentally. An unsteady heterogeneous model was employed to predict the enhancement factors.

    2 ExperimentAL

    2.1 Modification of zeolite

    Two modification methods were employed. (1) Framework element modification by which the hydrophobicity was improved through changing the silica- alumina ratio in the skeleton in two ways: (a) acid treatment, the slurry of zeolite with suitable water added was boiled, then fitting HCl (concentration varied from 1mol·L-1to 8 mol·L-1) was dripped gradually and refluxed for 3 h at 100°C, followed by filtrating, washing, drying, and finally calcining for 5 h at 550°C; (b) hydrothermal synthesis combined with acid treatment, zeolite was treated with steam at 550°C in a fixed-bed reactor to dealuminate from the structural skeleton and then dissolving the aluminum residues in the micropores with HCl. The product obtained was then filtrated, dried, and calcinated for 5 h at 500°C to give modified zeolites. (2) Surface coating method, the surface of zeolite was coated by organic molecules without changing silica-alumina ratio. A certain amount of raw zeolite was put into cyclohexane solution with ethyl orthosilicate (PDMS) of a certain concentration, and then impregnated for 18 h at room temperature under electromagnetic stirring. The resulting sample was filtrated and dried at 110°C for 3 h to finally obtain the modified zeolite.

    The silica-alumina ratios were measured by GENESIS EDS from EDAX Corp. of US. The specific surface area was determined using a Gemini V 2380 instrument from Micrometitics Instrument Corp. X-ray diffraction patterns(XRD) were recorded in DISCOVER diffractometer with Cu Karadiation.

    2.2 Gas absorption experiment

    CO2/water(distilled water) was selected as the experimental material and the zeolite particles (particle size: 1-10mm) were introduced to enhance CO2(>99.5% mass fraction) absorption. The absorption experiments were carried out in a thermostatic vessel (Fig. 1). Four symmetrical baffles were mounted to prevent the formation of a horizontal vortex. Two stirrers were employed to mix the gas phase and liquid phase respectively. A cooling coil in the vessel was connected to the thermostatic bath to maintain a constant reaction temperature (298 K±0.1 K).

    Figure 1 Experimental set-up for gas absorption

    1—air inlet valve; 2—junction valve; 3—balance tank; 4—pressure transmitter; 5—pressure difference transmitter (connected with the computer); 6—temperature sensor; 7—magnetic stirrer; 8—cooling coil; 9—gas outlet valve; 10—vacuum value; 11—gas stirrer; 12—liquid stirrer; 13—baffles; 14—stainless steel top; 15—stainless steel vessel; 16—thermostatic bath

    Before each experiment, the vessel was filled with the slurry. Then the liquid was degassed by opening valve 10 until the slurry was equilibrated under the vapor pressure of water, then valve 10 was closed. Open valves 1 and 2 and CO2was fed into cell 3 and vessel 15 up to a fixed pressure. Valves 1 and 2 were then closed rapidly. Turning on the motor of the magnetic stirrer 7, the absorption was started. The absorption processes began with an initial pressure of 0.1MPa. Vessel 3 was a reference cell, a pressure difference transducer was connected between cell 3 and vessel 15. The transducer signal was transmitted to the computer and recorded online. With the value of the recorded pressure difference, the absorption rate could be calculated. Determining the absorption rate of CO2in slurry and pure water respectively, the enhancement factor was obtained.

    3 Theoretical Model

    Figure 2 Sketch map of mass transfer in the slurry

    According to the assumptions, the unsteady-state species balance for the solute can be derived respectively in the two zones.

    3.1 Zone I

    A species balance for the solute in the liquid phase is given by:

    with the following conditions:

    3.2 Zone II

    In the continuous phase of this zone, the balance of the solute can be written as:

    The relevant conditions of Eq. (3) are given by

    In the liquid film wrapping the particles,

    The necessary initial and boundary conditions are:

    wherepis the surface area of the particles, m-1.

    And the boundary condition can be given by

    Sin Eq. (8) is the adsorbed amount of A on solid per unit volume of particle, mol·m-3, andis the average particle-to-interface distance related to the solute concentration. Assuming a uniform distribution of the particle at the gas-liquid interface, thencan be calculated as follows [12]

    The balance for the accumulation of the solute within or on a single particle can be written as:

    with the following initial condition:

    3.3 Absorption rate

    Based on the Higbie penetration model, the absorption rate can be written:

    Ifis the residence time of liquid element, the time-averaged flux follows from:

    3.4 Enhancement factor

    The enhancement factor is defined as

    Assuming that the coverage of the gas-liquid interface can be described by Langmuir-type adhesion isotherm [6, 10]:

    Then the enhancement factors can be written as:

    where the subscript 0 and D are average gas absorption rate in uncovered and covered zone respectively.

