• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of surface charges on phonon properties and thermal conductivity in GaN nanofilms?

    2019-08-16 01:20:42ShuSenYang楊樹(shù)森YangHou侯陽(yáng)andLinLiZhu朱林利
    Chinese Physics B 2019年8期
    關(guān)鍵詞:楊樹(shù)

    Shu-Sen Yang(楊樹(shù)森), Yang Hou(侯陽(yáng)), and Lin-Li Zhu(朱林利),?

    1Department of Engineering Mechanics,and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province,Zhejiang University,Hangzhou 310027,China

    2School of Naval Architecture and Ocean Engineering,Jiangsu University of Science and Technology,Zhenjiang 212000,China

    Keywords: surface charges,GaN nanofilm,elastic model,phonon properties,thermal conductivity

    1. Introducti on

    Due to the novel properties and wide applications in electronic devices,nanostructured semiconductors have received a great deal of attention in the last decades.[1-4]As the phonon thermal conductivity is one of most important parameters of semiconductor nanostructures, it plays an essential role in investigating the semiconductor nanostructures used in electronic devices to understand the phonon and thermal properties of semiconductor nanostructure comprehensively.[1,5-7]For example, thermoelectric converters require as lower thermal conductivity as possible to improve the thermoelectric conversion efficiency,while nanoelectronic devices require as much higher thermal conductivity as possible for efficient heat dissipation.[8-12]Therefore,the phonon and thermal properties of semiconductor nanostructures have aroused the great interest in the precise design and application of electronic devices.

    So far, a lot of researches have focused on the spatiallyconfined phonon properties in semiconductor nanostructure such as the phonon dispersion relation, phonon group velocity and the phonon density of state, as well as the relationship between the phonon thermal conductivity and the phonon properties.[1,13-16]For example, Majumda[17]proposed that the heat transfer induced by lattice vibration or phonon transport in a dielectric film can be treated as a radiation heat transfer on a microscopic scale,and the phonon thermal transfer in the nanofilm satisfies the blackbody radiation law. Balandin et al.[1,13]proposed the phonon engineering and used the elastic model to characterize the phonon properties in semiconductor nanostructures for controlling the thermal and electric properties in these nanostructures.Besides the elastic continuous model and Boltzmann transport approach,[5,16,18-21]firstprinciples and molecular dynamics simulations have also been used to analyze the lattice thermal conductivity of semiconductor nanostructures.[22-26]

    The surface/interface effects can also play a significant role in investigating the phonon and thermal properties of semiconductor nanostructures, such as the surface/interface phonon scattering effects and surface/interface stress effects.[18,19,21,27-29]For example, Chen[18]used the Boltzmann transport equation to establish the phonon transport model for the superlattice films by considering different phonon interface scattering modes,and the thermal conductivity of the superlattice films was obtained by numerical calculation.Zhu et al.[19,21,28,29]used the elastic model and the Boltzmann transport approach to explore the influences of surface stress and surface phonon scattering on the phonon properties and phonon thermal conductivity in GaN nanofilms.

    The nanostructured components of semiconductor have been widely used in nanoelectronic devices.[3,4,30-33]Most of these nanodevices work in the environment of an elec-tric field,[7,34-38]resulting in the fact that the free charges can appear on the surface of nanostructure. These residual charges can change the surface stress due to the Hellman-Feynman force generated by surface charges, and such an additional surface stress is linearly related to surface charge density.[39-41]The charge-induced surface stress can modify the surface energy, leading to the change of elastic modulus of nanostructures,[42-46]which is related to the phonon properties in semiconductor nanostructure. In this work,we study the influences of surface charges on the phonon properties and thermal properties of GaN nanofilms.

    The rest of this paper is organized as follows. In Subsection 2.1, the elastic modulus of nanofilm with surface charges are expressed, and the elastic model is presented to describe the phonon properties of surface charged-nanofilms.The theoretical expression of the phonon thermal conductivity of nanofilm is given in Subsection 2.2. In Subsection 3.1 quantitatively analyzed is the effect of surface charge density on phonon properties of GaN nanofilms, such as phonon dispersion relation, phonon group velocity and phonon density of states. The contribution of surface charges to the phonon thermal conductivity of GaN nanofilm is further discussed in Subsection 3.2. Finally,some conclusions are drawn from the present study in Section 4.

