• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simulation of 1,3-Butadiene Production Process by Dimethylfomamide Extractive Distillation

    2009-05-14 08:24:16YANGXiaojian楊小健YINXuan殷絢andOUYANGPingkai歐陽平凱
    關(guān)鍵詞:歐陽

    YANG Xiaojian (楊小健)*, YIN Xuan (殷絢) and OUYANG Pingkai (歐陽平凱)

    ?

    Simulation of 1,3-Butadiene Production Process by Dimethylfomamide Extractive Distillation

    YANG Xiaojian (楊小健)1,*, YIN Xuan (殷絢)1and OUYANG Pingkai (歐陽平凱)2

    1Controlling Engineering Center, Nanjing University of Technology, Nanjing 210009, China2College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, China

    Nowadays, extractive distillation is the main technique to produce 1,3-butadiene. This study simulated the 1,3-butadiene production process with DMF extractive distillation by Aspen Plus. The solvent ratio is the most important parameter to the extractive distillation process. The article has given out the proper solvent ratios, reflux ratios, distillate ratios, and bottom product ratios of the columns. It also discusses the thermal loads of several columns. The results of simulation are consequently compared with the plant data, which shows good accordance with each other.

    simulation, 1,3-butadiene, dimethylfomamide, extractive distillation

    1 Introduction

    Extractive distillation is the main technique to produce 1,3-butadiene, which is easy and cost-efficient. The extractive distillation methods can be separated into 3 kinds according to the extraction solvents, and they are acetonitrile (ACN) method, dimethylfomamide (DMF) method (also called GPB method), and-methyl-pyrrolidone (NMP) method [1]. The disadvantage of ACN method is the complexity to recover the solvent [2]. Furthermore, ACN is toxic to the environment [3], so its application is limited now. Dimethylfomamide is hypo-toxic, miscible with C4at any proportion, and it does not become azeotropic with any component in C4. The shortage is that an inhibitor should be added to prevent polymerization. Some materials might be hydrolyzed into formic acid and dimethylamine when there is water. And the hydrolysates are corrosive to carbon steel [4-7]. NMP has good selectivity and solubility, high boiling point, and low vapor pressure. The solvent is avirulent and biodegradable. The solvent loss is very low [8-10]. About 70% of the processes in China use DMF methods [3, 11]. Other newly developed methods for the production of butadiene are Houdry technology, oxydehydrogenation of-butylene, catalytic reaction of ethanol, and so on [12].

    The demand for 1,3-butadiene in Asia increased by 3% in 2005, which came to 3.9 million tons. Between 2005-2010, the growth rate of 1,3-butadiene consumption in Asia will reach 4.1% per year [13]. The capacity and efficiency of 1,3-butadiene production in China is still much lower than that of other countries. The aim of this work is to study the DMF method by simulation, to improve production efficiency, and to optimize the operation conditions.

    This simulation incorporates fundamental chemical engineering principles and advanced software tools for the DMF process. It includes mass and energy balances, thermodynamic parameters, phase equilibrium, and distillation modeling. Aspen Plus is used to simulate the processes [14, 15]. The thermodynamic method chosen is NRTL-RK. The rigorous multistage separation (RADFRAC) model has been used to calculate the distillation columns. All the calculations are based on mass. According to the characteristics of the real process, the process is separated into four sections.

    2 DMF Process

    The process uses GPB technology (industrialized in 1965 by Geon Company, Japan) to extract 1,3-butadiene from C4materials. The process contains two extractive distillation sections, one ordinary distillation section, and one solvent purification section, as shown in Fig. 1. In the first extractive distillation section, substances that have higher relative volatility compared with 1,3-butadiene in DMF are removed. In the secondary extractive distillation section, substances of lower relative volatility are removed. Only the substances whose boiling points differ far from 1,3-butandiene can be removed in the third section. The solvent purification section is used to purify and recover the solvent.

    3 Process Data

    This set of equipment is designed to treat 1.08×108kg·a-1C4material, and the production of 1,3-butadiene is 6.0×107kg·a-1. The equipment commonly runs under 50% of the design capacity. The running time is 7800 h·a-1. The C4feed to the plant is (14.0-18.0)×103kg·h-1. In the simulation, it is set to the average value of 16.0×103kg·h-1. There are four feeds to the whole process, one of C4, two of DMF, and one of--butylcatechol (TBC). The following are the conditions of the feeds under the typical operation condition.

    Figure 1 DMF (GPB) process to produce 1,3-butadiene

    3.1 C4 feed

    Raw C4material includes butylenes, butanes, and some other impurities (C3, C5). The water content in C4material must be<500 mg·kg-1to prevent hydrolysis of DMF. 1,3-Butadiene content of C4material is generally between 45.0%-52.0% (by mass). Three typical compositions of the C4material are shown in Table 1.

    Table 1 Main components of C4 material①

    ① Data source: Yangzi Petro-Chemical Plant, Sinopec.

    3.2 Solvent (DMF) feed

    The solvent contains 4.0% (by mass) tar and 96.0% (by mass) DMF. In the first extractive distillation column T1, the flow of solvent (DMF) is approximately 7-8 times than that of C4. Another solvent stream feeds the secondary extractive distillation column (T3), and the amount of solvent is 0.8-1.2 times that of C4feed in T1.

    3.3 Polymerization inhibitor (TBC) feed

    In order to prevent 1,3-butadiene polymerization, TBC is added in column T6 as the polymerization inhibitor [16]. The dosage is 0.003% (by mass) of the total feed in T6.