    The above equations are solved numerically by gPROMs modeling software (Process System Enterprise Ltd.).

    4 Results and Discussion

    4.1 A comparison of particle properties obtained by different modification methods

    After pressing modified and unmodified zeolite powder into disks, the liquid-solid contact angle was determined with JY-82 angle measuring instrument, and the results are shown in Table 1. From the results, good hydrophobicity can be obtained by both of the two modification methods. Contrarily, when putting a drop of water on the surface of unmodified zeolite, water can spread completely and permeate into the particle quickly, indicating the strong hydrophilicity of unmodified zeolite.

    Table 1 Liquid-solid contact angle by different treatments

    The surface modification method did not change the silica alumina ratio of zeolite and the hydrophobicity of zeolite obtained was mainly dependent on the property of the organic coating. However, the hydrophobicity of zeolite modified by skeleton modification was obtained by changing the silica alumina ratio of the zeolite skeleton.

    The zeolite crystalline consists of structural units of silicon-oxygen tetrahedrons and alumina-oxygen tetrahedrons. The silicon-oxygen tetrahedrons in which one silica atom bonds to four oxygen atoms meet the valence desire of silica (+4), whereas, an electronegativity is present in Al-O tetrahedrons due to the structure of one trivalent aluminum atom bonding to four oxygen molecules. This imbalance of electrical charges needs to be compensated by some cations which result in the hydrophilicity of zeolites [13]. Thus in order to improve the hydrophobicity of zeolite, the content of aluminum in the crystalline should be decreased [9, 14, 15]. The higher the ratio of silica to aluminum, the stronger the hydrophobicity. The experimental Si/Al ratios are shown in Table 2.

    Table 2 Silica-alumina ratios by different treatments

    X-ray analyses were made for zeolite modified by framework element modification and the XRD patterns show that perfect framework structure and lattice structure of zeolites were maintained and no skeleton collapse was observed in the range of acid concentration discussed (Fig. 3). Furthermore, the experimental results of surface area also indicated that compared with unmodified zeolite, the specific surface area was somewhat increased because some impurities in the channel of zeolite were removed by acid used. However, surface area of zeolite by surface coating modification was reduced greatly because partial channel was covered with organic molecules.

    Figure 3 XRD patterns of modified and unmodified zeolites

    4.2 Influence of modified zeolite on gas absorption

    4.2.1

    Introducing modified zeolite particles to CO2gas absorption system, the enhancement factors of gas absorption as a function of solid concentration (s) are shown in Fig. 4. From the results, significant enhancement of gas absorption rate was obtained by modified zeolites, and the higher the silicon to aluminum ratio, the greater the enhancement factors. The highest enhancement factor was found to be 2.62 at a silicon-aluminum ratio of 123.

    Figure 4 The influence of modified zeolitesby framework element modification method on gas absorption

    SiO2/Al2O3(exp.):■?63;●?86;▲?128

    Due to good hydrophobicity obtained, modified zeolite particles by framework element modification are preferably situated at the gas-liquid interface, resulting in higher concentration of particles near gas-liquid interface than in the bulk [16]. Near the interface, the adsorptive particles are loaded with solute and the concentration gradient of the solute in the mass transfer layer will be increased. After spending a certain time in the interfacial layer, the particles return to the bulk of the liquid where the solute is desorbed and the particles regenerated. With this so-called “shuttle” [16, 17] between the interface and the bulk, gas absorption rate can be enhanced.

    4.2.2

    The results of CO2absorption experiments in suspensions of unmodified and modified zeolite by surface modification are given in Fig. 5. No enhancement of gas absorption rate was found for both the zeolite particles.

    Figure 5 The influence of unmodified and modified zeolites by surface coating on gas absorption

    ■?unmodified zeolite;●?modified zeolite

    Unmodified zeolites with low Si/Al ratio show high affinity to water molecules. When in aqueous solution, most of the surface active sites of zeolites will be covered by water molecules, resulting in the loss of adsorption capability to the solute. On the other hand, although a good hydrophobicity of the modified zeolite by surface method was observed (Table 1), no beneficial effects on gas absorption were obtained. On the contrary, the CO2absorption rate decreased with the solid concentrations(Fig. 5). This phenomenon is due to the fact that the coating layer of ethyl orthosilicate formed on the surface of zeolite disabled its adsorption capability of CO2. When in aqueous solution, a layer of inertial attaching particles will cover part of the gas-liquid interface, leading to the drop of gas absorption rate.