    2. Theoretical description

    2.1. Elastic model for confined phonons of surface charged nanofilm

    When a nanostructure device actually works in an electric field, it is easy to generate surface charges for the nanostructures.The surface charge density will directly affect the equivalent elastic modulus of the nanostructure. This is because the surface stress varies with the change of the surface charge density,and the elastic properties of the nanostructure are sensitive to the surface stress or surface energy.[47]From the theoretical description of confined phonons by continuous elastic model,the change of elastic modulus will affect the phonon properties. Based on the continuum mechanics, the effective elastic modulus tensor of the surface charged-nanostructure can be expressed as[47]

    Here, Cijkland Cijklmnrepresent the second-order and thirdorder elastic constants of the material, respectively, D0is the thickness of the nanofilm as shown in Fig.1,Tijand Qijklrepresent the surface elastic tensors associated with the surface elastic properties,and Mijklrefers to the flexibility matrix. For the surface charged-nanofilm, the equivalent elastic constants can be expressed as follows:

    Here, the material parameters and the second-order natural elastic modulus constants of GaN are shown in Table 1,where KSandμSrepresent the surface elastic parameters associated with the non-zero term of the second-order elastic modulus of the surface, respectively. The parameter T11is related to the surface stress. When surface charges exist on the surface of nanostructures, surface stress changes with surface charge density linearly,[39-41]namely T11=ζq.Here,ζ is the chargesurface stress coefficient which is generally on the order of 1 V,and q is the surface charge density.

    Fig.1. Schematic drawing of GaN nanofilm with surface charges.

    Table 1. Elastic parameters of GaN used in calculations.

    Since the phonons are related to the vibration of atoms,the elastic model for vibration can be utilized to describe the spatially confined phonons approximately in semiconductor nanostructures.[48-52]Quantization of phonon energy in nanostructures can be achieved based on the elastic model. It has been proved that the elastic model can successfully describe the confined phonons in semiconductor nanostructures.[13,20,53-55]The vibration equation in the elastic model of nanofilm can be expressed as

    The boundary conditions are

    The displacement solution u of Eq.(3)can be given as

    where ω is the phonon frequency, q0is the wave vector, andis the amplitude of the displacement vector. Substituting Eq.(5)into Eq.(3),one can obtain

    where

    Then, three modes for the phonons in surface chargednanofilms can be obtained. For the shear (SH) mode, the eigenequation of vibration and the corresponding boundary conditions are

    For the dilatational (SA) mode and flexural (AS) mode, the eigen equations of vibration and the corresponding boundary conditions are

    2.2. Phonon thermal conductivity of surface chargednanofilm

    After deriving the phonon dispersion relations of surface charged nanofilm in the different modes,the phonon frequency can be numerically calculated by using the finite element method with phonon wave vector q0. Then,the phonon group velocity with a given phonon mode number n can also be achieved numerically

    where,ωnand q0respectively represent the phonon frequency and phonon wave vector for a given phonon mode number n. From the Callway model of a single average-polarized phonon,the average phonon group velocity ˉV associated with the phonon frequency can be derived and given as

    Here, the superscript indicates the corresponding phonon mode type, the subscript n represents a given phonon mode number, and m represents the total phonon branch number.The quasi-two-dimensional phonon density of states for a given phonon mode number can be calculated from the phonon dispersion relation and phonon group velocity existing in the nanofilm,and given as follows:

    Here, H is the thickness of the nanofilm. The total phonon density can be obtained by the superposition of three modes of phonons

    Based on these expressions for phonon dispersion relationship,the phonon average group velocity and the phonon density of state,the phonon thermal conductivity of the surface chargednanofilm can be expressed as[27,55]

    Here, h= ˉh/2π, ˉh is the Planck constant, x=?ωn(q0)/kBT.τ is the total relaxation time, given asin which several scattering mechanisms are involved,including Umklapp scattering rate τU, point-defect scattering rate τM,and acoustic phonon-electron scattering rate.[16,20,29]Since the main objective of this work is to study the influences of surface charges on the phonon and thermal properties in spatially confined nanofilm, it is assumed that the surface of nanofilm is smooth enough to ignore the boundary scattering mechanism in the phonon scattering process. In Eq. (14), κ0is the phonon thermal conductivity of bulk material, and G1is the proportional coefficient with respect to the bulk thermal conductivity of the material κ0.

    3. Simulation results and discussion

    3.1. Phonon properties of surface charged-GaN nanofilm

    As mentioned above,we use the finite difference method to calculate the phonon dispersion relationships of surface charged-GaN nanofilm under different modes. Here, the surface charge densities are taken as-10 C/m2,0,and 10 C/m2.The other parameters in scattering time are adopted from the literature.[48-51]For simplicity, the SH mode is taken for example to explore the influences of surface charges on the phonon properties and thermal properties of GaN nanofilms.Figure 2 shows the phonon dispersion relationship of nanofilm under different surface charge densities for the SH mode. It can be seen intuitively from the figure that when the phonon energy is the cutoff energy(q0=0),the surface charges have no contribution to the phonon energy. As the phonon wave vector increases,the influence of surface charge becomes more and more significant. It can also be found from Fig. 2 that the negative surface charge causes the slope of each curve to increase, while the positive surface charge makes the slope decrease. In other words, negative surface charges increase the phonon energy, while positive surface charges reduce the phonon energy.