    4 Thermodynamic Method and equations

    The thermodynamic method used in the simulation is NRTL-RK. Non-Random Two Liquids (NRTL) equations are suitable to describe the hydrocarbons and water. The NRTL activity coefficient equations for binary systems are:

    Table 2 Parameter a12 in some binary systems

    5 Simulation results

    The simulations for different C4feeds are in good accordance with plant data. The following paragraphs choose a typical simulation to discuss the results.

    5.1 First extractive distillation section

    The first extraction distillation section includes two columns, T1 and T2. Because 1,3-butadiene is easy to dimerize and it is difficult to calculate the reaction during the whole process, F1 is added before T1 to calculate dimerization.

    Figure 2 is the first extractive distillation section. T1 is the first extractive distillation column, including two feeds: C4and DMF. Components lighter than 1,3-butadiene are removed from the top, whereas 1,3-butadiene and heavier components are extracted by DMF at the bottom. T2 is a stripping column, the feed of which is the bottom discharge of T1. The function of T2 is to strip out hydrocarbons from DMF [18]. The hydrocarbons stripped out at T2 top are cooled to (35±5)°C by two stages of condenser, and then, sent to T3 by a compressor. The stream of hydrocarbons must be below 80°C and 0.6MPa to prevent polymerization. Streams after the compressor are recycled back in order to improve the efficiency of separation [19]. Table 3 shows the plant data, the plant demand, and the simulated results of this section.

    Figure 2 Flow chart of the first extractive distillation section

    Table 3 Comparison of the simulated results and the plant demand in the first section

    Figure 3 Influences of solvent ratio upon the contents of several key components of T1

    ◆?1,3-butadiene content in top products;□-2-butene content in bottom products; △-2-butene content in bottom products

    Figure 4 Influences of reflux ratio upon the contents of several key components of T1

    ◆?1,3-butadiene content in top products;□-2-butene content in bottom products; △-2-butene content in bottom products

    In the extractive distillation process, the solvent ratio is very important for the final results. Fig. 3 and Fig. 4 show the influences of the solvent ratio and the reflux ratio upon the performance of T1. It can be seen that larger solvent ratio and reflux ratio produce better separation results, while more energy will be consumed. So, there exists a minimal solvent ratio and a minimal reflux ratio to reach the plant demand [20]. From the simulation results, the minimal solvent ratio and the minimal reflux ratio of T1 are 7.5 kg·kg-1and 1.4 kg·kg-1, respectively.

    Figure 5 Influences of feed plate upon the contents of several key components of T1

    ◆?1,3-butadiene content in top products;□-2-butene content in bottom products; △-2-butene content in bottom products

    Figure 6 Influence of distillate ratio upon the performances of T2

    □?bottom temperature; △?8th plate temperature; ◇?top temperature;■?heat duty of condenser

    Figure 5 determines the best feed plate of T1. Dimethylfomamide is fed in the first plate. The best feed plate of C4is in the middle of the column, which is on the 39th theoretical plate. Fig. 6 shows the influence of distillate ratio on the top temperature, the bottom temperature, and the condenser heat duty of T2. T2 is a stripping column, which consumes large amount of heat. So proper operation conditions can help save a lot of energy. When the distillate ratio of T2 is more than 0.14 kg·kg-1, the temperatures of the column can meet the plant demand, but the condenser heat duty increases with the increase of the distillate ratio. Hence, the minimal distillate ratio is 0.14 kg·kg-1. The calculated bottom temperature is 161.75°C, which matched the measured temperature 161.76°C well.

    5.2 Secondary extractive distillation section

    The secondary extractive distillation section includes three columns, the extractive distillation column T3, the 1,3-butadiene recovery column T4, and the stripping column T5, as shown in Fig. 7. T3 has two feeds, the stripped top discharge of T2 and DMF. The feed of T3 contained 1,3-butadienen, vinylacetylene, 1-butyne, 1,2-butadiene, methyl-acetylene, and C5. The relative volatility of methyl-acetylene in DMF is close to 1,3-butadiene, which can not be removed in this section. The top discharge of T3 is mainly 1,3-butadiene with small amount of impurities, which is purified in the next section. The T3 bottom discharge DMF still contains much 1,3-butadiene. The bottom discharge of T3 is sent to T4 to recover 1,3-butadiene. The top discharge of T4 is 1,3-butadiene with some other hydrocarbons, which is recycled to the first section to keep mass balance. The bottom discharge of T4 is DMF dissolving some hydrocarbons, which is sent to T5 to recover DMF. Too large amounts of vinylacetylene might cause an explosion. When the vinylacetylene content exceeds 0.5 kg·kg-1in the top product of T5, it should be diluted by butane or butylene. Table 4 compares the simulated results of this section and the plant demands.

    Figure 7 Flow chart of the secondary extractive distillation section

    Three parameters might influence the bottom temperature of T3. They are the solvent ratio, the reflux ratio, and the distillate ratio. The solvent ratio means solvent feed: hydrocarbons feed, the reflux ratio means reflux flow: distillate, and the distillate ratio means distillate: hydrocarbons feed. Figs. 8-10 are the influences of these three parameters on the top and bottom temperatures, and the reboiler heat duty of column T3. The importance of the parameters is the following: distillate ratio>solvent ratio>reflux ratio. The calculated vinylacetylene content is far below the plant demand. The proper values of the parameters are the following: the solvent ratio 2.0 kg·kg-1, the flux ratio 1.0 kg·kg-1, and the distillate ratio 0.845 kg·kg-1. Although the distillate ratio influences the T3 performances more than the other two parameters, the most important parameter to control here is solvent ratio. Too low a solvent ratio might cause the distillate and the bottom flow-off specification. And when the solvent ratio is too high, it might induce waste of large amount of energy.