    5 Conclusions

    Two methods of zeolite modification were employed: framework element modification and surface coating, and the influence of the zeolites before and after modification on the CO2absorption was studied. According to the results from both experiment and prediction by present model, the authors could draw out conclusions as follows:

    (1) By means of the surficial organic coating, hydrophobicity was obtained for modified zeolite by surface modification, but meanwhile, the partial particle channel was plugged. As a result, specific surface area of zeolite was decreased greatly.

    (2) The framework element modification method could maintain not only complete lattice structure and adsorption capability of zeolite, a good hydrophobic property could also be obtained. Consequently, significant enhancement on gas absorption by this modified zeolite was achieved and up to a maximum enhancement factor of 2.62, which shows that zeolite particles by framework element modification would be a promising material for the future application.

    (3) Solid particles with good enhancement role to gas absorption need not only adsorptive capability but also certain hydrophobicity.

    (4) An unsteady heterogeneous model was employed to predict enhancement factor and the calculated results agree well with the experimental data.

    NOMENCLATURE

    psolid-liquid interfacial area, m2×m-3

    Asolute concentration, mol×m-3

    A0solute concentration at the interface, mol×m-3

    Dsolute concentration in particle covered zone, mol×m-3

    Sadsorbed amount of A on solid per unit volume of particle, mol×m-3

    Adiffusion coefficient, m2×s-1

    pparticle diameter, m

    enhancement factor

    mass transfer rate, mol×m-2×s-1

    pliquid-side mass transfer coefficient, m×s-1

    sparticle adhesion coefficient, m3×kg-1

    particle-to-interface distance, m

    partition coefficient of the solute between the solid and the liquid

    sparticle concentration, kg×m-3

    diameter of particle, m

    distance to the center of the particle, m

    time, s

    distance to the interface, m

    fraction of the interface covered by particles

    maxmaximum coverage

    penetration depth, m

    pliquid film thickness around the particle, m

    pparticle density, kg×m-3

    residence time, s

    particle volume concentration

    1 Kaya, A., Schumpe, A., “Surfactant adsorption rather than ‘shuttle effect’?”,, 60 (22), 6504-6510 (2005).

    2 Ruthiya, K.C., Kuster, B.F.M., Schouten, J.C., “Gas-liquid mass transfer enhancement in a surface aeration stirred slurry reactors”,., 81 (5), 632-639 (2003).

    3 Ruthiya, K.C., van der Schaaf, J., Kuster, B.F.M., Schouten, J.C., “Mechanisms of physical and reaction enhancement of mass transfer in a gas inducing stirred slurry reactor”,..., 96 (1-3), 55-69 (2003).

    4 Demmink, J.F., Mehra, A., Beenackers, A.A.C.M., “Gas absorption in the presence of particles showing interfacial affinity: case of fine sulfur precipitates”,.., 53 (16), 2885-2902 (1998).

    5 Wimmers, O.J., Fortuin, J.M.H., “The use of adhesion of catalyst particles to gas bubbles to achieve enhancement of gas absorption in slurry reactors- (II) Determination of the enhancement in a bubbles containing slurry reactor”,., 43 (2), 313-319 (1988).

    6 Wimmers, O.J., de Sauvage Nolting, H.J.J., Fortuin, J.M.H., “The effect of the size of catalyst particles adhering to bubbles on the enhancement of gas absorption in slurry reactors”,..., 43 (8), 2155-2159 (1988).

    7 Kluytmans, J.H.J., van Wachem, B.G.M., Kuster, B.F.M., Schouten, J.C., “Mass transfer in sparged and stirred reactors: Influence of carbon particles and electrolyte”,., 58 (21), 4719-4728 (2003).

    8 Tinge, J.T., Drinkenburg, A.A.H., “The enhancement of the physical absorption of gases in aqueous activated carbon slurries”,, 50 (6), 937-942 (1995).

    9 Takeuchi, M., Kimura, T., Hidaka, M., Rakhmawaty, D., Anpo, M., “Photocatalytic oxidation of acetaldehyde with oxygen on TiO2/ZSM-5 photocatalysts: Effect of hydrophobicity of zeolites”,, 246 (2), 235-240 (2007).

    10 Vinke, H., Hamersma, P.J., Fortuin, J.M.H., “Enhancement of the gas-absorption rate in agitated slurry reactors by gas-adsorbing particles adhering to gas bubbles”,..., 48 (12), 2197-2210 (1993).

    11 Zhang, G.D., Cai, W.F., Xu, C.J., Zhou, M., “A general enhancement factor model of the physical absorption of gases in multiphase systems”,..., 61 (5), 558-568 (2006).

    12 Junker, B.H., Wang, D.I.C., Hatton, T.A., “Oxygen transfer enhancement in aqueous/perfluorocarbon fermentation systems (II) Theoretical analysis”,.., 35 (2), 586-597 (1990).