    Fig.2. Variations of phonon energy with surface charge density for SH mode in GaN nanofilms with different surface charge densities.

    After the phonon dispersion relationship is determined,the phonon average group velocity can be calculated based on Eqs.(10)and(11). Figure 3 shows the phonon average group velocity of GaN nanofilm for SH mode as a function of phonon energy at different surface charge densities. When the phonon energy is small,the phonon average group velocity is roughly equivalent to the phonon group velocity.As the phonon energy increases, the phonon group velocity begins to oscillate continuously. Interestingly,the oscillation behavior of the phonon average group velocity has no change in the presence of surface charges. However, the surface charge has a significant effect on the phonon average group velocity of phonons. That is, the negative surface charges increase the velocity and the positive surface charges reduce the velocity.

    Fig. 3. Plots of phonon average group velocity versus phonon energy for SH mode in GaN nanofilms with different surface charge densities.

    Figure 4 displays the phonon density of states for SH mode varying with phonon energy for three different surface charge densities. It can be found that as the phonon energy increases, the phonon density of states also increases stepwise,and then begins to fall after reaching the peak value. In addition, it can also be found that the surface charge density can significantly change the phonon density of states. That is,the positive surface charges increase the density of states and the negative surface charges reduce the phonon density of state.

    Fig. 4. Variations of phonon density of states with phonon energy for SH mode in GaN nanofilms with different surface charge densities.

    3.2. Phonon thermal conductivity of surface charged nanofilm

    When the phonon dispersion relations and phonon group velocities are achieved, one can calculate the various scattering rates under different surface/interface stresses, including Umklapp scattering rate, point-defect scattering rate, and phonon-electron scattering rate, which are shown in Fig. 5.Obviously,the Umklaap scattering rate is dominant for the low phonon,which is significantly higher than the other two scattering rates. The point-defect scattering becomes dominant with the increase of frequency. One can also find that the surface charges can change the point-defect scattering rate and phonon-electron scattering rate, but the Umklaap scattering rate is almost independent of the surface charges.

    Fig. 5. Variations of scattering ratewith phonon frequency in GaN nanofilms with different surface charge densities.

    According to the expression of phonon thermal conductivity in Eq.(14),the effect of surface charges on the phonon thermal conductivity of GaN nanofilm can be investigated quantitatively through combing the phonon average group velocity, phonon density of state, and scattering rates obtained above. Firstly, the variations of phonon thermal conductivity of GaN nanofilm with temperature for three different surface charge densities are plotted in Fig.6. It can be seen from the figure that for each surface charge density,as temperature increases the phonon thermal conductivity is first enhanced and then reaches the maximum value. With further increasing the temperature,the thermal conductivity decreases. One can also find that the negative surface charges enhance the temperature dependence of phonon thermal conductivity while the positive surface charges weaken the sensitivity of temperature to the thermal conductivity. In addition,the influence of surface charges on the phonon thermal conductivity of GaN nanofilm turns weaker for the higher temperature.

    Fig.6. Plots of phonon thermal conductivity versus temperature for SH mode in GaN naonfilms with different surface charge densities.

    Figure 7 shows the variations of phonon thermal conductivity with the thickness of GaN nanofilm for three different surface charge densities. As can be seen from the figure,the negative charges increase the phonon thermal conductivity and the positive charges reduce the phonon thermal conductivity. It is interesting to notice that when the surface of the nanofilm presents negative charges with a density of 10 C/m2,the phonon thermal conductivity is first enhanced with increasing the thickness of nanofilm, and then begins to decrease slightly and eventually tends to be flat.It is because the surface charge-related elastic modulus of nanofilm is size-dependent,and the negative charges also weaken the size effect on elastic modulus.[43,44]For the smaller thickness of nanofilm, the surface charges weaken the size dependence of elastic modulus more significantly than that of thermal conductivity. In the case of positive surface charges, the phonon thermal conductivity of GaN nanofilm is improved gradually with increasing the thickness of nanofilm and then the curve tends to be flat.Such a size effect of phonon thermal conductivity of nanofilm comes from the quantum confinement effect of phonons in nanofilm. One can also note that the positive surface charges make the size effect of thermal conductivity more significant,while the negative surface charges weaken the size effect of conductivity.

    Fig. 7. Plots of phonon thermal conductivity versus thickness for SH mode in GaN nanoflims with different surface charge densities.