    Figure 8 Influences of solvent ratio on the performances of T3

    △?bottom temperature;?◇??top temperature; ■?heat duty of reboiler

    Figure 9 Influences of reflux ratio on the performances of T3

    △?bottom temperature; ◇?top temperature; ■?heat duty of reboiler

    Column T4 is very simple and is used to recover 1,3-butadiene from the solvent. Its top temperature is very steady. The bottom temperature increases slightly with the increase of the bottom product ratio.

    Table 4 Comparison of the simulated results and the plant demand in the secondary section

    Figure 10 Influences of distillate ratio on the performances of T3

    △?bottom temperature; ◇?top temperature; ■?heat duty of reboiler

    Figures 11 and 12 are the influences of the bottom product ratio, and the reflux ratio on the performances of T5. The bottom product ratio influences the bottom temperature of T5 more than the reflux ratio. In order to keep the temperature of the 12th plate above 147°C, the bottom product ratio, and the reflux ratio should be kept above 0.03 kg·kg-1and 0.42 kg·kg-1, respectively. The bottom product ratio influences the temperature of all the plates except that of the top one, and the reflux ratio can only adjust the temperature of the middle plates. The vinylacetylene content in top products decreases with the increase of the bottom product ratio and the reflux ratio. Hence, if one wants to reduce the vinylacetylene content and to control the temperature of the plates at some fixed value at the same time, the best way is to increase the bottom product ratio and to decrease the reflux ratio.

    Figure 11 Influences of bottom product ratio on the performances of T5

    △ bottom temperature; ◇ top temperature; □ 12th plate temperature;● vinyl acetylene content in top products

    Figure 12 Influences of reflux ratio on the performances of T5

    △?bottom temperature; ◇?top temperature;□?12th plate temperature; ●?vinyl acetylene content in top products

    5.3 Ordinary distillation section

    The ordinary distillation section is to remove the impurities, which can not be separated out in the previous sections. This is shown in Fig. 13. The methyl-acetylene and water can be removed by T6. The top pressure of T6 varies with the methyl-acetylene content and the cooling water temperature. The more the content of methyl-acetylene in the feed stream of T6, the more the loss of 1,3-butadiene in the distillate. The polymerization inhibitor TBC added in this section is to prevent the aggregation of 1,3-butadiene. The retained minor constituent of-2-butene, 1,2-butadiene 1-butyne, and C5are removed by T7. Table 5 compares the simulated results of this section and the plant demands.

    Figure 14 is the influence of bottom product ratio on the performances of T6. Fig. 15 is the influences of reflux ratio on the performances of T6. The bottom product ratio influences the performances of T6 more than other parameters. The T6 top temperature can meet the demand when the bottom product ratio is more than 0.91 kg·kg-1, but the best bottom product ratio is 0.98 kg·kg-1. The proper reflux ratio is 10 kg·kg-1. When the reflux ratio is more than 10 kg·kg-1, the 1,3-butadiene content is over the specification and the top temperature decreases only slightly. So the proper reflux ratio here is 10 kg·kg-1.

    Figure 13 Flow chart of the secondary extractive distillation section

    Table 5 Comparison of the simulated results and the plant demand in the secondary section

    Figure 14 Influences of bottom product ratio on the performances of T6

    △?bottom temperature;□?top temperature;■?methyl-acetylene content of the distillate

    Figure 15 Influences of reflux ratio on the performances of T6

    △?bottom temperature; □?top temperature;■?methyl-acetylene content of the distillate

    Figure 16 is the influence of bottom product ratio upon the performance of T7. T7 is the secondary distillation column used to remove high boiling point materials, such as-2-butene, 1,2-butadiene, vinylacetylene, and so on. From Fig. 14, the suitable bottom product ratio is 0.026 kg·kg-1. When it is lower, the bottom temperature is too high, and the 1,3-butadiene content of the bottom product will exceed the specification.

    Figure 16 Influences of bottom product ratio on the performances of T7

    △?bottom temperature; ◆?1,3-butadiene content of the distillate;■?1,3-butadiene content of the bottom product

    5.4 Solvent purification section

    The solvent purification section is to refine and to reuse the solvent. There is only one column T8 in this section, which is to separate out such materials as water, dimer, and some hydrocarbons. The refined DMF is obtained at the bottom of T8. Table 6 compares the simulated results of this column and the plant demand.

    Figure 17 Flow chart of the solvent purification section

    Table 6 Comparison of the simulated results and the plant demand in the secondary section

    Figure 18 and Fig. 19 show the influence of reflux ratio and bottom flow ratio on the performance of T8. Fig. 18 shows that all the performances changed little by changing the reflux ratio. When the products can not meet the demand, the reflux ratio should be increased. The minimum reflux ratio here is 0.06 kg·kg-1. It can be seen from Fig. 19 that, if the DMF content of top product can be controlled above 1% (by mass), the suitable bottom product ratio should be in the range of 0.94-0.962 kg·kg-1. When the bottom product ratio is above 0.97 kg·kg-1, the top temperature and the bottom temperature decline greatly. And the separation result will be deteriorated.

