• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Current advances in neurotrauma research: diagnosis, neuroprotection, and neurorepair

    2014-01-22 16:46:01JinhuiChen,RiyiShi
    關(guān)鍵詞:應(yīng)用服務(wù)網(wǎng)絡(luò)層應(yīng)用層

    Current advances in neurotrauma research: diagnosis, neuroprotection, and neurorepair

    Traumatic brain injury (TBI) and spinal cord injury (SCI) causes signi fi cant cell death (Raghupathi et al., 1995; DeKosky et al., 1998; Hall et al., 2005; Farkas and Povlishock, 2007) and tissue lesion in the neocortex (Lighthall et al., 1989; Lyeth et al., 1990), leaving many patients with substantial motor disability and cognitive impairment (Hamm et al., 1992; Scheff et al., 1997). Unfortunately, at present, there are no clinically demonstrated FDA approved drug therapies for treatment of TBI and SCI patients that reduce the neurological injuries. Thus, TBI and SCI are serious health problems. The development of therapeutic approaches to prevent neuronal death and enhance neuroregeneration for promoting post-traumatic functional recovery would be of enormous clinical, social, and economic bene fi ts. The reviews in this speci fi c issue focus largely on the current progress on diagnosis, neuroprotection, and potential neurorepair with stem cells.

    Introduction

    TBI, a form of acquired brain injury, occurs when a sudden trauma causes damage to the brain. TBI can result when the head suddenly and violently hits an object, or when an object pierces the skull and enters brain tissue. It is estimated that approximately 2.4 million patients were hospitalized with TBI in the United states alone in 2009 (Coronado et al., 2012). TBI is a major cause of death and disability in the United States, contributing to about 30% of all injury deaths and the growing 1.8% of the population that live with longterm physical disabilities (Zaloshnja et al., 2008). Effects of TBI can also lead to cognitive impairment, including memory problems and decreased concentration skills, and psychological symptoms, including irritability, depression, and anxiety. SCI is also one of the major causes of irreversible nerve injury, resulting in both motor and sensory dysfunctions. An estimated 12,000 new cases of spinal cord injury occur every year in the United States.

    Over the past 15-20 years, we have gained a great deal of knowledge about the healthy brain and its response to trauma (Buki and Povlishock, 2006; Hall et al., 2008; Greer et al., 2013; Johnson et al., 2013). Based on the results from animal models, controlling brain swelling and intracranial pressure (ICP) have been widely used and have signi fi cantly reduced death following TBI (Lundberg et al., 1965). Although during 2001-2010 rates of TBI-related emergency department (ED) visits increased by 70%, death rates decreased by 7% (Coronado et al., 2012).

    However, there are still so many questions unanswered, and still so many challenges to diagnose, treat, and repair the damaged brain. To address these challenges, it is very important to advance the knowledge on mechanisms of injury and recovery, and to develop better diagnostic tools and more effective treatments. Thus in this special issue, four laboratories come together to summarize the current progress on neuroimaging, neuroprotection, and potential neurorepair with stem cells following TBI.

    Neuroimaging

    Different imaging strategies are widely used in the clinic to assess TBI (McAllister et al., 2001; Belanger et al., 2007; Le and Gean, 2009; Kirov et al., 2013). In general, the structural imaging techniques play a role in acute diagnosis and management, while the functional imaging techniques show promise for clari fi cation of pathophysiology, symptom genesis, and mechanisms of recovery (McAllister et al., 2001). Dr. Kuo and Dr. Iraji summarize the most recent evidence of brain plasticity after TBI in human patients from the perspective of advanced magnetic resonance imaging.

    Evidence also demonstrates that, even if patients have damaged certain functional structures or networks, e.g., motor control and somatosensory networks, many of them still could pick up these functionalities during their recovery, indicating the existence of an internal neuroplasticity. Dr. Kuo and his colleagues review the most recent imaging evidence of brain plasticity in TBI patients, from synaptic, microstructural levels, to functional network levels of the brain, particularly focusing on advanced MRI.

    Neuroprotection

    TBI not only results in immediate brain tissue disruption (primary injury), but also causes secondary damage among the surviving cells via complex mechanisms triggered by the primary event occurring in the hours, days, and weeks after initial physical impact. Secondary injury includes ischemia/ reperfusion injury, in fl ammation, oxidative stress, and glutamate excitotoxicity, all of which contribute to the eventual tissue degeneration and functional loss.

    A prevalent hypothesis is that TBI increases extracellular levels of the excitatory neurotransmitters such as glutamate (Choi, 1985, 1987, 1988; Braughler and Hall, 1989; Miller et al., 1990; Choi, 1992; Juurlink and Paterson, 1998; Hall and Springer, 2004; Yi and Hazell, 2006). Glutamate, in turn, causes excessive stimulation of N-methyl-D-aspartic acid receptors (NMDA), thus mediating calcium over in fl ux and triggering rapid excitotoxic necrosis that results in traumatic damage to the central nervous system (CNS). For patients who have experienced TBI, no specific pharmacological therapy is available that would improve their outcomes. Therefore, recent research on TBI has been focused on developing a therapeutic approach to inhibit glutamate-mediated excitotoxicity with pharmacological glutamate antagonists or calcium blocking agents. However, glutamate is the major excitatory transmitter in the mammalian CNS. Its stimulation of NMDA receptors plays an essential role in excitatory synaptic transmission. Completely blocking NMDA receptors will cause signi fi cant side effects. For this reason, clinical trials have had limited success.