    Figure 8 shows the variations of phonon thermal conductivity with surface charge density for three different thickness values. It can be noted that when the surface charge density changes from a positive value to a negative value,the phonon thermal conductivity increases monotonically for each thickness value. It can be clearly found that the positive surface charges reduce the phonon thermal conductivity and the negative surface charges increase the phonon thermal conductivity.Meanwhile,when the surface of the nanofilm presents the negative charges with the density greater than 3 C/m2,the phonon thermal conductivity decreases slightly as the thickness of the nanofilm increases.When the surface charge density is greater than-3 C/m2,the phonon thermal conductivity increases with the increase of the thickness of the nano-film,which is consistent with the results obtained in Fig.6. It can be seen that the negative surface charges make much less contribution to the thermal conductivity than the positive surface charges.

    Fig.8. Variations of phonon thermal conductivity with surface charge density for SH mode in GaN nanofilms with different thickness values.

    4. Conclusions

    In this work,the effects of surface charges on the phonon and thermal properties have been investigated theoretically.The surface charges modify the elastic constants in nanostructures,leading to the change of phonon properties of semiconductor nanofilms. The elastic model is used to describe the phonon properties of surface charged-GaN nanofilms. Then,the phonon dispersion relation,the phonon average group velocity,and the phonon density of states for the surface charged-GaN nanofilms are simulated. Finally, the effects of surface charges on the phonon thermal conductivity of GaN nanofilms with different temperatures and film thickness values are analyzed. The numerical results demonstrate that when the surface charges can significantly modify the phonon properties and phonon thermal conductivity, these surface charges can also change the temperature and size dependence of the phonon thermal conductivity. This work will be helpful in adjusting and controlling the phonon properties and thermal conductivity in nanostructured components and nanodevices by changing the surface charges.