    Figure 18 Influences of reflux ratio on the performances of T8

    △?bottom temperature;□?top temperature; ×?DMF content of top product;●?water content of the bottom product

    Figure 19 Influences of bottom product ratio on the performances of T8

    △?bottom temperature;□?top temperature; ×?DMF content of top product;●?water content of the bottom product

    6 Conclusions

    This study simulated the 1,3-butadiene production process with DMF extractive distillation method by Aspen Plus. The thermodynamic equations used here are NRTL equations, and the method chosen in the software is NRTL-RK. The whole process contains 8 columns, which are separated into 4 sections for simulation. The calculated results show good accordance with the plant data.

    The discussion includes the influences of the operations upon the performances of the columns. The solvent ratio is the most important parameter to the extractive distillation process. The simulation studied the best solvent ratios. T1 and T3 are extractive distillation columns, and the best solvent ratios of T1 and T3 are 7.5 kg·kg-1and 2.0 kg·kg-1. T2 and T5 are stripping columns. When fixing the reflux ratio, energy consumption must be considered. The least reflux ratios of T2 and T5 are 0.14 kg·kg-1and 0.42 kg·kg-1, respectively. When something goes wrong with these two columns, increasing the reflux ratio properly will stabilize the column. T6 and T7 are distillation columns. They are used to purify the product 1,3-butadiene. The bottom product ratio of T6 should be kept above 0.91 kg·kg-1, and the best result is 0.98 kg·kg-1. The bottom product ratio of T7 should be more than 0.026 kg·kg-1. T8 is to recycle DMF. Its least reflux ratio is 0.06 kg·kg-1, and the proper bottom product ratio should be controlled within the range of 0.94-0.962 kg·kg-1.

    The simulated results show that proper parameters will make productions meet the demands and save large amount of energy. The study gives us a clear understanding of the whole process and provides methods to adjust the process when it is unstable.

    AcknowledgEments

    ,..,..

    1 Li, Y.F., Wu, X.M., “Production and market of butadiene”,.. (China), 7 (6), 50-56 (2005).

    2 Lei, Z.G., Wang, H.Y., Zhou, R.Q., Duan, Z.T., “Solvent improvement for separating C4with CAN”,.., 26, 1213-1221 (2002).

    3 Zhao, Z.W., Yu, Q.N., “Comparison of some butadiene extraction technologies”,. (), 4, 11-19 (2005).

    4 Takao, S., “DMF: newst butadiene solvent”,.., 45, 151-154 (1966).

    5 Takao, S., “DMF can efficiently recover butadiene and isoprene”,, 77, 81-82 (1979).

    6 Arakawa, M., Yoshioka, H., Nakazawa, K., “Process for producing 1,3-butadiene”, US Pat., 4504692 (1985).

    7 Ogura, S., Soumai, M., “Process for separating highly pure butane-1 or butane-1/isobutene mixture from C4hydrocarbon fraction”, US Pat., 4555312 (1985).

    8 Linder, A., Klaus, B.R., Ulrich, V.F., “Isolation of 1,3-butadiene from a C4-hydrocarbon mixture”, US Pat., 4277314 (1981).

    9 Kaibel, G., Hefner, W., Keller, P., “Isolation of 1,3-butadiene”, US Pat., 4859286 (1989).

    10 Klaus, Kindler, H., Hubert Puhl, L., “Method for separating a C4-hydrocarbon mixture”, US Pat., US6337429B1 (2002).

    11 Lei, Z.G., Zhou, R.Q., Duan, Z.T., “Process improvement on separating C4by extractive distillation”,..., 85, 379-386 (2002).

    12 Zhao, Y.Z., Zhang, L.B., Wang, J., “Development situation analysis of butadiene”,(), 14 (1), 57-61 (2004). (in Chinese)

    13 Wu, J.P., “Increasing of 1,3-butadiene requirement in Asia”,... (), 6, 7-17 (2006). (in Chinese)

    14 Ongiro, A., Ugursal, V.I., Taweel, A.M.A., Lajeunesse, G., “Thermodynamic simulation and evaluation of a stream chp plant using Aspen Plus”,..., 16 (3), 263-271 (1996).

    15 Aotudeh-Gharebaagh, R., Legros, R., Chaouki, J., Paris, J., “Simulation of circulation fluidized bed reactors using Aspen Plus”,, 77 (4), 327-337 (1998).

    16 Song, X.J., “Optimizing butadiene device to increase economic benefit”,.. (), 124 (1), 51-54 (2006). (in Chinese)

    17 Renon, H., Prausnitz, J.M., “Local compositions in thermodynamic excess function for liquid mixtures”,., 14, 135 (1968).

    18 Wang, W.H., Ren, W.H, Xu, W.Y., Yu, L.X., “Progress in separation of C4alkanes and alkenes by extractive rectification”,.. (), 28 (2), 20-23 (1999). (in Chinese)

    19 Zhou, T., Gong, J.Z., Zhao, D.Z., “Analysis of the cause of influencing butadiene device run period”,(), 33 (12), 711-713 (2004). (in Chinese)

    20 Li, S.J., Qian, F., “Operation condition optimization of butadiene extraction distillation column”,...., 32 (5), 591-595 (2006). (in Chinese)

    2008-04-28,

    2008-11-12.