    Another hallmark of secondary injury is oxidative stress (Hall et al., 1999; Bains and Hall, 2012), which plays an important role in mediating functional loss after both TBI and SCI. Although there is strong evidence that oxidative stress plays a critical role in the pathogenesis after SCI, clinical trials of free radical scavenging have not produced any effective treatments to promote functional recovery after traumatic SCI. Dr. Shi and his colleagues found that Acrolein is the most reactive electrophile produced by lipid peroxidation, suggesting that Acrolein is a novel therapeutic target to reduce oxidative stress (Shi et al., 2011a, 2011b; Park et al., 2014). Dr Shi and his colleagues summarize the recent devel-opments in the understanding of the mechanisms of Acrolein in motor and sensory dysfunction in animal models of SCI.

    Neurorepair

    Recent research has identified neural stem/progenitor cells (NSCs) in the adult mammalian hippocampus that can support neurogenesis throughout life, as demonstrated in rodents and primates, including humans (Kuhn et al., 1996; Eriksson et al., 1998b; Eriksson et al., 1998a; Kornack and Rakic, 1999; Cameron and McKay, 2001; Leuner et al., 2007). Currently the consensus among researchers in the fi eld is that throughout adulthood, NSCs in the subgranular zone (SGZ) of the hippocampal dentate gyrus (HDG) continuously generate new neurons (Kempermann and Gage, 2000; Ming and Song, 2005) and develop into mature granular neurons (Ming and Song, 2005; Shapiro and Ribak, 2005; Zhao et al., 2006). The pool of NSCs is a potential resource for repairing the damaged hippocampus following TBI.

    Current studies further show that TBI promotes NSC proliferation in the adult hippocampus (Dash et al., 2001; Kernie et al., 2001; Braun et al., 2002; Chirumamilla et al., 2002; Rice et al., 2003; Yoshimura et al., 2003; Ramaswamy et al., 2005; Sun et al., 2005; Rola et al., 2006; Sun et al., 2007). This finding suggests that innate repair and/or plasticity mechanisms exist in the adult brain. There are distinct classes of NSCs in the adult HDG, including quiescent neural progenitors (QNPs), which carry stem cell properties, and their progeny, amplifying neural progenitors (ANPs) (Seri and Garcia-Verdugo, 2001; Seaberg and van der Kooy, 2002; Filippov et al., 2003; Mignone et al., 2004; Bull and Bartlett, 2005; Encinas et al., 2006; Encinas and Enikolopov, 2008; Encinas et al., 2008). Dr. Chen and his colleagues found that moderate TBI promotes proliferation of QNPs in the adult hippocampus (Gao et al., 2009).

    Although TBI promotes NSC proliferation, the effect of TBI on neurogenesis is still controversial. There are con fl icting reports about neurogenesis in the HDG. According to some studies neurogenesis decreases after TBI (Braun et al., 2002; Rola et al., 2006), whereas others have reported that it remains unchanged (Chirumamilla et al., 2002; Rice et al., 2003), or that it increases (Sun et al., 2005; Sun et al., 2007). Here, Dr. Sun summarizes the potential of endogenous neurogenesis for brain repair and regeneration in the hippocampus following traumatic brain injury.

    TBI causes signi fi cant cell death (Raghupathi et al., 1995; DeKosky et al., 1998; Hall et al., 2005; Farkas and Povlishock, 2007) and tissue lesion in the neocortex (Lighthall et al., 1989; Lyeth et al., 1990). However, it is generally agreed that no endogenous NSCs exist or neurogenesis proceeds in the adult neocortex of the mammalian brain, i.e., the neocortex is a non-neurogenic region (Rakic, 2006). Thus, Dr. Chen and his colleagues brie fl y review the current progress of stem cells, which may potentially be used to generate new neurons in the cortex for brain repair following TBI.

    Summary and future research

    Little can be done to reverse the initial brain damage and spinal cord injury caused by trauma. Thus, it is important to study the pathological basis of neurological disorders, understand neurodegeneration and plasticity of the CNS, and develop novel neuroprotection and repair strategies to improve anatomical reorganization and functional recovery following TBI and SCI.

    Jinhui Chen1, Riyi Shi2,3

    1 Department of Neurological Surgery, Stark Neuroscience

    Research Institute, Department of Anatomy, Indiana University School of Medicine, Indianapolis, IN, USA

    2 Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA

    3 Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA

    Bains M, Hall ED (2012) Antioxidant therapies in traumatic brain and spinal cord injury. Biochim Biophys Acta 1822:675-684.

    Belanger HG, Vanderploeg RD, Curtiss G, Warden DL (2007) Recent neuroimaging techniques in mild traumatic brain injury. J Neuropsychiatry Clin Neurosci 19:5-20.

    Braughler JM, Hall ED (1989) Central nervous system trauma and stroke. I. Biochemical considerations for oxygen radical formation and lipid peroxidation. Free Radic Biol Med 6:289-301.

    Braun H, Schafer K, Hollt V (2002) BetaIII tubulin-expressing neurons reveal enhanced neurogenesis in hippocampal and cortical structures after a contusion trauma in rats. J Neurotrauma 19:975-983.

    Buki A, Povlishock JT (2006) All roads lead to disconnection?--Traumatic axonal injury revisited. Acta Neurochir (Wien) 148:181-193; discussion 193-184.

    Bull ND, Bartlett PF (2005) The adult mouse hippocampal progenitor is neurogenic but not a stem cell. J Neurosci 25:10815-10821.

    Cameron HA, McKay RD (2001) Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol 435: 406-417.

    Chirumamilla S, Sun D, Bullock MR, Colello RJ (2002) Traumatic brain injury induced cell proliferation in the adult mammalian central nervous system. J Neurotrauma 19:693-703.

    Choi DW (1985) Glutamate neurotoxicity in cortical cell culture is calcium dependent. Neurosci Lett 58:293-297.