    13 Chen, N.Y., “Hydrophobic properties of zeolites”,..., 80 (1), 60-64 (1976).

    14 Camblor, M.A., Corma, A., Iborra, S., Miquel, S., Primo, J., Valencia, S., “Beta zeolite as a catalyst for the preparation of alkyl glucoside surfactants: the role of crystal size and hydorphobicity”,, 172 (1), 76-84 (1997).

    15 Cheng, H., Reinhard, M., “Sorption of trichloroethylene in hydrophobic micro pores of dealuminated Y zeolites and natural minerals”,..., 40 (24), 7694-7701(2006).

    16 Holstvoogd, R.D., van Swaaij, W.P.M., van Dierendonck, L.L., “The absorption of gases in aqueous activated carbon slurries enhanced by adsorbing or catalytic particles”,..., 43 (8), 2181-2187 (1988).

    17 Alper, E., Ozturk, S., “Effect of fine solid particles on gas-liquid mass transfer rate in a slurry reactor”,..., 46 (1), 147-158 (1986).

    18 Holstvoogd, R.D., van der Swaaii, W.P.M., “The influence of adsorption capacity on enhanced gas absorption in activated carbon slurries”,..., 45 (1), 151-162 (1990).

    19 Shen, S.H., Ma, Y.G., Zhu, C.Y., Lu, S.M., “Absorption enhancement of carbon dioxide in aqueous activated carbon slurries”,....(), 58 (4), 835-841 (2007).

    20 Dagaonkar, M.V., Heeres, H.J., Beenackers, A.A.C.M., Pangarkar, V.G., “The application of fine TiO2particles for enhanced gas absorption”,.., 92 (1), 151-159 (2003).

    2008-06-05,

    2008-10-07.

    the National Natural Science Foundation of China (20176036).

