紀(jì)連權(quán)
[摘要]課堂教學(xué)是實施素質(zhì)教學(xué)的主陣地,提高學(xué)生的素質(zhì)是課堂教學(xué)的重要內(nèi)容,怎樣將“應(yīng)試教育”向“素質(zhì)教育”轉(zhuǎn)軌,怎樣變單純的“知識輸入”為“能力培養(yǎng)、智力開發(fā)”,如何大面積提高中學(xué)的數(shù)學(xué)教學(xué)質(zhì)量,這是擺在我們廣大數(shù)學(xué)教師面前的一個重大課題。在眾多教學(xué)改革的原則中,主體性是素質(zhì)教育的核心和靈魂。在教學(xué)中要真正體現(xiàn)學(xué)生的主體性,就必須使認(rèn)知過程是一個再創(chuàng)造的過程,使學(xué)生在自覺、主動、深層次的參與過程中,實現(xiàn)發(fā)現(xiàn)、理解、創(chuàng)造與應(yīng)用,在學(xué)習(xí)中學(xué)會學(xué)習(xí)。使學(xué)生產(chǎn)生明顯的意識傾向和情感共鳴,乃是主體參與的條件和關(guān)鍵。
[關(guān)鍵詞]中學(xué)數(shù)學(xué) 素質(zhì)教學(xué) 情境教學(xué)
一、誘發(fā)主動性
傳統(tǒng)教育的弊端告誡我們:教育應(yīng)以學(xué)生為本。面對當(dāng)今新時期的青少年,服務(wù)于這樣一種充滿生氣、有真摯情感、有更大可塑性的學(xué)習(xí)活動主體,教師決不可以越俎代庖,以知識的講授替代主體的活動。情境教學(xué)就是把學(xué)生的主動參與具體化在優(yōu)化的情境中產(chǎn)生動機(jī)、充分感受、主動探究。如在復(fù)習(xí)函數(shù)這節(jié)課時,教師可以創(chuàng)設(shè)以下的教學(xué)情境:
案例:“我”在某市購物,甲商店提出的優(yōu)惠銷售方法是所有商品按九五折銷售,而乙商店提出的優(yōu)惠方法是凡一次購滿500元可領(lǐng)取九折貴賓卡。請同學(xué)們幫老師出出主意,“我”究竟該到哪家商店購物得到的優(yōu)惠更多?問題提出后,學(xué)生們十分感興趣,紛紛議論,連平時數(shù)學(xué)成績較差的學(xué)生也躍躍欲試。學(xué)生們學(xué)習(xí)的主動性很好地被調(diào)動了起來。活勢形成,學(xué)生們在不知不覺中運(yùn)用了分類討論的思想方法。
曾有人說:“數(shù)學(xué)是思維的體操”。數(shù)學(xué)教學(xué)是思維活動的教學(xué)。學(xué)生的思維活動有賴于教師的循循善誘和精心的點撥和啟發(fā)。因此,課堂情境的創(chuàng)設(shè)應(yīng)以啟導(dǎo)學(xué)生思維為立足點。心理學(xué)研究表明:不好的思維情境會抑制學(xué)生的思維熱情,所以,課堂上不論是設(shè)計提問、幽默,還是欣喜、競爭,都應(yīng)考慮活動的啟發(fā)性,孔子曰:“不憤不啟,不悱不發(fā)”,如何使學(xué)生心理上有憤有悱,正是課堂情境創(chuàng)設(shè)所要達(dá)到的目的。
二、強(qiáng)化感受性
情境教學(xué)往往會具有鮮明的形象性,使學(xué)生如入其境,可見可聞,產(chǎn)生真切感。只有感受真切,才能入境。要做到這一點,可以用創(chuàng)設(shè)問題情境來激發(fā)學(xué)生求知欲。創(chuàng)設(shè)問題情境就是在講授內(nèi)容和學(xué)生求知心理間制造一種“不和諧”,將學(xué)生引入一種與問題有關(guān)的情境中。心理學(xué)研究表明:“認(rèn)知矛盾時動機(jī)的根源。”課堂上,教師創(chuàng)設(shè)認(rèn)知不協(xié)調(diào)的問題情境,以激起學(xué)生研究問題的動機(jī),通過探索,消除劇烈矛盾,獲得積極的心理滿足。創(chuàng)設(shè)問題情境應(yīng)注意要小而具體、新穎有趣、有啟發(fā)性,同時又有適當(dāng)?shù)碾y度。此外,還要注意問題情境的創(chuàng)設(shè)必須與課本內(nèi)容保持相對一致,更不能運(yùn)用不恰當(dāng)?shù)谋扔?不利于學(xué)生正確理解概念和準(zhǔn)確使用數(shù)學(xué)語言能力的形成。教師要善于將所要解決的課題寓于學(xué)生實際掌握的知識基礎(chǔ)之中,造成心理上的懸念,把問題作為教學(xué)過程的出發(fā)點,以問題情境激發(fā)學(xué)生的積極性,讓學(xué)生在迫切要求下學(xué)習(xí)。