    Choi DW (1987) Ionic dependence of glutamate neurotoxicity. J Neurosci 7:369-379.

    Choi DW (1988) Glutamate neurotoxicity and diseases of the nervous system. [Review]. Neuron 1:623-634.

    Choi DW (1992) Excitotoxic cell death. J Neurobiol 23:1261-1276.

    Coronado VG, McGuire LC, Sarmiento K, Bell J, Lionbarger MR, Jones CD, Geller AI, Khoury N, Xu L (2012) Trends in traumatic brain injury in the U.S. and the public health response: 1995-2009. J Safety Res 43:299-307.

    Dash PK, Mach SA, Moore AN (2001) Enhanced neurogenesis in the rodent hippocampus following traumatic brain injury. J Neurosci Res 63:313-319.

    DeKosky ST, Kochanek PM, Clark RS, Ciallella JR, Dixon CE (1998) Secondary injury after head trauma: subacute and long-term mechanisms. Semin Clin Neuropsychiatry 3:176-185.

    Encinas JM, Enikolopov G (2008) Identifying and quantitating neural stem and progenitor cells in the adult brain. Methods Cell Biol 85: 243-272.

    Encinas JM, Vaahtokari A, Enikolopov G (2006) Fluoxetine targets early progenitor cells in the adult brain. Proc Natl Acad Sci U S A 103: 8233-8238.

    Encinas JM, Vazquez ME, Switzer RC, Chamberland DW, Nick H, Levine HG, Scarpa PJ, Enikolopov G, Steindler DA (2008) Quiescent adult neural stem cells are exceptionally sensitive to cosmic radiation. Exp Neurol 210:274-279.

    Eriksson PS, Per fi lieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998a) Neurogenesis in the adult human hippocampus. Nat Med 4:1313-1317.

    Eriksson PS, Per fi lieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998b) Neurogenesis in the adult human hippocampus. Nat Med 4:1313-1317.

    Farkas O, Povlishock JT (2007) Cellular and subcellular change evoked by diffuse traumatic brain injury: a complex web of change extending far beyond focal damage. Prog Brain Res 161:43-59.

    Filippov V, Kronenberg G, Pivneva T, Reuter K, Steiner B, Wang LP, Yamaguchi M, Kettenmann H, Kempermann G (2003) Subpopulation of nestin-expressing progenitor cells in the adult murine hippocampus shows electrophysiological and morphological characteristics of astrocytes. Mol Cell Neurosci 23:373-382.

    Gao X, Enikolopov G, Chen J (2009) Moderate traumatic brain injury promotes proliferation of quiescent neural progenitors in the adult hippocampus. Exp Neurol 219:516-523.

    Greer JE, Hanell A, McGinn MJ, Povlishock JT (2013) Mild traumatic brain injury in the mouse induces axotomy primarily within the axon initial segment. Acta Neuropathol 126:59-74.

    Hall ED, Springer JE (2004) Neuroprotection and acute spinal cord injury: a reappraisal. NeuroRx 1:80-100.

    Hall ED, Kupina NC, Althaus JS (1999) Peroxynitrite scavengers for the acute treatment of traumatic brain injury. Ann N Y Acad Sci 890: 462-468.

    Hall ED, Bryant YD, Cho W, Sullivan PG (2008) Evolution of post-traumatic neurodegeneration after controlled cortical impact traumatic brain injury in mice and rats as assessed by the de Olmos silver and fl uorojade staining methods. J Neurotrauma 25:235-247.

    Hall ED, Sullivan PG, Gibson TR, Pavel KM, Thompson BM, Scheff SW (2005) Spatial and temporal characteristics of neurodegeneration after controlled cortical impact in mice: more than a focal brain injury. J Neurotrauma 22:252-265.

    Hamm RJ, Dixon CE, Gbadebo DM, Singha AK, Jenkins LW, Lyeth BG, Hayes RL (1992) Cognitive de fi cits following traumatic brain injury produced by controlled cortical impact. J Neurotrauma 9:11-20.

    物聯(lián)網(wǎng)的技術(shù)架構(gòu)分為3層:感知層、網(wǎng)絡(luò)層和應(yīng)用層,如圖1所示。其中,感知層實現(xiàn)物聯(lián)網(wǎng)全面智能化感知,網(wǎng)絡(luò)層將實現(xiàn)接入信息管理和由計算機(jī)網(wǎng)絡(luò)及通信網(wǎng)絡(luò)構(gòu)成的承載網(wǎng)絡(luò),應(yīng)用層實現(xiàn)應(yīng)用支撐服務(wù)和用戶應(yīng)用服務(wù)。

    Johnson VE, Stewart W, Smith DH (2013) Axonal pathology in traumatic brain injury. Exp Neurol 246:35-43.

    Juurlink BH, Paterson PG (1998) Review of oxidative stress in brain and spinal cord injury: suggestions for pharmacological and nutritional management strategies. J Spinal Cord Med 21:309-334.

    Kempermann G, Gage FH (2000) Neurogenesis in the adult hippocampus. Novartis Found Symp 231:220-235; discussion 235-241, 302-226.

    Kernie SG, Erwin TM, Parada LF (2001) Brain remodeling due to neuronal and astrocytic proliferation after controlled cortical injury in mice. J Neurosci Res 66:317-326.

    Kirov, II, Tal A, Babb JS, Reaume J, Bushnik T, Ashman TA, Flanagan S, Grossman RI, Gonen O (2013) Proton MR spectroscopy correlates diffuse axonal abnormalities with post-concussive symptoms in mild traumatic brain injury. J Neurotrauma 30:1200-1204.

    Kornack DR, Rakic P (1999) Continuation of neurogenesis in the hippocampus of the adult macaque monkey. Proc Natl Acad Sci U S A 96:5768-5773.