    ** To whom correspondence should be addressed. E-mail: ygma@tju.edu.cn

    亚洲成人久久性| 精品人妻1区二区| 婷婷六月久久综合丁香| 黄色视频,在线免费观看| 这个男人来自地球电影免费观看| 午夜精品久久久久久毛片777| 特大巨黑吊av在线直播 | 国产欧美日韩一区二区三| 少妇裸体淫交视频免费看高清 | 桃色一区二区三区在线观看| 91九色精品人成在线观看| 国产爱豆传媒在线观看 | 18美女黄网站色大片免费观看| 欧美丝袜亚洲另类 | svipshipincom国产片| 搞女人的毛片| 午夜福利欧美成人| 国产伦人伦偷精品视频| aaaaa片日本免费| 日本在线视频免费播放| 午夜两性在线视频| 岛国视频午夜一区免费看| 久久天躁狠狠躁夜夜2o2o| 亚洲第一欧美日韩一区二区三区| 香蕉久久夜色| 美女免费视频网站| 日韩av在线大香蕉| 国产久久久一区二区三区| 中文字幕精品免费在线观看视频| 啦啦啦免费观看视频1| 欧美日韩亚洲综合一区二区三区_| 日韩有码中文字幕| 成人精品一区二区免费| 伊人久久大香线蕉亚洲五| 国产精品一区二区三区四区久久 | 亚洲av中文字字幕乱码综合 | 中文字幕精品亚洲无线码一区 | 久久精品国产亚洲av香蕉五月| 国产精品精品国产色婷婷| 日本一区二区免费在线视频| 亚洲国产欧美网| 午夜视频精品福利| 欧美性猛交黑人性爽| 中文字幕人妻熟女乱码| 亚洲中文日韩欧美视频| 最好的美女福利视频网| 国产高清有码在线观看视频 | 国产人伦9x9x在线观看| 亚洲精品在线美女| 变态另类丝袜制服| 午夜精品久久久久久毛片777| 最近最新中文字幕大全电影3 | 国产精品av久久久久免费| 黄色片一级片一级黄色片| 欧美最黄视频在线播放免费| 日韩欧美国产一区二区入口| 99国产综合亚洲精品| 午夜激情福利司机影院| 成人精品一区二区免费| 男人舔奶头视频| 久久久久久大精品| 久久精品国产99精品国产亚洲性色| 国产亚洲精品综合一区在线观看 | 黑丝袜美女国产一区| 99久久国产精品久久久| 91九色精品人成在线观看| 99国产极品粉嫩在线观看| a级毛片a级免费在线| 无人区码免费观看不卡| 国产精品亚洲美女久久久| 欧美日本亚洲视频在线播放| 黄频高清免费视频| 成人三级做爰电影| 国产精品98久久久久久宅男小说| 国产一卡二卡三卡精品| 男人操女人黄网站| 中文字幕av电影在线播放| 不卡一级毛片| 国产亚洲欧美在线一区二区| 国产日本99.免费观看| 久久国产亚洲av麻豆专区| 91字幕亚洲| 久久久久久久午夜电影| 免费看日本二区| 亚洲va日本ⅴa欧美va伊人久久| 天天躁狠狠躁夜夜躁狠狠躁| av视频在线观看入口| 成熟少妇高潮喷水视频| 夜夜看夜夜爽夜夜摸| 欧美黄色片欧美黄色片| 非洲黑人性xxxx精品又粗又长| 久久久久久久久中文| 韩国精品一区二区三区| 男女之事视频高清在线观看| 欧美大码av| 中文亚洲av片在线观看爽| 国产私拍福利视频在线观看| 真人一进一出gif抽搐免费| 国产精品一区二区免费欧美| 亚洲精品在线美女| 久久香蕉国产精品| 最新在线观看一区二区三区| 成人国产综合亚洲| 国产精品二区激情视频| 精品熟女少妇八av免费久了| 两性午夜刺激爽爽歪歪视频在线观看 | 午夜免费成人在线视频| 色播亚洲综合网| www.熟女人妻精品国产| 亚洲精品中文字幕在线视频| a级毛片在线看网站| 高清在线国产一区| 伊人久久大香线蕉亚洲五| 成在线人永久免费视频| 亚洲av电影不卡..在线观看| 国产精品免费视频内射| 精品乱码久久久久久99久播| 欧美日韩福利视频一区二区| 757午夜福利合集在线观看| 久热这里只有精品99| 午夜免费激情av| 亚洲在线自拍视频| 99国产极品粉嫩在线观看| 嫩草影院精品99| 欧美丝袜亚洲另类 | 国产成人av激情在线播放| ponron亚洲| 99在线人妻在线中文字幕| 在线观看免费午夜福利视频| 搡老熟女国产l中国老女人| 亚洲第一av免费看| 日韩高清综合在线| 国产精品野战在线观看| 精华霜和精华液先用哪个| 母亲3免费完整高清在线观看| 伦理电影免费视频| 久久欧美精品欧美久久欧美| 亚洲五月天丁香| 欧美久久黑人一区二区| 日韩欧美国产一区二区入口| 中国美女看黄片| 人妻丰满熟妇av一区二区三区| 大型黄色视频在线免费观看| 免费搜索国产男女视频| 最近最新中文字幕大全电影3 | 久久久久国内视频| 美女扒开内裤让男人捅视频| 