    猜你喜歡
    楊樹(shù)
    漫畫(huà)
    跟蹤導(dǎo)練(五)
    楊樹(shù)“四大一深”栽植新技術(shù)
    楊樹(shù)嫁接換代品種改良選擇及接穗采集處理
    口算本失蹤記
    楊樹(shù)山漫畫(huà)作品欣賞
    喜劇世界(2017年10期)2017-06-01 12:39:29
    楊樹(shù)山漫畫(huà)作品欣賞
    喜劇世界(2017年9期)2017-06-01 12:39:19
    霧霾來(lái)襲
    喜劇世界(2017年4期)2017-03-08 13:00:56
    高跟鞋
    特別文摘(2016年24期)2016-12-29 20:10:14
    Optimization of the carrier tracking loop for GPS high dynamic receivers
    在线观看免费视频日本深夜| 欧美大码av| 国产精品三级大全| 五月伊人婷婷丁香| 村上凉子中文字幕在线| 欧美日韩综合久久久久久 | 久久久精品大字幕| 亚洲不卡免费看| 一级黄片播放器| 99riav亚洲国产免费| 欧美黑人欧美精品刺激| 此物有八面人人有两片| 身体一侧抽搐| 国产午夜精品论理片| 午夜免费男女啪啪视频观看 | 高清毛片免费观看视频网站| 亚洲av第一区精品v没综合| 嫩草影院精品99| 亚洲av日韩精品久久久久久密| 一二三四社区在线视频社区8| 亚洲自拍偷在线| 999久久久精品免费观看国产| h日本视频在线播放| 日本熟妇午夜| 国产熟女xx| 丁香六月欧美| 麻豆一二三区av精品| 国产在线精品亚洲第一网站| 日本三级黄在线观看| 亚洲av不卡在线观看| 精品久久久久久成人av| 精品99又大又爽又粗少妇毛片 | 2021天堂中文幕一二区在线观| 国产精品久久久久久亚洲av鲁大| 亚洲精品在线美女| 亚洲中文字幕一区二区三区有码在线看| 中文亚洲av片在线观看爽| 网址你懂的国产日韩在线| av福利片在线观看| 亚洲av二区三区四区| 久久久精品大字幕| 一卡2卡三卡四卡精品乱码亚洲| 色视频www国产| 中出人妻视频一区二区| 中出人妻视频一区二区| 欧美成人免费av一区二区三区| 免费看日本二区| 老司机福利观看| 成年女人毛片免费观看观看9| 免费看日本二区| 校园春色视频在线观看| 最新在线观看一区二区三区| 特大巨黑吊av在线直播| 成人18禁在线播放| 尤物成人国产欧美一区二区三区| 亚洲人成网站高清观看| 最新美女视频免费是黄的| 亚洲av电影不卡..在线观看| 99久久综合精品五月天人人| 丰满人妻熟妇乱又伦精品不卡| 51国产日韩欧美| av片东京热男人的天堂| 成年免费大片在线观看| 又爽又黄无遮挡网站| 色av中文字幕| 欧美日韩亚洲国产一区二区在线观看| 老司机福利观看| 天堂影院成人在线观看| 特大巨黑吊av在线直播| 一个人免费在线观看的高清视频| 琪琪午夜伦伦电影理论片6080| 麻豆国产97在线/欧美| 90打野战视频偷拍视频| 美女高潮喷水抽搐中文字幕| 国产真人三级小视频在线观看| 亚洲美女视频黄频| 99久久精品热视频| 久久这里只有精品中国| 国产av在哪里看| 免费在线观看影片大全网站| 亚洲欧美日韩东京热| 久久精品国产综合久久久| 日日夜夜操网爽| 国内精品美女久久久久久| 欧美日韩瑟瑟在线播放| 欧美日本视频| 国产精品国产高清国产av| 久久香蕉精品热| 一个人看的www免费观看视频| 精品不卡国产一区二区三区| 欧美激情久久久久久爽电影| 日本熟妇午夜| 欧美日韩综合久久久久久 | 国产免费一级a男人的天堂| 色哟哟哟哟哟哟| 伊人久久大香线蕉亚洲五| 嫩草影视91久久| 女人高潮潮喷娇喘18禁视频| 午夜福利18| 精品久久久久久,| 99久久精品一区二区三区| 欧美国产日韩亚洲一区| 内地一区二区视频在线| 久久久久国内视频| 国产三级在线视频| 手机成人av网站| 国产精品亚洲av一区麻豆| 国产真实乱freesex| 一级作爱视频免费观看| 给我免费播放毛片高清在线观看| 午夜福利视频1000在线观看| 亚洲成人久久爱视频| 91麻豆av在线| 国产成人a区在线观看| 欧美最黄视频在线播放免费| 久久久久免费精品人妻一区二区| 99久久九九国产精品国产免费| 成年女人看的毛片在线观看| 午夜福利在线在线| 久久这里只有精品中国| 欧美性猛交黑人性爽| 91在线精品国自产拍蜜月 | 午夜免费男女啪啪视频观看 | 麻豆成人av在线观看| ponron亚洲| 日韩欧美精品v在线| 亚洲激情在线av| 国产三级黄色录像| 成人午夜高清在线视频| 国产精品 国内视频| 久久久久国内视频| 