    Kuhn HG, Dickinson-Anson H, Gage FH (1996) Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci 16:2027-2033.

    Le TH, Gean AD (2009) Neuroimaging of traumatic brain injury. Mt Sinai J Med 76:145-162.

    Lighthall JW, Dixon CE, Anderson TE (1989) Experimental models of brain injury. J Neurotrauma 6:83-97.

    Lundberg N, Troupp H, Lorin H (1965) Continuous recording of the ventricular-fluid pressure in patients with severe acute traumatic brain injury. A preliminary report. J Neurosurg 22:581-590.

    Lyeth BG, Jenkins LW, Hamm RJ, Dixon CE, Phillips LL, Clifton GL, Young HF, Hayes RL (1990) Prolonged memory impairment in the absence of hippocampal cell death following traumatic brain injury in the rat. Brain Res 526:249-258.

    McAllister TW, Sparling MB, Flashman LA, Saykin AJ (2001) Neuroimaging fi ndings in mild traumatic brain injury. J Clin Exp Neuropsychol 23:775-791.

    Mignone JL, Kukekov V, Chiang AS, Steindler D, Enikolopov G (2004) Neural stem and progenitor cells in nestin-GFP transgenic mice. J Comp Neurol 469:311-324.

    Miller LP, Lyeth BG, Jenkins LW, Oleniak L, Panchision D, Hamm RJ, Phillips LL, Dixon CE, Clifton GL, Hayes RL (1990) Excitatory amino acid receptor subtype binding following traumatic brain injury. Brain Res 526:103-107.

    Ming GL, Song H (2005) Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 28:223-250.

    Park J, Zheng L, Marquis A, Walls M, Duerstock B, Pond A, Vega-Alvarez S, Wang H, Ouyang Z, Shi R (2014) Neuroprotective role of hydralazine in rat spinal cord injury-attenuation of acrolein-mediated damage. J Neurochem 129:339-349.

    Raghupathi R, McIntosh TK, Smith DH (1995) Cellular responses to experimental brain injury. Brain Pathol 5:437-442.

    Rakic P (2006) Neuroscience. No more cortical neurons for you. Science 313:928-929.

    Ramaswamy S, Goings GE, Soderstrom KE, Szele FG, Kozlowski DA (2005) Cellular proliferation and migration following a controlled cortical impact in the mouse. Brain Res 1053:38-53.

    Rice AC, Khaldi A, Harvey HB, Salman NJ, White F, Fillmore H, Bullock MR (2003) Proliferation and neuronal differentiation of mitotically active cells following traumatic brain injury. Exp Neurol 183:406-417. Rola R, Mizumatsu S, Otsuka S, Morhardt DR, Noble-Haeusslein LJ, Fishman K, Potts MB, Fike JR (2006) Alterations in hippocampal neurogenesis following traumatic brain injury in mice. Exp Neurol 202:189-199.

    Scheff SW, Baldwin SA, Brown RW, Kraemer PJ (1997) Morris water maze deficits in rats following traumatic brain injury: lateral controlled cortical impact. J Neurotrauma 14:615-627.

    Seaberg RM, van der Kooy D (2002) Adult rodent neurogenic regions: the ventricular subependyma contains neural stem cells, but the dentate gyrus contains restricted progenitors. J Neurosci 22:1784-1793.

    Seri B, Garcia-Verdugo JM (2001) Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci 21:7153-7160.

    Shapiro LA, Ribak CE (2005) Integration of newly born dentate granule cells into adult brains: hypotheses based on normal and epileptic rodents. Brain Res Brain Res Rev 48:43-56.

    Shi R, Rickett T, Sun W (2011a) Acrolein-mediated injury in nervous system trauma and diseases. Mol Nutr Food Res 55:1320-1331.

    Shi Y, Sun W, McBride JJ, Cheng JX, Shi R (2011b) Acrolein induces myelin damage in mammalian spinal cord. J Neurochem 117:554-564.

    Sun D, McGinn MJ, Zhou Z, Harvey HB, Bullock MR, Colello RJ (2007) Anatomical integration of newly generated dentate granule neurons following traumatic brain injury in adult rats and its association to cognitive recovery. Exp Neurol 204:264-272.

    Sun D, Colello RJ, Daugherty WP, Kwon TH, McGinn MJ, Harvey HB, Bullock MR (2005) Cell proliferation and neuronal differentiation in the dentate gyrus in juvenile and adult rats following traumatic brain injury. J Neurotrauma 22:95-105.

    Yi JH, Hazell AS (2006) Excitotoxic mechanisms and the role of astrocytic glutamate transporters in traumatic brain injury. Neurochem Int 48:394-403.

    Yoshimura S, Teramoto T, Whalen MJ, Irizarry MC, Takagi Y, Qiu J, Harada J, Waeber C, Breake fi eld XO, Moskowitz MA (2003) FGF-2 regulates neurogenesis and degeneration in the dentate gyrus after traumatic brain injury in mice. J Clin Invest 112:1202-1210.

    Zaloshnja E, Miller T, Langlois JA, Selassie AW (2008) Prevalence of long-term disability from traumatic brain injury in the civilian population of the United States, 2005. J Head Trauma Rehabil 23:394-400.

    Zhao C, Teng EM, Summers RG, Jr., Ming GL, Gage FH (2006) Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J Neurosci 26:3-11.

    Jinhui Chen, M.D., Ph.D., Department of Neurological Surgery, Stark Neuroscience Research Institute,

    10.4103/1673-5374.135306 http://www.nrronline.org/

    Department of Anatomy, Indiana University School of Medicine, Indianapolis, IN 46202, USA, chen204@iupui.edu. Riyi Shi, M.D., Ph.D., Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA, riyi@purdue.edu.