国产爱豆传媒在线观看 | 久久草成人影院| 国语自产精品视频在线第100页| 久久中文看片网| 成年人黄色毛片网站| 亚洲 欧美一区二区三区| 亚洲av成人不卡在线观看播放网| 满18在线观看网站| 精品久久久久久久久久免费视频| 999久久久国产精品视频| 欧美日韩亚洲综合一区二区三区_| 午夜久久久在线观看| 国产亚洲精品久久久久久毛片| 十八禁网站免费在线| 99久久精品国产亚洲精品| 亚洲最大成人中文| 天堂√8在线中文| 亚洲欧美激情综合另类| 日本成人三级电影网站| 亚洲性夜色夜夜综合| 欧美一级毛片孕妇| 亚洲国产高清在线一区二区三 | 国产在线精品亚洲第一网站| 色在线成人网| 嫁个100分男人电影在线观看| 免费一级毛片在线播放高清视频| 97人妻精品一区二区三区麻豆 | 日韩精品中文字幕看吧| 国产一区二区在线av高清观看| 首页视频小说图片口味搜索| 欧美成人午夜精品| 亚洲九九香蕉| 淫妇啪啪啪对白视频| 免费看a级黄色片| a级毛片在线看网站| 日日夜夜操网爽| 国产在线观看jvid| 给我免费播放毛片高清在线观看| 日韩国内少妇激情av| 久久精品国产清高在天天线| 老司机午夜福利在线观看视频| 日本成人三级电影网站| 午夜亚洲福利在线播放| 九色国产91popny在线| 好男人电影高清在线观看| 国产高清有码在线观看视频 | 国产伦在线观看视频一区| 日韩欧美一区二区三区在线观看| 精品无人区乱码1区二区| 757午夜福利合集在线观看| 亚洲国产欧洲综合997久久, | 一进一出好大好爽视频| 午夜激情福利司机影院| 欧美三级亚洲精品| 国产高清有码在线观看视频 | 免费av毛片视频| 精品免费久久久久久久清纯| 黄色毛片三级朝国网站| 午夜福利欧美成人| 欧美成狂野欧美在线观看| 亚洲国产欧美网| 精品国产美女av久久久久小说| 亚洲精品中文字幕一二三四区| 十分钟在线观看高清视频www| 一级a爱视频在线免费观看| 色综合站精品国产| 亚洲人成网站高清观看| 久久亚洲精品不卡| 国产真实乱freesex| 成人精品一区二区免费| 免费电影在线观看免费观看| 久久午夜亚洲精品久久| 亚洲色图av天堂| 美女大奶头视频| 午夜精品在线福利| 国内精品久久久久精免费| 男人舔奶头视频| 女生性感内裤真人,穿戴方法视频| 久久这里只有精品19| 婷婷精品国产亚洲av| 两个人免费观看高清视频| 非洲黑人性xxxx精品又粗又长| 国产熟女xx| 欧美激情 高清一区二区三区| 给我免费播放毛片高清在线观看| 超碰成人久久| 久久精品国产亚洲av香蕉五月| 精品无人区乱码1区二区| 好看av亚洲va欧美ⅴa在| 国产私拍福利视频在线观看| 黄色片一级片一级黄色片| 变态另类成人亚洲欧美熟女| 18禁国产床啪视频网站| 成人三级做爰电影| 色哟哟哟哟哟哟| 狠狠狠狠99中文字幕| 免费在线观看日本一区| 免费av毛片视频| 欧美日韩福利视频一区二区| 精品一区二区三区视频在线观看免费| 亚洲精品中文字幕一二三四区| 欧美丝袜亚洲另类 | or卡值多少钱| av片东京热男人的天堂| 国产精品野战在线观看| 久久天堂一区二区三区四区| www国产在线视频色| 欧美日韩精品网址| 性色av乱码一区二区三区2| 91麻豆av在线| 伊人久久大香线蕉亚洲五| 丝袜美腿诱惑在线| 国产1区2区3区精品| 亚洲av成人不卡在线观看播放网| 一本久久中文字幕| 亚洲精品av麻豆狂野| 欧美黑人精品巨大| 国产成人精品久久二区二区91| 亚洲中文日韩欧美视频| 97人妻精品一区二区三区麻豆 | 级片在线观看| 亚洲自拍偷在线| 国产伦人伦偷精品视频| 久久久久免费精品人妻一区二区 | 母亲3免费完整高清在线观看| 国产高清videossex| 国产亚洲精品第一综合不卡| 一边摸一边抽搐一进一小说| 激情在线观看视频在线高清| 在线永久观看黄色视频| 国产国语露脸激情在线看| 夜夜看夜夜爽夜夜摸| 国产一区二区在线av高清观看| 国产高清videossex| 欧美日韩黄片免| 91成年电影在线观看| 老司机午夜福利在线观看视频| 好男人电影高清在线观看| 久久久久国内视频| av电影中文网址| 88av欧美| 国产亚洲欧美98| 美国免费a级毛片| 亚洲熟妇中文字幕五十中出| 亚洲精品国产一区二区精华液| 在线观看www视频免费| 国产精品二区激情视频| 日本一本二区三区精品| 一进一出好大好爽视频| 老司机午夜十八禁免费视频| 999精品在线视频| 90打野战视频偷拍视频| 成人一区二区视频在线观看| 国产在线观看jvid| 免费看日本二区| 