熟女人妻精品中文字幕| 国产97色在线日韩免费| 日本黄色片子视频| xxx96com| 欧美高清成人免费视频www| 成人高潮视频无遮挡免费网站| 午夜两性在线视频| 国产av在哪里看| 午夜免费观看网址| 嫩草影院精品99| 18禁裸乳无遮挡免费网站照片| 桃色一区二区三区在线观看| 亚洲男人的天堂狠狠| 日本一本二区三区精品| 中文字幕久久专区| 好看av亚洲va欧美ⅴa在| 午夜两性在线视频| 久久精品国产自在天天线| 国产高清视频在线观看网站| 综合色av麻豆| 亚洲精品久久国产高清桃花| 精品熟女少妇八av免费久了| 蜜桃亚洲精品一区二区三区| 真实男女啪啪啪动态图| 国产熟女xx| 成年版毛片免费区| 午夜福利在线观看免费完整高清在 | 深夜精品福利| 免费看美女性在线毛片视频| 美女cb高潮喷水在线观看| 久久久国产成人精品二区| 蜜桃久久精品国产亚洲av| av专区在线播放| 搡老熟女国产l中国老女人| 在线观看66精品国产| 老熟妇仑乱视频hdxx| 精品人妻1区二区| 一进一出好大好爽视频| 一个人免费在线观看的高清视频| 俺也久久电影网| 蜜桃亚洲精品一区二区三区| 嫁个100分男人电影在线观看| 国产乱人视频| 国产精品综合久久久久久久免费| 亚洲美女黄片视频| 少妇丰满av| 国产亚洲欧美在线一区二区| 久久6这里有精品| 欧美乱妇无乱码| 成年免费大片在线观看| 亚洲人成网站高清观看| 亚洲成av人片在线播放无| 亚洲国产高清在线一区二区三| 午夜福利18| 欧美bdsm另类| 国产亚洲欧美在线一区二区| 性色av乱码一区二区三区2| 男人的好看免费观看在线视频| 日韩有码中文字幕| 亚洲精华国产精华精| 男人的好看免费观看在线视频| 51国产日韩欧美| 亚洲天堂国产精品一区在线| 韩国av一区二区三区四区| 两个人的视频大全免费| 色噜噜av男人的天堂激情| 亚洲性夜色夜夜综合| 亚洲精品久久国产高清桃花| 久久精品国产99精品国产亚洲性色| 国产探花在线观看一区二区| 欧美乱色亚洲激情| 999久久久精品免费观看国产| 3wmmmm亚洲av在线观看| 亚洲熟妇中文字幕五十中出| 69av精品久久久久久| 可以在线观看的亚洲视频| 亚洲不卡免费看| 在线观看舔阴道视频| 亚洲 欧美 日韩 在线 免费| 黄色丝袜av网址大全| 国产精品av视频在线免费观看| 国产极品精品免费视频能看的| 亚洲国产欧美网| 在线观看午夜福利视频| 99在线视频只有这里精品首页| 91麻豆av在线| 9191精品国产免费久久| 欧美区成人在线视频| 搡老岳熟女国产| 成人特级av手机在线观看| 亚洲精华国产精华精| 可以在线观看的亚洲视频| 亚洲人成网站在线播| 中文字幕av在线有码专区| 夜夜看夜夜爽夜夜摸| 美女免费视频网站| 床上黄色一级片| 欧美xxxx黑人xx丫x性爽| 99久久综合精品五月天人人| 免费一级毛片在线播放高清视频| 国产99白浆流出| 男女做爰动态图高潮gif福利片| 欧美日韩乱码在线| 日韩亚洲欧美综合| 国产成人啪精品午夜网站| 欧美日本视频| 欧美一区二区精品小视频在线| 97超视频在线观看视频| 两个人视频免费观看高清| 狂野欧美激情性xxxx| 国产午夜精品论理片| 久久精品国产自在天天线| 亚洲性夜色夜夜综合| 久久久久久久精品吃奶| 99在线视频只有这里精品首页| 国产在线精品亚洲第一网站| 少妇高潮的动态图| 色在线成人网| 高清日韩中文字幕在线| 久久6这里有精品| 亚洲一区高清亚洲精品| av专区在线播放| 国产高潮美女av| 国产av不卡久久| 久久久久九九精品影院| 精品久久久久久成人av| 久久久久国产精品人妻aⅴ院| 日本免费一区二区三区高清不卡| 丰满的人妻完整版| 男女之事视频高清在线观看| 国产成人aa在线观看| xxx96com| 午夜两性在线视频| www日本黄色视频网| 日本免费a在线| 在线观看免费午夜福利视频| 免费人成在线观看视频色| 精品国产亚洲在线| 国产私拍福利视频在线观看| 最后的刺客免费高清国语| 久久伊人香网站| 亚洲色图av天堂| 国产伦精品一区二区三区视频9 | 两个人视频免费观看高清| 在线观看免费午夜福利视频| 亚洲人成网站高清观看| 一本综合久久免费| 少妇人妻一区二区三区视频| 深爱激情五月婷婷| 中文字幕精品亚洲无线码一区| 波多野结衣巨乳人妻| 每晚都被弄得嗷嗷叫到高潮| 一二三四社区在线视频社区8| 欧美色视频一区免费| 啦啦啦观看免费观看视频高清| 精品一区二区三区视频在线观看免费| 色综合亚洲欧美另类图片| 免费看十八禁软件| 99热这里只有精品一区| 在线播放无遮挡| 欧美+亚洲+日韩+国产| 有码 亚洲区| 在线观看免费午夜福利视频| 日日夜夜操网爽| 99国产极品粉嫩在线观看| 