    Accepted: 2014-06-05

    Chen J, Shi R. Current advances in neurotrauma research: diagnosis, neuroprotection, and neurorepair. Neural Regen Res. 2014;9(11):1093-1095.

    猜你喜歡
    應(yīng)用服務(wù)網(wǎng)絡(luò)層應(yīng)用層
    Noise-Tolerant ZNN-Based Data-Driven Iterative Learning Control for Discrete Nonaffine Nonlinear MIMO Repetitive Systems
    全球衛(wèi)星互聯(lián)網(wǎng)應(yīng)用服務(wù)及我國的發(fā)展策略
    國家不動產(chǎn)統(tǒng)一登記信息平臺構(gòu)建與應(yīng)用服務(wù)
    基于分級保護(hù)的OA系統(tǒng)應(yīng)用層訪問控制研究
    良好的信息系統(tǒng)體系結(jié)構(gòu)模式對網(wǎng)絡(luò)安全監(jiān)察與維護(hù)技術(shù)的方法的探討
    基于WPA的物聯(lián)網(wǎng)網(wǎng)絡(luò)層安全的研究
    新一代雙向互動電力線通信技術(shù)的應(yīng)用層協(xié)議研究
    物聯(lián)網(wǎng)技術(shù)在信息機(jī)房制冷系統(tǒng)中的應(yīng)用
    全國征集衛(wèi)星應(yīng)用服務(wù)解決方案
    太空探索(2015年5期)2015-07-12 12:52:36
    應(yīng)用服務(wù)型人才培養(yǎng)體系下的嵌入式操作系統(tǒng)教學(xué)改革探索
    av天堂久久9| 少妇猛男粗大的猛烈进出视频| 免费不卡的大黄色大毛片视频在线观看| 欧美日韩视频精品一区| 亚洲天堂av无毛| 日本午夜av视频| av.在线天堂| 久久久久久久久久久免费av| 国产熟女欧美一区二区| 国产成人精品无人区| 免费观看在线日韩| 午夜福利网站1000一区二区三区| 久久久亚洲精品成人影院| 男女啪啪激烈高潮av片| 欧美精品一区二区大全| 亚洲第一区二区三区不卡| 日韩一本色道免费dvd| av.在线天堂| 狠狠婷婷综合久久久久久88av| 亚洲av日韩在线播放| 亚洲欧美精品自产自拍| 天堂中文最新版在线下载| 中文欧美无线码| www.熟女人妻精品国产 | 尾随美女入室| 制服诱惑二区| 最近中文字幕高清免费大全6| 国产乱来视频区| 亚洲精华国产精华液的使用体验| 日韩av不卡免费在线播放| 大码成人一级视频| 99久国产av精品国产电影| 涩涩av久久男人的天堂| 国产成人精品久久久久久| 成人国产av品久久久| 亚洲综合色惰| 又黄又粗又硬又大视频| 亚洲国产看品久久| 国产精品 国内视频| 亚洲av福利一区| 高清欧美精品videossex| 男人舔女人的私密视频| 51国产日韩欧美| 最后的刺客免费高清国语| 9191精品国产免费久久| 欧美日韩av久久| 久久久久久久大尺度免费视频| 内地一区二区视频在线| 亚洲国产看品久久| 欧美日本中文国产一区发布| 插逼视频在线观看| a级毛片在线看网站| 五月伊人婷婷丁香| 国产亚洲欧美精品永久| 久久久精品94久久精品| 制服人妻中文乱码| 亚洲高清免费不卡视频| 曰老女人黄片| 女的被弄到高潮叫床怎么办| 乱码一卡2卡4卡精品| 国产午夜精品一二区理论片| 免费人成在线观看视频色| 欧美人与善性xxx| 性高湖久久久久久久久免费观看| 亚洲欧美精品自产自拍| 亚洲熟女精品中文字幕| 一本—道久久a久久精品蜜桃钙片| 免费av中文字幕在线| 亚洲色图综合在线观看| 国语对白做爰xxxⅹ性视频网站| 97人妻天天添夜夜摸| 18禁动态无遮挡网站| 亚洲熟女精品中文字幕| 少妇被粗大猛烈的视频| av又黄又爽大尺度在线免费看| 亚洲国产精品一区三区| 美女内射精品一级片tv| 久久久久精品性色| 女人被躁到高潮嗷嗷叫费观| 亚洲欧美色中文字幕在线| 欧美老熟妇乱子伦牲交| 女性生殖器流出的白浆| 久久久亚洲精品成人影院| 草草在线视频免费看| 国产亚洲午夜精品一区二区久久| 国产精品免费大片| 黄色怎么调成土黄色| 成人无遮挡网站| 少妇熟女欧美另类| 欧美 日韩 精品 国产| 涩涩av久久男人的天堂| 18禁国产床啪视频网站| 在线天堂最新版资源| 一区二区三区精品91| 99热网站在线观看| 91久久精品国产一区二区三区| 美女福利国产在线| 久久人人爽人人片av| 久久久久久人妻| 久久久精品免费免费高清| 少妇高潮的动态图| 成人毛片60女人毛片免费| 视频区图区小说| 