    * To whom correspondence should be addressed. E-mail: yxj_cec@126.com

    猜你喜歡
    歐陽
    動(dòng)物怎樣聽和看?
    Positive unlabeled named entity recognition with multi-granularity linguistic information①
    雅皮狗(7)
    雅皮狗(6)
    雅皮狗(5)
    雅皮狗(4)
    雅皮狗(1)
    我家的健忘老媽
    歐陽彥等
    依依送別歐陽鶴先生
    中華詩詞(2019年9期)2019-05-21 03:05:18
    欧美老熟妇乱子伦牲交| 操出白浆在线播放| 丰满迷人的少妇在线观看| 一本综合久久免费| 99国产极品粉嫩在线观看| 亚洲精品美女久久av网站| 69av精品久久久久久 | 在线观看舔阴道视频| 国产无遮挡羞羞视频在线观看| 另类亚洲欧美激情| 十八禁人妻一区二区| www.精华液| 一区二区三区国产精品乱码| 天堂俺去俺来也www色官网| 久久久国产欧美日韩av| 国产三级黄色录像| 99热国产这里只有精品6| 午夜免费鲁丝| 天天躁夜夜躁狠狠躁躁| 国产精品.久久久| 成人黄色视频免费在线看| 国产aⅴ精品一区二区三区波| 97人妻天天添夜夜摸| 王馨瑶露胸无遮挡在线观看| 亚洲精品中文字幕在线视频| 性高湖久久久久久久久免费观看| 99久久精品国产亚洲精品| 国产1区2区3区精品| 超碰97精品在线观看| 国产一卡二卡三卡精品| 国产黄频视频在线观看| 日日夜夜操网爽| 国产精品久久久久久精品古装| 午夜福利在线观看吧| 三级毛片av免费| 日日爽夜夜爽网站| 女人被躁到高潮嗷嗷叫费观| 亚洲av电影在线进入| 日韩有码中文字幕| 成人精品一区二区免费| 午夜福利视频在线观看免费| 久久中文字幕人妻熟女| 可以免费在线观看a视频的电影网站| 在线观看舔阴道视频| 亚洲少妇的诱惑av| 久久99一区二区三区| 亚洲国产av影院在线观看| 男女高潮啪啪啪动态图| 操美女的视频在线观看| 久久精品91无色码中文字幕| 黄片大片在线免费观看| 乱人伦中国视频| 国产一区二区三区视频了| 亚洲 国产 在线| 99re在线观看精品视频| 国产欧美日韩精品亚洲av| 中文字幕另类日韩欧美亚洲嫩草| 纵有疾风起免费观看全集完整版| 亚洲天堂av无毛| av又黄又爽大尺度在线免费看| 9色porny在线观看| 日韩免费高清中文字幕av| 亚洲欧美激情在线| 亚洲少妇的诱惑av| 黑人猛操日本美女一级片| 少妇猛男粗大的猛烈进出视频| 一级黄色大片毛片| 国产一卡二卡三卡精品| 午夜精品久久久久久毛片777| av国产精品久久久久影院| 欧美日韩亚洲高清精品| 成在线人永久免费视频| 婷婷丁香在线五月| 777久久人妻少妇嫩草av网站| 国产高清激情床上av| a级毛片在线看网站| 国产男女内射视频| 男女高潮啪啪啪动态图| 亚洲成人国产一区在线观看| 久热这里只有精品99| 亚洲精品美女久久久久99蜜臀| 午夜福利,免费看| 国产精品亚洲一级av第二区| 久久久精品区二区三区| 超碰97精品在线观看| 日韩精品免费视频一区二区三区| 欧美黑人欧美精品刺激| 国产精品自产拍在线观看55亚洲 | 一区二区日韩欧美中文字幕| 午夜两性在线视频| 亚洲精品在线观看二区| 黄片小视频在线播放| 天天添夜夜摸| 欧美亚洲 丝袜 人妻 在线| 亚洲免费av在线视频| 黄色怎么调成土黄色| 免费观看人在逋| 麻豆国产av国片精品| 2018国产大陆天天弄谢| 丝袜美足系列| 国产老妇伦熟女老妇高清| 欧美变态另类bdsm刘玥| 99热国产这里只有精品6| 亚洲午夜理论影院| 国产又爽黄色视频| 欧美精品一区二区大全| 一级毛片女人18水好多| 欧美精品高潮呻吟av久久| 99国产精品一区二区蜜桃av | 久久久久网色| 91精品三级在线观看| bbb黄色大片| 一本综合久久免费| 两个人免费观看高清视频| 99riav亚洲国产免费| 人人妻人人添人人爽欧美一区卜| 免费看a级黄色片| 一夜夜www| 夫妻午夜视频| 欧美亚洲日本最大视频资源| 欧美激情高清一区二区三区| 最新美女视频免费是黄的| 国产无遮挡羞羞视频在线观看| 美女高潮到喷水免费观看| 日韩一卡2卡3卡4卡2021年| 国产成+人综合+亚洲专区| avwww免费| 汤姆久久久久久久影院中文字幕| 色播在线永久视频| 久久亚洲精品不卡| 精品国产乱码久久久久久小说| 精品久久久精品久久久| 亚洲成人国产一区在线观看| 国产97色在线日韩免费| 国产日韩欧美视频二区| 久久中文字幕人妻熟女| 