成人特级av手机在线观看| 亚洲人成电影免费在线| 最新美女视频免费是黄的| 国产老妇女一区| 一区福利在线观看| 一区二区三区免费毛片| 亚洲欧美日韩高清在线视频| 精品一区二区三区视频在线观看免费| 久久精品国产亚洲av香蕉五月| 亚洲黑人精品在线| 丰满人妻熟妇乱又伦精品不卡| 免费av不卡在线播放| 久久婷婷人人爽人人干人人爱| 亚洲国产精品成人综合色| 亚洲精品乱码久久久v下载方式 | 欧美性感艳星| 99热6这里只有精品| 午夜免费男女啪啪视频观看 | 九九在线视频观看精品| 最好的美女福利视频网| 成人特级av手机在线观看| 国内精品久久久久久久电影| 少妇的逼水好多| 国产精品久久久久久亚洲av鲁大| 亚洲精品国产精品久久久不卡| av女优亚洲男人天堂| 99精品在免费线老司机午夜| 好男人电影高清在线观看| 国产成人福利小说| 51国产日韩欧美| 搡老熟女国产l中国老女人| 中文字幕av成人在线电影| 我要搜黄色片| 内地一区二区视频在线| 免费av不卡在线播放| 99热只有精品国产| 国产真实乱freesex| 麻豆一二三区av精品| 变态另类成人亚洲欧美熟女| 国内少妇人妻偷人精品xxx网站| 嫩草影院精品99| 国产成人啪精品午夜网站| 白带黄色成豆腐渣| 亚洲精品日韩av片在线观看 | 国产成人aa在线观看| 欧美高清成人免费视频www| 亚洲成人精品中文字幕电影| 99久久无色码亚洲精品果冻| 欧美中文综合在线视频| 一级黄色大片毛片| 亚洲,欧美精品.| 中文字幕精品亚洲无线码一区| 国产亚洲精品综合一区在线观看| 婷婷精品国产亚洲av在线| 欧美一区二区亚洲| 色视频www国产| 757午夜福利合集在线观看| 久久婷婷人人爽人人干人人爱| 一个人观看的视频www高清免费观看| 亚洲天堂国产精品一区在线| 精品一区二区三区视频在线观看免费| 亚洲内射少妇av| 欧美丝袜亚洲另类 | 嫩草影院精品99| 非洲黑人性xxxx精品又粗又长| 国内精品一区二区在线观看| 2021天堂中文幕一二区在线观| 深爱激情五月婷婷| 久久久国产成人精品二区| 亚洲专区国产一区二区| АⅤ资源中文在线天堂| 欧美3d第一页| 一级黄色大片毛片| 少妇的逼好多水| 夜夜夜夜夜久久久久| 一个人看视频在线观看www免费 | 亚洲人成网站在线播| 伊人久久精品亚洲午夜| 亚洲中文字幕一区二区三区有码在线看| 哪里可以看免费的av片| 欧美黄色淫秽网站| 亚洲欧美日韩东京热| 国产精品一及| 国产成人aa在线观看| 小蜜桃在线观看免费完整版高清| 日本与韩国留学比较| 亚洲精品影视一区二区三区av| 窝窝影院91人妻| 日韩欧美国产一区二区入口| 欧美zozozo另类| 欧美大码av| 波多野结衣高清无吗| 69av精品久久久久久| 亚洲av成人精品一区久久| 欧美日本亚洲视频在线播放| 久久精品91无色码中文字幕| 午夜精品一区二区三区免费看| 亚洲精品日韩av片在线观看 | 国产在线精品亚洲第一网站| 国产精品久久久久久亚洲av鲁大| 欧美成人a在线观看| 国产精品电影一区二区三区| 国产真实伦视频高清在线观看 | 午夜福利高清视频| 淫秽高清视频在线观看| 欧美成人免费av一区二区三区| 不卡一级毛片| 观看美女的网站| 制服人妻中文乱码| 97人妻精品一区二区三区麻豆| 真人一进一出gif抽搐免费| 99久久九九国产精品国产免费| 亚洲av日韩精品久久久久久密| 51午夜福利影视在线观看| 一卡2卡三卡四卡精品乱码亚洲| 国内精品美女久久久久久| 亚洲欧美一区二区三区黑人| 中文在线观看免费www的网站| 91字幕亚洲| 91久久精品国产一区二区成人 | 亚洲电影在线观看av| 国产精品精品国产色婷婷| 制服人妻中文乱码| 亚洲成人中文字幕在线播放| 欧美乱妇无乱码| 日本熟妇午夜| 免费高清视频大片| 特大巨黑吊av在线直播| 悠悠久久av| 亚洲精品影视一区二区三区av| netflix在线观看网站| 男女床上黄色一级片免费看| 成人av在线播放网站| 老熟妇乱子伦视频在线观看| 亚洲av日韩精品久久久久久密| www.