狂野欧美激情性xxxx在线观看| 大片免费播放器 马上看| 少妇人妻精品综合一区二区| 亚洲图色成人| 国产精品人妻久久久久久| 一级毛片黄色毛片免费观看视频| 黄片无遮挡物在线观看| 精品久久蜜臀av无| 亚洲av电影在线观看一区二区三区| 亚洲国产最新在线播放| 丰满饥渴人妻一区二区三| 天天影视国产精品| 国产一区二区激情短视频 | 成年av动漫网址| 九九爱精品视频在线观看| 国产淫语在线视频| 国产免费现黄频在线看| 这个男人来自地球电影免费观看 | 免费看不卡的av| 国产一区二区三区综合在线观看 | 美国免费a级毛片| 久久99热6这里只有精品| 国产又爽黄色视频| 欧美日韩综合久久久久久| 日本免费在线观看一区| 中文字幕人妻丝袜制服| av播播在线观看一区| 精品午夜福利在线看| 国产精品久久久久久av不卡| 一级黄片播放器| 高清在线视频一区二区三区| 色5月婷婷丁香| 满18在线观看网站| 日韩不卡一区二区三区视频在线| 亚洲美女视频黄频| 99热网站在线观看| 2018国产大陆天天弄谢| 黄片播放在线免费| 99久久精品国产国产毛片| 欧美成人精品欧美一级黄| 80岁老熟妇乱子伦牲交| 日本黄大片高清| 最新中文字幕久久久久| 欧美少妇被猛烈插入视频| 亚洲精品国产av成人精品| 久热久热在线精品观看| 免费看不卡的av| 成人毛片60女人毛片免费| 亚洲av.av天堂| 国产精品久久久久久av不卡| 欧美3d第一页| 久久精品aⅴ一区二区三区四区 | 日韩精品免费视频一区二区三区 | 有码 亚洲区| 最近中文字幕高清免费大全6| 精品国产国语对白av| 中文字幕亚洲精品专区| 免费看不卡的av| 一级片免费观看大全| 免费不卡的大黄色大毛片视频在线观看| 毛片一级片免费看久久久久| 天堂俺去俺来也www色官网| 久热这里只有精品99| 午夜福利在线观看免费完整高清在| 99热国产这里只有精品6| 久久久久人妻精品一区果冻| 亚洲国产精品成人久久小说| 日本91视频免费播放| 欧美人与善性xxx| 22中文网久久字幕| 色婷婷av一区二区三区视频| 一区二区三区四区激情视频| a级毛色黄片| 久久精品aⅴ一区二区三区四区 | 日韩,欧美,国产一区二区三区| 蜜臀久久99精品久久宅男| av.在线天堂| av福利片在线| 亚洲情色 制服丝袜| 欧美xxxx性猛交bbbb| 巨乳人妻的诱惑在线观看| 欧美日韩综合久久久久久| 精品一区二区三区四区五区乱码 | 中文字幕av电影在线播放| 狂野欧美激情性bbbbbb| 日本91视频免费播放| 国产高清不卡午夜福利| 26uuu在线亚洲综合色| 亚洲色图综合在线观看| 亚洲国产欧美日韩在线播放| 99国产精品免费福利视频| 永久网站在线| 女人精品久久久久毛片| av国产久精品久网站免费入址| 18禁动态无遮挡网站| 欧美日本中文国产一区发布| 波多野结衣一区麻豆| 激情五月婷婷亚洲| 狂野欧美激情性bbbbbb| 两个人免费观看高清视频| 制服丝袜香蕉在线| 18禁裸乳无遮挡动漫免费视频| videossex国产| av线在线观看网站| 日韩熟女老妇一区二区性免费视频| 国产欧美日韩综合在线一区二区| 黄色怎么调成土黄色| 亚洲精品456在线播放app| 国产成人一区二区在线| 一区二区三区精品91| 中文字幕最新亚洲高清| 少妇人妻精品综合一区二区| 久热这里只有精品99| 男女啪啪激烈高潮av片| 成人影院久久| 亚洲国产色片| 亚洲三级黄色毛片| 成年美女黄网站色视频大全免费| 色婷婷av一区二区三区视频| 咕卡用的链子| 极品少妇高潮喷水抽搐| 香蕉丝袜av| 精品一区二区免费观看| 日日爽夜夜爽网站| 纯流量卡能插随身wifi吗| 在线天堂中文资源库| 少妇被粗大猛烈的视频| 欧美精品av麻豆av| 少妇 在线观看| 成年av动漫网址| 另类亚洲欧美激情| 亚洲av日韩在线播放| 免费久久久久久久精品成人欧美视频 | 婷婷色综合大香蕉| 黄色怎么调成土黄色| 婷婷色av中文字幕| 欧美激情 高清一区二区三区| 亚洲伊人色综图| 天天影视国产精品| 免费女性裸体啪啪无遮挡网站| 91aial.com中文字幕在线观看| 黑人欧美特级aaaaaa片| 久久精品夜色国产| 午夜免费观看性视频| 欧美xxⅹ黑人| 一本—道久久a久久精品蜜桃钙片| 精品卡一卡二卡四卡免费| 久热久热在线精品观看| 亚洲,欧美,日韩| 女性生殖器流出的白浆| 中文欧美无线码| 亚洲欧美成人综合另类久久久| 日韩中字成人| 国产精品女同一区二区软件| 国产免费一区二区三区四区乱码| 中文字幕免费在线视频6| 免费大片黄手机在线观看| 免费人妻精品一区二区三区视频| 亚洲av成人精品一二三区| 69精品国产乱码久久久| 午夜免费鲁丝| 飞空精品影院首页| 国产精品.久久久| 少妇人妻久久综合中文| 美国免费a级毛片| 精品视频人人做人人爽| av.