日本欧美视频一区| 欧美亚洲 丝袜 人妻 在线| 亚洲 欧美一区二区三区| 午夜免费成人在线视频| a在线观看视频网站| 啦啦啦中文免费视频观看日本| 人人妻,人人澡人人爽秒播| 亚洲欧美一区二区三区黑人| 9色porny在线观看| 欧美 日韩 精品 国产| 中文字幕人妻丝袜一区二区| 国产av精品麻豆| 久久久久精品人妻al黑| 国产男女超爽视频在线观看| 亚洲国产欧美一区二区综合| 国产区一区二久久| 99国产精品一区二区三区| 大型黄色视频在线免费观看| 黄片小视频在线播放| 亚洲一区二区三区欧美精品| 狂野欧美激情性xxxx| 亚洲午夜理论影院| 久久人人97超碰香蕉20202| 高清视频免费观看一区二区| 久久亚洲真实| 一本色道久久久久久精品综合| 91九色精品人成在线观看| 自线自在国产av| 欧美激情极品国产一区二区三区| 国产熟女午夜一区二区三区| 国产高清国产精品国产三级| 变态另类成人亚洲欧美熟女 | 国产亚洲精品第一综合不卡| 婷婷成人精品国产| 美女午夜性视频免费| 国产有黄有色有爽视频| 国产欧美日韩综合在线一区二区| 国产亚洲欧美精品永久| 久久精品国产99精品国产亚洲性色 | 精品国产乱码久久久久久小说| 国产精品久久电影中文字幕 | 黄片播放在线免费| 国产视频一区二区在线看| 国产免费av片在线观看野外av| tocl精华| 一区二区三区乱码不卡18| 国产av一区二区精品久久| 操出白浆在线播放| 成年人午夜在线观看视频| 一区二区日韩欧美中文字幕| 日韩一卡2卡3卡4卡2021年| a级毛片黄视频| 十八禁网站免费在线| 女人精品久久久久毛片| 飞空精品影院首页| 男女之事视频高清在线观看| 国产精品电影一区二区三区 | 交换朋友夫妻互换小说| 热re99久久国产66热| 国产主播在线观看一区二区| 最近最新中文字幕大全电影3 | xxxhd国产人妻xxx| avwww免费| 欧美日韩一级在线毛片| 亚洲精品成人av观看孕妇| 色94色欧美一区二区| 国产激情久久老熟女| 少妇粗大呻吟视频| 男女边摸边吃奶| 色播在线永久视频| 精品少妇黑人巨大在线播放| 亚洲综合色网址| 女性生殖器流出的白浆| 亚洲国产中文字幕在线视频| 女人高潮潮喷娇喘18禁视频| 如日韩欧美国产精品一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 久久久欧美国产精品| 精品一区二区三区四区五区乱码| 国产男女超爽视频在线观看| 久久青草综合色| 国产不卡一卡二| 中文字幕人妻熟女乱码| 亚洲成人免费电影在线观看| 国产精品久久久久久人妻精品电影 | 精品国产超薄肉色丝袜足j| 成年人免费黄色播放视频| 亚洲第一欧美日韩一区二区三区 | 成人三级做爰电影| 亚洲av美国av| 国产精品美女特级片免费视频播放器 | 国产在线视频一区二区| 精品国产超薄肉色丝袜足j| 一区福利在线观看| 99国产极品粉嫩在线观看| 91麻豆精品激情在线观看国产 | 亚洲情色 制服丝袜| 国产日韩欧美视频二区| 亚洲,欧美精品.| 如日韩欧美国产精品一区二区三区| 一级毛片女人18水好多| 中文字幕精品免费在线观看视频| 在线观看人妻少妇| 黄片小视频在线播放| 一区在线观看完整版| 久久 成人 亚洲| 97在线人人人人妻| 国产精品自产拍在线观看55亚洲 | 亚洲欧美日韩高清在线视频 | 考比视频在线观看| 国产一区二区三区在线臀色熟女 | 国产无遮挡羞羞视频在线观看| 欧美变态另类bdsm刘玥| 这个男人来自地球电影免费观看| 成人18禁高潮啪啪吃奶动态图| 中文亚洲av片在线观看爽 | 色94色欧美一区二区| 最新在线观看一区二区三区| 欧美国产精品va在线观看不卡| 久久狼人影院| 久久精品91无色码中文字幕| 色视频在线一区二区三区| 亚洲国产成人一精品久久久| 90打野战视频偷拍视频| 国产区一区二久久| 手机成人av网站| 亚洲,欧美精品.| 国产一区二区在线观看av| 热99国产精品久久久久久7| 美女高潮到喷水免费观看| 伦理电影免费视频| 亚洲欧美色中文字幕在线| 国产国语露脸激情在线看| 国产亚洲av高清不卡| 黄频高清免费视频| 美女福利国产在线| 久久久久精品人妻al黑| 成人三级做爰电影| 黑人欧美特级aaaaaa片| 亚洲成人免费电影在线观看| 欧美黄色片欧美黄色片| 日本av免费视频播放| 黄色怎么调成土黄色| 黄色 视频免费看| www.999成人在线观看| 别揉我奶头~嗯~啊~动态视频| 黑人操中国人逼视频| 国产不卡一卡二| 精品国产一区二区久久| 婷婷成人精品国产| 国产色视频综合| 水蜜桃什么品种好| 中文字幕另类日韩欧美亚洲嫩草| 搡老熟女国产l中国老女人| 国产精品二区激情视频| 91大片在线观看| 