熟女人妻精品国产| 亚洲精品亚洲一区二区| 母亲3免费完整高清在线观看| 午夜免费男女啪啪视频观看 | 国产一区二区亚洲精品在线观看| 欧美极品一区二区三区四区| 日韩精品青青久久久久久| 欧美成人一区二区免费高清观看| 香蕉久久夜色| 天堂动漫精品| 亚洲久久久久久中文字幕| 又粗又爽又猛毛片免费看| 午夜老司机福利剧场| 人人妻人人看人人澡| 在线观看午夜福利视频| 午夜福利在线观看吧| 免费一级毛片在线播放高清视频| 亚洲美女视频黄频| 国产视频内射| 999久久久精品免费观看国产| 色播亚洲综合网| 精品福利观看| 欧美一区二区亚洲| 啦啦啦观看免费观看视频高清| 国产精品香港三级国产av潘金莲| 国产欧美日韩一区二区精品| 亚洲色图av天堂| 国产一区二区三区在线臀色熟女| 真实男女啪啪啪动态图| 97人妻精品一区二区三区麻豆| 亚洲人与动物交配视频| 国产精品亚洲一级av第二区| 亚洲性夜色夜夜综合| 日韩大尺度精品在线看网址| eeuss影院久久| 国产97色在线日韩免费| 精品国产亚洲在线| 亚洲av熟女| 在线播放无遮挡| 久久精品影院6| 亚洲第一电影网av| 日韩欧美精品v在线| tocl精华| 欧美不卡视频在线免费观看| 丰满乱子伦码专区| 一本精品99久久精品77| 一二三四社区在线视频社区8| 亚洲av免费高清在线观看| 欧美激情久久久久久爽电影| 亚洲性夜色夜夜综合| 国内精品久久久久精免费| 村上凉子中文字幕在线| 在线观看日韩欧美| 亚洲国产高清在线一区二区三| 日日干狠狠操夜夜爽| 亚洲国产日韩欧美精品在线观看 | xxx96com| 丰满的人妻完整版| 精品日产1卡2卡| 欧美在线黄色| 中出人妻视频一区二区| 国产午夜精品久久久久久一区二区三区 | 欧美一级a爱片免费观看看| 97人妻精品一区二区三区麻豆| 美女 人体艺术 gogo| 亚洲中文字幕一区二区三区有码在线看| 国产精品久久久久久人妻精品电影| 国产亚洲精品一区二区www| 国产精品日韩av在线免费观看| 一级毛片女人18水好多| 岛国视频午夜一区免费看| 一卡2卡三卡四卡精品乱码亚洲| 99国产极品粉嫩在线观看| 在线观看日韩欧美| 精品国产超薄肉色丝袜足j| 欧美成人一区二区免费高清观看| 久久久久国产精品人妻aⅴ院| 一个人免费在线观看电影| 人人妻人人看人人澡| 十八禁网站免费在线| 制服人妻中文乱码| 精品国产三级普通话版| 99久国产av精品| av中文乱码字幕在线| 成人性生交大片免费视频hd| 麻豆成人av在线观看| 精品久久久久久久末码| 婷婷亚洲欧美| 深爱激情五月婷婷| 中文字幕av在线有码专区| 精品日产1卡2卡| 亚洲 国产 在线| 午夜激情福利司机影院| 国产免费一级a男人的天堂| 性色avwww在线观看| 国产精品98久久久久久宅男小说| 色播亚洲综合网| www日本在线高清视频| 18禁在线播放成人免费| 精品久久久久久久人妻蜜臀av| 波多野结衣高清作品| 制服人妻中文乱码| 精品国产美女av久久久久小说| 欧美另类亚洲清纯唯美| 午夜影院日韩av| 夜夜夜夜夜久久久久| 国产三级中文精品| 中文字幕精品亚洲无线码一区| 亚洲精品亚洲一区二区| 国产欧美日韩一区二区精品| 欧美一区二区精品小视频在线| 亚洲欧美日韩高清专用| 熟女电影av网| 午夜福利在线观看吧| av福利片在线观看| 欧美在线一区亚洲| 亚洲欧美日韩东京热| 69av精品久久久久久| 老熟妇乱子伦视频在线观看| 日韩av在线大香蕉| 亚洲av二区三区四区| 嫩草影院入口| 麻豆成人av在线观看| 国产精品久久久久久人妻精品电影| 老熟妇乱子伦视频在线观看| 一夜夜www| 757午夜福利合集在线观看| 女人十人毛片免费观看3o分钟| 五月伊人婷婷丁香| 亚洲国产中文字幕在线视频| 久久这里只有精品中国| 亚洲国产精品久久男人天堂| 久久精品国产亚洲av香蕉五月| 法律面前人人平等表现在哪些方面| 香蕉av资源在线| 日韩欧美国产在线观看| 亚洲av免费在线观看| 亚洲欧美日韩高清在线视频| 深夜精品福利| 中文字幕久久专区| 精品乱码久久久久久99久播| 精品久久久久久成人av| 亚洲成av人片免费观看| 国产91精品成人一区二区三区| 黄色丝袜av网址大全| 黄色成人免费大全| 啪啪无遮挡十八禁网站| 亚洲av五月六月丁香网| 成人无遮挡网站| av福利片在线观看| 嫁个100分男人电影在线观看| 三级国产精品欧美在线观看| 国产精品嫩草影院av在线观看 | 国产精品1区2区在线观看.| 久久精品91无色码中文字幕| 亚洲成人免费电影在线观看| 青草久久国产| 国产精品综合久久久久久久免费| 欧美成狂野欧美在线观看| 国产高清视频在线播放一区| 熟女人妻精品中文字幕| 好男人电影高清在线观看| 中文字幕精品亚洲无线码一区| 久久人人精品亚洲av| 成人亚洲精品av一区二区| www.色视频.com| 男女那种视频在线观看| 床上黄色一级片| 在线播放无遮挡| 狠狠狠狠99中文字幕| 日本成人三级电影网站| 麻豆国产av国片精品| 亚洲av成人不卡在线观看播放网| xxxwww97欧美| 男人舔女人下体高潮全视频| 中文字幕人妻熟人妻熟丝袜美 | 亚洲天堂国产精品一区在线| 国产精品一区二区三区四区久久| 国产av麻豆久久久久久久| 久久精品综合一区二区三区| 欧美乱色亚洲激情| 老鸭窝网址在线观看| 老汉色∧v一级毛片| 精品无人区乱码1区二区|