除創(chuàng)設(shè)問題情境外,還可以創(chuàng)設(shè)新穎、驚愕、幽默、議論等各種教學(xué)情境,良好的情境可以使教學(xué)內(nèi)容觸及學(xué)生的情緒和意志領(lǐng)域,讓學(xué)生深切感受學(xué)習(xí)活動的全過程并升化到自己精神的需要,成為提高課堂教學(xué)效率的重要手段。這正象贊可夫所說的:“教學(xué)法一旦觸及學(xué)生的情緒和意志領(lǐng)域,這種教學(xué)法就能發(fā)揮高度有效的作用?!?/p>
三、著眼發(fā)展性
數(shù)學(xué)是一門抽象和邏輯嚴(yán)密的學(xué)科,正由于這一點令相當(dāng)一部分學(xué)生望而卻步,對其缺乏學(xué)習(xí)熱情。情境教學(xué)當(dāng)然不能將所有的數(shù)學(xué)知識都用生活真實形象再現(xiàn)出來,事實上情境教學(xué)的形象真切,并不是實體的復(fù)現(xiàn)或忠實的復(fù)制、照相式的再造,而是以簡化的形體,暗示的手法,獲得與實體在結(jié)構(gòu)上對應(yīng)的形象,從而給學(xué)生以真切之感,在原有的知識上進(jìn)一步深入發(fā)展,以獲取新的知識。
案例:在學(xué)習(xí)完了平行四邊形判定定理之后,如何進(jìn)一步運(yùn)用這些定理去判定一個四邊形是否為平行四邊形的習(xí)題課上.我先帶領(lǐng)學(xué)生回顧平行四邊形的定義以及四條判定定理:
1.平行四邊形定義:兩組對邊分別平行的四邊形是平行四邊形。
2.平行四邊形判定定理:
(1)兩組對邊分別相等的四邊形是平行四邊形。
(2)對角線相互平分的四邊形是平行四邊形。
(3)兩組對角分別相等的四邊形是平行四邊形。
(4)一組對邊平行且相等的四邊形是平行四邊形。
平行四邊形定義和前三條判定定理的條件較單一,或相等、或平行,而第四條判定定理是相等與平行二者兼有,如果將它看作是定義和判定(1)中各取條件的一部分而得出的話,那么從定義和前三條判定定理中每兩個取其中部分條件是否都能構(gòu)成平行四邊形的判定方法呢?這樣我創(chuàng)設(shè)了情境,根據(jù)對第四條判定定理的剖析,使學(xué)生用類比的方法提出了猜想:
1.一組對邊平行且另一組對邊相等的四邊形是平行四邊形。
2.一組對邊平行且一組對角相等的四邊形是平行四邊形。
3.一組對邊平行且對角線交點平分某一條對角線的四邊形是平行四邊形。
4.一組對邊相等且對角線交點平分某一條對角線的四邊形是平行四邊形。
5.一組對邊相等且一組對角相等的四邊形是平行四邊形。
6.一組對角相等且連該兩頂點的對角線平分另一對角線的四邊形是平行四邊形。
7.一組對角相等且連該兩頂點的對角線被另一對角線平分的四邊形是平行四邊形。
在啟發(fā)學(xué)生得出上面的若干猜想之后,我又進(jìn)一步強(qiáng)調(diào)證明的重要性,以使學(xué)生形成嚴(yán)謹(jǐn)?shù)乃季S習(xí)慣,達(dá)到提高學(xué)生邏輯思維能力的目的。經(jīng)過全體師生一齊分析驗證,最終得出結(jié)論:七條猜想中有四條猜想是錯誤的,另外三個正確猜想中的一個尚待給予證明。學(xué)生在老師的層層設(shè)問下,參與了問題探究的全過程。不僅對知識理解更透徹,掌握更牢固,而且從中受到觀察、猜想、分析與轉(zhuǎn)換等思維方法的啟迪,思維品質(zhì)獲得了培養(yǎng),同時學(xué)生也從探索的成功中感到喜悅,使學(xué)習(xí)數(shù)學(xué)的興趣得到了強(qiáng)化,知識得到了進(jìn)一步發(fā)展。
四、滲透教育性
教師要傳授知識,更要育人。如何在數(shù)學(xué)教育中,對學(xué)生進(jìn)行思想道德教育,在情境教學(xué)中也得到了較好的體現(xiàn)。法國著名數(shù)學(xué)家包羅?朗之萬曾說:“在數(shù)學(xué)教學(xué)中,加入歷史具有百利而無一弊的?!蔽覈菙?shù)學(xué)的故鄉(xiāng)之一,中華民族有著光輝燦爛的數(shù)學(xué)史,如果將數(shù)學(xué)科學(xué)史滲透到數(shù)學(xué)教學(xué)中,可以拓寬學(xué)生的視野,進(jìn)行愛國主義教育,對于增強(qiáng)民族自信心,提高學(xué)生素質(zhì),激勵學(xué)生奮發(fā)向上,形成愛科學(xué),學(xué)科學(xué)的良好風(fēng)氣有著重要作用。