99re在线观看精品视频| 亚洲精品中文字幕在线视频| 欧美日韩成人在线一区二区| 精品少妇一区二区三区视频日本电影| 人成视频在线观看免费观看| a级毛片黄视频| 久久人妻福利社区极品人妻图片| 王馨瑶露胸无遮挡在线观看| 一个人免费在线观看的高清视频| 大片免费播放器 马上看| 欧美黑人欧美精品刺激| 精品国产一区二区久久| 国产老妇伦熟女老妇高清| 精品一品国产午夜福利视频| 亚洲精品中文字幕一二三四区 | 丝袜喷水一区| 国产成人精品无人区| 中文字幕最新亚洲高清| 亚洲国产成人一精品久久久| 欧美激情高清一区二区三区| 黄色丝袜av网址大全| 国产欧美日韩一区二区三区在线| 欧美乱妇无乱码| av免费在线观看网站| 18禁美女被吸乳视频| 亚洲国产欧美网| 欧美日本中文国产一区发布| 人人澡人人妻人| 他把我摸到了高潮在线观看 | 在线天堂中文资源库| 国产在线精品亚洲第一网站| 国产精品免费一区二区三区在线 | 国精品久久久久久国模美| 美女高潮喷水抽搐中文字幕| 正在播放国产对白刺激| 欧美老熟妇乱子伦牲交| 制服人妻中文乱码| 日韩欧美一区视频在线观看| 午夜久久久在线观看| 日韩视频在线欧美| 欧美日韩亚洲国产一区二区在线观看 | 看免费av毛片| 国产精品免费一区二区三区在线 | 国产精品电影一区二区三区 | 精品熟女少妇八av免费久了| 国产欧美日韩一区二区三区在线| 女警被强在线播放| 日韩制服丝袜自拍偷拍| 欧美日韩一级在线毛片| 成人国产一区最新在线观看| 亚洲国产av影院在线观看| 久久人人97超碰香蕉20202| 欧美日韩一级在线毛片| 嫩草影视91久久| 视频区图区小说| 久久久久久久国产电影| 亚洲人成伊人成综合网2020| 极品少妇高潮喷水抽搐| 国产97色在线日韩免费| 国产精品久久久av美女十八| 自拍欧美九色日韩亚洲蝌蚪91| 国产成人系列免费观看| 777米奇影视久久| 国产一区有黄有色的免费视频| 久久精品国产综合久久久| 久久久国产精品麻豆| 久久国产亚洲av麻豆专区| 国产午夜精品久久久久久| 亚洲 欧美一区二区三区| 久久久久精品人妻al黑| 国产免费视频播放在线视频| 90打野战视频偷拍视频| 一本久久精品| 亚洲av日韩在线播放| 超碰成人久久| 亚洲一码二码三码区别大吗| 老熟妇乱子伦视频在线观看| 中亚洲国语对白在线视频| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲精品中文字幕在线视频| 欧美人与性动交α欧美精品济南到| 999久久久精品免费观看国产| 国产黄频视频在线观看| 丝袜在线中文字幕| 国产成人av教育| 精品熟女少妇八av免费久了| 99久久人妻综合| 色婷婷av一区二区三区视频| 天天躁狠狠躁夜夜躁狠狠躁| 欧美成人免费av一区二区三区 | 一本一本久久a久久精品综合妖精| 成人18禁高潮啪啪吃奶动态图| 18禁国产床啪视频网站| 久久99热这里只频精品6学生| 国产一区二区三区综合在线观看| 热re99久久国产66热| 亚洲人成77777在线视频| 亚洲国产欧美网| 俄罗斯特黄特色一大片| 久久久久网色| 这个男人来自地球电影免费观看| 国产无遮挡羞羞视频在线观看| 男人操女人黄网站| 日韩制服丝袜自拍偷拍| 在线av久久热| avwww免费| 高清在线国产一区| 天堂动漫精品| 国产99久久九九免费精品| 国产欧美亚洲国产| 亚洲午夜理论影院| 亚洲国产精品一区二区三区在线| 亚洲午夜精品一区,二区,三区| a级毛片在线看网站| 在线观看免费视频日本深夜| 制服诱惑二区| av线在线观看网站| 国产单亲对白刺激| 国产xxxxx性猛交| www.精华液| 国产精品国产av在线观看| 免费久久久久久久精品成人欧美视频| 91成人精品电影| 亚洲人成电影观看| 色婷婷久久久亚洲欧美| 天堂动漫精品| 国产精品免费大片| 亚洲av成人不卡在线观看播放网| 老鸭窝网址在线观看| 久久99热这里只频精品6学生| 蜜桃在线观看..| 欧美一级毛片孕妇| 韩国精品一区二区三区| 成年人黄色毛片网站| 亚洲色图av天堂| 中文字幕人妻丝袜制服| 国产免费视频播放在线视频| 99精国产麻豆久久婷婷| 亚洲午夜精品一区,二区,三区| 中国美女看黄片| 超碰97精品在线观看| 国产极品粉嫩免费观看在线| 无遮挡黄片免费观看| 亚洲avbb在线观看| 黄片小视频在线播放| 国产99久久九九免费精品| 露出奶头的视频| 夜夜骑夜夜射夜夜干| 亚洲一码二码三码区别大吗| 亚洲三区欧美一区| 18禁黄网站禁片午夜丰满| 国产精品久久久久久精品古装| 男女边摸边吃奶| 黄色成人免费大全| 波多野结衣一区麻豆| 久久久精品区二区三区| 欧美亚洲 丝袜 人妻 在线| 亚洲国产欧美日韩在线播放| 