777久久人妻少妇嫩草av网站| 俄罗斯特黄特色一大片| 精品久久蜜臀av无| 999精品在线视频| 国产精品av久久久久免费| 日日爽夜夜爽网站| 亚洲自拍偷在线| 国产成人av教育| 在线观看免费视频日本深夜| 老汉色av国产亚洲站长工具| 99久久精品国产亚洲精品| 日本免费一区二区三区高清不卡| 欧美午夜高清在线| 色尼玛亚洲综合影院| 欧美精品亚洲一区二区| 亚洲国产精品成人综合色| 久久精品亚洲精品国产色婷小说| 88av欧美| 淫妇啪啪啪对白视频| 国产三级在线视频| 欧美色欧美亚洲另类二区| 无限看片的www在线观看| 一个人免费在线观看的高清视频| 真人做人爱边吃奶动态| 免费av毛片视频| 国产成人啪精品午夜网站| 国产一级毛片七仙女欲春2 | 亚洲avbb在线观看| 美女大奶头视频| 中国美女看黄片| 欧美乱色亚洲激情| 90打野战视频偷拍视频| 国产aⅴ精品一区二区三区波| 久久婷婷人人爽人人干人人爱| 欧美日韩福利视频一区二区| 久久久久久九九精品二区国产 | 午夜激情福利司机影院| 国产精品免费视频内射| 久久精品91无色码中文字幕| 亚洲av成人一区二区三| 国产精品爽爽va在线观看网站 | 这个男人来自地球电影免费观看| 亚洲自偷自拍图片 自拍| 国产精品日韩av在线免费观看| 91麻豆av在线| 午夜a级毛片| 久久久久国产一级毛片高清牌| 色哟哟哟哟哟哟| 国产色视频综合| 一本大道久久a久久精品| 亚洲av电影在线进入| 欧洲精品卡2卡3卡4卡5卡区| 亚洲真实伦在线观看| 又大又爽又粗| 久久国产精品影院| 国产欧美日韩精品亚洲av| 两个人看的免费小视频| 久久精品国产清高在天天线| 精品久久蜜臀av无| 亚洲国产看品久久| 国产av又大| 亚洲成人免费电影在线观看| 99精品欧美一区二区三区四区| xxx96com| 国产精品免费一区二区三区在线| 久久草成人影院| 搡老岳熟女国产| 国产色视频综合| 妹子高潮喷水视频| 免费高清在线观看日韩| 夜夜躁狠狠躁天天躁| 国产亚洲av高清不卡| 国产黄色小视频在线观看| 欧美绝顶高潮抽搐喷水| 19禁男女啪啪无遮挡网站| 中文字幕久久专区| 午夜福利一区二区在线看| 亚洲国产中文字幕在线视频| 欧美日韩黄片免| 免费人成视频x8x8入口观看| 国产精品98久久久久久宅男小说| 香蕉丝袜av| 国内精品久久久久精免费| 欧美在线黄色| √禁漫天堂资源中文www| 婷婷亚洲欧美| 色精品久久人妻99蜜桃| 精品不卡国产一区二区三区| av视频在线观看入口| 激情在线观看视频在线高清| 淫秽高清视频在线观看| 搡老熟女国产l中国老女人| 男女午夜视频在线观看| 人人妻人人澡人人看| 日韩免费av在线播放| 午夜福利在线观看吧| 中文字幕人妻丝袜一区二区| 亚洲 欧美一区二区三区| 美女高潮到喷水免费观看| 午夜成年电影在线免费观看| 亚洲激情在线av| 一进一出抽搐动态| 午夜福利18| 在线观看午夜福利视频| 亚洲一区二区三区色噜噜| tocl精华| 国产精品1区2区在线观看.| 日本 欧美在线| 韩国av一区二区三区四区| 极品教师在线免费播放| 免费观看精品视频网站| 久久久国产精品麻豆| 国产av一区在线观看免费| 香蕉av资源在线| 中文字幕精品亚洲无线码一区 | 免费av毛片视频| 性欧美人与动物交配| 久久久久久人人人人人| 亚洲五月婷婷丁香| 777久久人妻少妇嫩草av网站| 欧美成人一区二区免费高清观看 | 国产三级黄色录像| 亚洲国产日韩欧美精品在线观看 | 久久久久国产一级毛片高清牌| www日本黄色视频网| 国产亚洲av嫩草精品影院| 老熟妇仑乱视频hdxx| 色播亚洲综合网| 亚洲五月色婷婷综合| 91av网站免费观看| 一级a爱视频在线免费观看| 久久性视频一级片| 婷婷精品国产亚洲av| 久久性视频一级片| 午夜激情av网站| 99久久无色码亚洲精品果冻| 中文字幕av电影在线播放| 亚洲av美国av| 久久久久久久久免费视频了| 日韩欧美一区视频在线观看| 国产精品一区二区免费欧美| 精品电影一区二区在线| 欧美色欧美亚洲另类二区| 精品欧美一区二区三区在线| 91av网站免费观看| 国产亚洲精品综合一区在线观看 | 久久精品国产综合久久久| 国产91精品成人一区二区三区| 亚洲国产欧美一区二区综合| 女人被狂操c到高潮| 12—13女人毛片做爰片一| videosex国产| 最新美女视频免费是黄的| 麻豆成人av在线观看| 亚洲精品国产精品久久久不卡| 中文在线观看免费www的网站 | 老司机深夜福利视频在线观看| 国产一区二区激情短视频| 亚洲免费av在线视频| 欧美一区二区精品小视频在线| 一夜夜www| 波多野结衣巨乳人妻| 无遮挡黄片免费观看| 99国产精品一区二区蜜桃av| 精品卡一卡二卡四卡免费| 男女做爰动态图高潮gif福利片| 性欧美人与动物交配| 在线观看66精品国产| 国产成人精品无人区| 两个人看的免费小视频| 欧美黑人精品巨大| 香蕉国产在线看| 国产精品1区2区在线观看.