在线天堂| 又粗又硬又长又爽又黄的视频| 搡老乐熟女国产| 在线 av 中文字幕| 午夜福利视频在线观看免费| 90打野战视频偷拍视频| 婷婷色综合大香蕉| av国产久精品久网站免费入址| 国产高清三级在线| 天天躁夜夜躁狠狠久久av| 欧美精品av麻豆av| 晚上一个人看的免费电影| 伦理电影大哥的女人| 亚洲欧洲国产日韩| 丰满少妇做爰视频| 免费少妇av软件| 国产黄色免费在线视频| av国产精品久久久久影院| 国产欧美日韩一区二区三区在线| 色94色欧美一区二区| 一级毛片 在线播放| 亚洲国产色片| 国产成人一区二区在线| 久久精品久久久久久噜噜老黄| 精品久久久精品久久久| 自线自在国产av| 91精品三级在线观看| 草草在线视频免费看| 欧美日韩av久久| 91成人精品电影| 亚洲精品久久久久久婷婷小说| 中文字幕最新亚洲高清| 欧美精品高潮呻吟av久久| 亚洲国产日韩一区二区| 一级片'在线观看视频| 亚洲人与动物交配视频| 97超碰精品成人国产| 亚洲一区二区三区欧美精品| 黑人欧美特级aaaaaa片| 丝瓜视频免费看黄片| 亚洲av日韩在线播放| 国产日韩一区二区三区精品不卡| 纯流量卡能插随身wifi吗| 欧美日韩一区二区视频在线观看视频在线| 一级a做视频免费观看| 999精品在线视频| 99视频精品全部免费 在线| 午夜激情久久久久久久| 建设人人有责人人尽责人人享有的| 在线天堂中文资源库| 桃花免费在线播放| 狂野欧美激情性bbbbbb| 免费大片黄手机在线观看| 久久久久视频综合| 婷婷色综合www| 免费看不卡的av| 国产国语露脸激情在线看| 热99国产精品久久久久久7| 欧美精品高潮呻吟av久久| 满18在线观看网站| www.色视频.com| 中文字幕av电影在线播放| 青春草国产在线视频| 十八禁网站网址无遮挡| 蜜臀久久99精品久久宅男| 免费大片18禁| 老熟女久久久| 亚洲av电影在线进入| 五月玫瑰六月丁香| 人妻系列 视频| 久久久国产精品麻豆| 草草在线视频免费看| 亚洲精品国产av成人精品| 亚洲人成网站在线观看播放| 婷婷色综合大香蕉| 中文字幕av电影在线播放| av在线app专区| 国产永久视频网站| 在线观看美女被高潮喷水网站| 婷婷成人精品国产| 亚洲中文av在线| 五月玫瑰六月丁香| 9热在线视频观看99| 亚洲性久久影院| 国产 一区精品| 国产男女内射视频| 久久精品久久久久久久性| 亚洲中文av在线| 免费播放大片免费观看视频在线观看| 国产欧美另类精品又又久久亚洲欧美| 国产黄色视频一区二区在线观看| 亚洲人成网站在线观看播放| 国产 一区精品| 少妇猛男粗大的猛烈进出视频| 涩涩av久久男人的天堂| 日韩一本色道免费dvd| 好男人视频免费观看在线| 少妇被粗大的猛进出69影院 | 亚洲精品久久久久久婷婷小说| 欧美少妇被猛烈插入视频| 国产老妇伦熟女老妇高清| 亚洲人成网站在线观看播放| 街头女战士在线观看网站| 成人无遮挡网站| 久热这里只有精品99| 精品一区二区三区四区五区乱码 | 免费观看无遮挡的男女| 99热全是精品| 十八禁网站网址无遮挡| 免费在线观看黄色视频的| 亚洲色图综合在线观看| 香蕉精品网在线| 五月开心婷婷网| 日韩制服骚丝袜av| 美女国产高潮福利片在线看| 巨乳人妻的诱惑在线观看| 九九在线视频观看精品| 九色成人免费人妻av| 妹子高潮喷水视频| 久久人妻熟女aⅴ| 免费观看无遮挡的男女| 成年动漫av网址| 国产欧美日韩综合在线一区二区| 免费黄色在线免费观看| 美女脱内裤让男人舔精品视频| 国产精品一区二区在线不卡| 日日啪夜夜爽| 一区二区三区精品91| 国产成人精品婷婷| 欧美xxxx性猛交bbbb| 尾随美女入室| 国产麻豆69| 曰老女人黄片| 亚洲成av片中文字幕在线观看 | 久久久精品免费免费高清| 欧美精品人与动牲交sv欧美| 有码 亚洲区| 九九爱精品视频在线观看| 国产精品无大码| 最后的刺客免费高清国语| 亚洲,欧美,日韩| 亚洲内射少妇av| 久久精品国产亚洲av天美| 只有这里有精品99| 国产片特级美女逼逼视频| 色94色欧美一区二区| 成人漫画全彩无遮挡| 精品一区二区三卡| 日韩制服骚丝袜av| 婷婷成人精品国产| 日韩一本色道免费dvd| 国语对白做爰xxxⅹ性视频网站| 宅男免费午夜| 大片电影免费在线观看免费| 18禁观看日本| 久久99蜜桃精品久久| 五月天丁香电影| 老司机影院毛片| 日本av手机在线免费观看| 欧美97在线视频| 久久这里只有精品19| 丝袜在线中文字幕| 男女啪啪激烈高潮av片| 欧美 亚洲 国产 日韩一| 国产白丝娇喘喷水9色精品| 中文字幕最新亚洲高清| 青春草视频在线免费观看| av片东京热男人的天堂| 国产精品久久久久久精品古装| 男女免费视频国产| 嫩草影院入口| 日本黄色日本黄色录像| 中文字幕最新亚洲高清| 精品一区二区三卡| 国产日韩一区二区三区精品不卡| 国产亚洲av片在线观看秒播厂| 免费人妻精品一区二区三区视频| 日本欧美国产在线视频| 国产白丝娇喘喷水9色精品| 国国产精品蜜臀av免费| 精品人妻一区二区三区麻豆| 制服诱惑二区| 亚洲欧美日韩另类电影网站| 免费女性裸体啪啪无遮挡网站| 免费观看无遮挡的男女| 成年动漫av网址| 亚洲国产av影院在线观看| 婷婷色av中文字幕| 汤姆久久久久久久影院中文字幕| 国产亚洲精品久久久com| 国产欧美亚洲国产| 美女xxoo啪啪120秒动态图| 亚洲丝袜综合中文字幕| 亚洲国产精品专区欧美| 亚洲国产成人一精品久久久| 成人手机av| 韩国av在线不卡| 男的添女的下面高潮视频| 国内精品宾馆在线| 亚洲经典国产精华液单| 欧美性感艳星| 亚洲,欧美精品.