操美女的视频在线观看| 日韩欧美一区视频在线观看| 黄色怎么调成土黄色| 午夜福利在线免费观看网站| 免费日韩欧美在线观看| 免费人妻精品一区二区三区视频| 午夜精品国产一区二区电影| 一本—道久久a久久精品蜜桃钙片| avwww免费| 久久久久久久久免费视频了| 成在线人永久免费视频| 九色亚洲精品在线播放| 麻豆国产av国片精品| 精品人妻1区二区| 国产亚洲欧美精品永久| 深夜精品福利| 9191精品国产免费久久| 电影成人av| 美女视频免费永久观看网站| 操美女的视频在线观看| 少妇被粗大的猛进出69影院| 怎么达到女性高潮| 免费观看av网站的网址| 亚洲熟女毛片儿| 无人区码免费观看不卡 | 国产日韩一区二区三区精品不卡| 一个人免费在线观看的高清视频| 老司机在亚洲福利影院| 亚洲熟女精品中文字幕| videos熟女内射| 多毛熟女@视频| 国产在线视频一区二区| 两性午夜刺激爽爽歪歪视频在线观看 | tube8黄色片| 成人18禁在线播放| 国产精品九九99| 两性午夜刺激爽爽歪歪视频在线观看 | 国产真人三级小视频在线观看| 在线播放国产精品三级| 精品乱码久久久久久99久播| 人人妻人人添人人爽欧美一区卜| 99精品欧美一区二区三区四区| 91大片在线观看| a级片在线免费高清观看视频| 成人18禁在线播放| 久久亚洲精品不卡| 日韩中文字幕视频在线看片| 丁香六月天网| 99久久精品国产亚洲精品| 国产精品影院久久| 精品国产一区二区久久| 嫩草影视91久久| 国产成人一区二区三区免费视频网站| 久久久久久久国产电影| 美女主播在线视频| 午夜视频精品福利| 欧美日韩视频精品一区| 亚洲熟女毛片儿| 免费人妻精品一区二区三区视频| 欧美成人午夜精品| 亚洲国产欧美一区二区综合| 久久精品亚洲熟妇少妇任你| 久久中文字幕人妻熟女| 国产av国产精品国产| 大香蕉久久网| 在线观看免费高清a一片| 日韩熟女老妇一区二区性免费视频| 啦啦啦视频在线资源免费观看| 国产欧美亚洲国产| 午夜福利视频精品| 久久久久久久久久久久大奶| 欧美精品av麻豆av| 国产91精品成人一区二区三区 | 99精国产麻豆久久婷婷| 一边摸一边做爽爽视频免费| 操美女的视频在线观看| 亚洲精品一二三| 99国产极品粉嫩在线观看| 一区二区av电影网| 99国产极品粉嫩在线观看| 性少妇av在线| 成人国产一区最新在线观看| 一进一出抽搐动态| 悠悠久久av| 久9热在线精品视频| 女性被躁到高潮视频| 大型av网站在线播放| 欧美精品啪啪一区二区三区| 两性夫妻黄色片| 少妇精品久久久久久久| 淫妇啪啪啪对白视频| 国产亚洲精品久久久久5区| 在线观看www视频免费| 久久久久久亚洲精品国产蜜桃av| 亚洲男人天堂网一区| 高清欧美精品videossex| 欧美精品一区二区免费开放| 免费少妇av软件| 亚洲 欧美一区二区三区| 99国产精品一区二区蜜桃av | 亚洲熟妇熟女久久| 老熟妇乱子伦视频在线观看| 国产成人av教育| 一进一出好大好爽视频| 精品久久久精品久久久| 香蕉国产在线看| 国产又爽黄色视频| 日日摸夜夜添夜夜添小说| bbb黄色大片| 考比视频在线观看| 欧美日韩国产mv在线观看视频| 又大又爽又粗| 精品亚洲成国产av| 国产精品一区二区免费欧美| 国产亚洲精品久久久久5区| 老汉色∧v一级毛片| 777米奇影视久久| 国产精品九九99| 久热爱精品视频在线9| 99热网站在线观看| 久久久欧美国产精品| 国产在视频线精品| 成年人黄色毛片网站| 美女午夜性视频免费| 少妇猛男粗大的猛烈进出视频| 亚洲一区二区三区欧美精品| 亚洲美女黄片视频| 天堂8中文在线网| 纵有疾风起免费观看全集完整版| 男人舔女人的私密视频| av天堂久久9| 天堂中文最新版在线下载| 女人被躁到高潮嗷嗷叫费观| 黑人猛操日本美女一级片| 国产精品自产拍在线观看55亚洲 | 日本黄色日本黄色录像| 欧美精品亚洲一区二区| 桃花免费在线播放| 精品人妻熟女毛片av久久网站| 欧美日韩av久久| 99久久精品国产亚洲精品| 国产精品二区激情视频| 9热在线视频观看99| 美女主播在线视频| 在线永久观看黄色视频| 我要看黄色一级片免费的| 亚洲一卡2卡3卡4卡5卡精品中文| 考比视频在线观看| 一本大道久久a久久精品| av福利片在线| 在线永久观看黄色视频| 高清欧美精品videossex| av福利片在线| 蜜桃在线观看..| 欧美精品啪啪一区二区三区| 国产成人一区二区三区免费视频网站| 亚洲,欧美精品.| 一边摸一边抽搐一进一出视频| 午夜老司机福利片| 午夜福利,免费看| 成年版毛片免费区| 国产97色在线日韩免费| 亚洲精品粉嫩美女一区| 午夜两性在线视频| 欧美日韩亚洲国产一区二区在线观看 |