| 日韩三级视频一区二区三区| 两个人看的免费小视频| 日韩欧美国产一区二区入口| 一级作爱视频免费观看| 91九色精品人成在线观看| 亚洲精品粉嫩美女一区| 高清在线国产一区| 欧美日韩中文字幕国产精品一区二区三区| 亚洲av成人一区二区三| 女生性感内裤真人,穿戴方法视频| 熟妇人妻久久中文字幕3abv| 天天添夜夜摸| 国产黄片美女视频| 久9热在线精品视频| 国产一级毛片七仙女欲春2 | 国产精品98久久久久久宅男小说| 欧美色视频一区免费| 亚洲自拍偷在线| 精品一区二区三区四区五区乱码| 国产不卡一卡二| 国产精品一区二区免费欧美| 国产精品一区二区三区四区久久 | 亚洲国产高清在线一区二区三 | 观看免费一级毛片| 淫秽高清视频在线观看| √禁漫天堂资源中文www| 国产精品一区二区三区四区久久 | 亚洲天堂国产精品一区在线| 一区福利在线观看| 美女扒开内裤让男人捅视频| av在线播放免费不卡| 男女那种视频在线观看| 91av网站免费观看| 熟妇人妻久久中文字幕3abv| 国产色视频综合| 男女午夜视频在线观看| aaaaa片日本免费| 国产精品久久久人人做人人爽| 窝窝影院91人妻| 久久久久久久午夜电影| 国语自产精品视频在线第100页| 女性生殖器流出的白浆| 少妇熟女aⅴ在线视频| 亚洲精品色激情综合| 一本综合久久免费| 女生性感内裤真人,穿戴方法视频| 日韩大尺度精品在线看网址| 亚洲九九香蕉| 日韩欧美国产在线观看| 国产精品精品国产色婷婷| 在线观看免费视频日本深夜| 十八禁人妻一区二区| 亚洲精品一区av在线观看| 中文字幕最新亚洲高清| 午夜免费观看网址| 久久久久免费精品人妻一区二区 | 亚洲免费av在线视频| 人人妻,人人澡人人爽秒播| 国产av一区在线观看免费| 琪琪午夜伦伦电影理论片6080| 在线国产一区二区在线| 日本 欧美在线| 欧美精品啪啪一区二区三区| tocl精华| 日韩 欧美 亚洲 中文字幕| 99久久综合精品五月天人人| 中文字幕人妻丝袜一区二区| 午夜久久久久精精品| 免费高清在线观看日韩| 亚洲人成网站在线播放欧美日韩| 这个男人来自地球电影免费观看| 人人妻人人澡欧美一区二区| 免费搜索国产男女视频| 亚洲全国av大片| 男人的好看免费观看在线视频 | 精品国产亚洲在线| 又大又爽又粗| 亚洲成人精品中文字幕电影| 老司机福利观看| 嫩草影视91久久| 亚洲一区高清亚洲精品| www日本黄色视频网| 丁香六月欧美| 麻豆av在线久日| 麻豆成人av在线观看| 成年免费大片在线观看| 国产精品一区二区三区四区久久 | 国产精品久久久久久亚洲av鲁大| 午夜激情福利司机影院| 亚洲成人国产一区在线观看| 一本大道久久a久久精品| 亚洲七黄色美女视频| 黄色 视频免费看| 午夜精品在线福利| 精品国产一区二区三区四区第35| 国产99久久九九免费精品| 亚洲av成人av| 国产黄片美女视频| aaaaa片日本免费| 丁香欧美五月| 亚洲成av人片免费观看| 免费在线观看视频国产中文字幕亚洲| 成人免费观看视频高清| av电影中文网址| 久9热在线精品视频| 搡老岳熟女国产| 午夜成年电影在线免费观看| 亚洲性夜色夜夜综合| 日本黄色视频三级网站网址| 欧美乱妇无乱码| 国产又爽黄色视频| 国产精品 欧美亚洲| av有码第一页| 少妇 在线观看| 听说在线观看完整版免费高清| 精品国产国语对白av| 免费女性裸体啪啪无遮挡网站| 韩国av一区二区三区四区| 久久久久久大精品| 在线观看www视频免费| 亚洲精品国产一区二区精华液| 女性生殖器流出的白浆| 欧美性长视频在线观看| 99久久国产精品久久久| 99热只有精品国产| 精品久久久久久久久久免费视频| 亚洲精品中文字幕一二三四区| 国产精品亚洲美女久久久| 午夜精品久久久久久毛片777| 日韩欧美一区二区三区在线观看| 淫妇啪啪啪对白视频| 欧美黑人巨大hd| 无遮挡黄片免费观看| 色av中文字幕| 亚洲性夜色夜夜综合| 免费在线观看影片大全网站| 国产av一区在线观看免费| 中文字幕人成人乱码亚洲影| 一级毛片高清免费大全| 久久性视频一级片|