| 又粗又硬又长又爽又黄的视频| 亚洲精品一区蜜桃| 美女主播在线视频| 国产精品久久久久久精品古装| 交换朋友夫妻互换小说| 欧美性感艳星| 97超碰精品成人国产| 欧美另类一区| 午夜视频国产福利| 九色成人免费人妻av| 男女无遮挡免费网站观看| 亚洲av福利一区| 巨乳人妻的诱惑在线观看| 一本—道久久a久久精品蜜桃钙片| 高清在线视频一区二区三区| 国产麻豆69| 久久人人97超碰香蕉20202| av免费观看日本| 欧美亚洲日本最大视频资源| 2022亚洲国产成人精品| 九色亚洲精品在线播放| 久久99一区二区三区| 亚洲国产最新在线播放| 免费高清在线观看日韩| 嫩草影院入口| 久久久国产精品麻豆| 国产成人a∨麻豆精品| 欧美激情极品国产一区二区三区 | 91精品三级在线观看| 国产亚洲欧美精品永久| 巨乳人妻的诱惑在线观看| 18禁裸乳无遮挡动漫免费视频| 国产在线一区二区三区精| 99热国产这里只有精品6| 国产精品蜜桃在线观看| 2022亚洲国产成人精品| 在线免费观看不下载黄p国产| 高清黄色对白视频在线免费看| 99久国产av精品国产电影| 国产成人精品久久久久久| 国产精品熟女久久久久浪| 寂寞人妻少妇视频99o| 在现免费观看毛片| 最近最新中文字幕大全免费视频 | 国产爽快片一区二区三区| 欧美精品一区二区免费开放| 国产精品国产三级国产专区5o| 亚洲精品久久久久久婷婷小说| 国产亚洲一区二区精品| 91国产中文字幕| 久久99热6这里只有精品| 日本与韩国留学比较| 韩国高清视频一区二区三区| 亚洲精品,欧美精品| 国产成人欧美| 26uuu在线亚洲综合色| 99久久人妻综合| 精品久久蜜臀av无| 久久这里有精品视频免费| √禁漫天堂资源中文www| 宅男免费午夜| 最近中文字幕高清免费大全6| 国产精品.久久久| 午夜老司机福利剧场| 免费观看av网站的网址| 亚洲精品日本国产第一区| 久久久久久久久久久久大奶| 在线免费观看不下载黄p国产| 成人手机av| 女人被躁到高潮嗷嗷叫费观| 国产欧美日韩综合在线一区二区| 九九爱精品视频在线观看| 美女国产视频在线观看| 欧美精品高潮呻吟av久久| 久久人人爽人人爽人人片va| 成年动漫av网址| 精品一区在线观看国产| 欧美老熟妇乱子伦牲交| 亚洲av电影在线观看一区二区三区| 高清视频免费观看一区二区| 黄色怎么调成土黄色| 五月开心婷婷网| 午夜91福利影院| 永久网站在线| 国产黄色视频一区二区在线观看| 国产黄频视频在线观看| 欧美3d第一页| 久久久久精品久久久久真实原创| 高清在线视频一区二区三区| 国产一区亚洲一区在线观看| 成年女人在线观看亚洲视频| 国产视频首页在线观看| 人妻一区二区av| 久久青草综合色| 欧美最新免费一区二区三区| 欧美国产精品va在线观看不卡| 男女免费视频国产| 久久久久国产精品人妻一区二区| freevideosex欧美| 热re99久久精品国产66热6| 日本午夜av视频| 亚洲国产精品国产精品| av又黄又爽大尺度在线免费看| 日韩欧美一区视频在线观看| 亚洲精品国产色婷婷电影| 欧美激情国产日韩精品一区| 一区二区三区四区激情视频| 免费av不卡在线播放| 一级毛片我不卡| 国产女主播在线喷水免费视频网站| 韩国av在线不卡| 五月伊人婷婷丁香| 久久精品国产鲁丝片午夜精品| 大码成人一级视频| 国产不卡av网站在线观看| 最近中文字幕高清免费大全6| 国产男女超爽视频在线观看| 五月天丁香电影| 一区二区三区精品91| 高清毛片免费看| 精品久久蜜臀av无| 18+在线观看网站| 亚洲精品av麻豆狂野| 精品国产一区二区三区久久久樱花| 精品一区二区三区视频在线| 国产黄频视频在线观看| 男人舔女人的私密视频| av免费在线看不卡| 亚洲丝袜综合中文字幕| 亚洲国产精品一区三区| 男女下面插进去视频免费观看 | 汤姆久久久久久久影院中文字幕| 久久久久久久亚洲中文字幕| 中文字幕av电影在线播放| 最新的欧美精品一区二区| 日本欧美视频一区| 毛片一级片免费看久久久久| av播播在线观看一区| 秋霞伦理黄片| 亚洲精品国产av成人精品| 欧美bdsm另类| 中国美白少妇内射xxxbb| 男人爽女人下面视频在线观看| 亚洲国产av新网站|