• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    NEW OSCILLATION CRITERIA FOR THIRD-ORDER HALF-LINEAR ADVANCED DIFFERENTIAL EQUATIONS??

    2020-09-14 10:51:16JianliYaoXiaopingZhangJiangboYu
    Annals of Applied Mathematics 2020年3期

    Jianli Yao,Xiaoping Zhang,Jiangbo Yu

    (School of Science,Shandong Jianzhu University,Ji’nan 250101,Shandong,PR China)

    Abstract

    Keywords third-order differential equation;advanced argument;oscillation;asymptotic behavior;noncanonical operators

    1 Introduction

    In 2019,Chatzarakis([1])o ff ered sufficient conditions for the oscillation and asymptotic behavior of second-order half-linear differential equations with advanced argument of the form

    In 2018,D?urina([2])presented new oscillation criteria for third-order delay differential equations with noncanonical operators of the form

    In this paper,we consider the oscillatory and asymptotic behavior of solutions to the third-order half-linear advanced differential equations of the form

    Throughout the whole paper,we assume that

    (H1)α,βandγare quotients of odd positive integers;

    (H2)the functionsr1,r2∈C([t0,∞),(0,∞))are of noncanonical type(see Trench[2]),that is,

    (H3)q∈C([t0,∞),[0,∞))does not vanish eventually;

    (H4)σ∈C1([t0,∞),(0,∞)),σ(t)≥t,σ′(t)≥0 for allt≥t0.

    By a solution of equation(1.1),we mean a nontrivial real valued functiony∈C([Tx,∞),R),Tx≥t0,which has the property thaty,are continuous and differentiable for allt∈[Tx,∞),and satisfy(1.1)on[Tx,∞).We only need to consider those solutions of(1.1)which exist on some half-line[Tx,∞)and satisfy the condition

    for anyT≥Tx.In the sequel,we assume that(1.1)possesses such solutions.

    As is customary,a solutiony(t)of(1.1)is called oscillatory if it has arbitrary large zeros on[Tx,∞).Otherwise,it is called nonoscillatory.Equation(1.1)is said to be oscillatory if all its solutions oscillate.

    Following classical results of Kiguradze and Kondrat’ev[3],we say that(1.1)has property A if any solutionyof(1.1)is either oscillatory or satisfieswhich is also called that equation(1.1)is almost oscillatory.

    For brevity,we define operators

    Also,we use the symbols↑and↓to indicate whether the function is nondecreasing and nonincreasing,respectively.

    2 Main Results

    As usual,all functional inequalities considered in this paper are supposed to hold eventually,that is,they are satisfied for alltlarge enough.

    Without loss of generality,we need only to consider eventually positive solutions of(1.1),since ifysatisfies(1.1),so does?y.

    The following lemma on the structure of possible nonoscillatory solutions of(1.1)plays a crucial role in the proofs of the main results.

    Lemma 2.1Assume(H1)-(H4),and that y is an eventually positive solution of equation(1.1).Then there exists a t1∈[t0,∞)such that y eventually belongs to one of the following classes:

    for t≥t1.

    The proof is straightforward and hence is omitted.

    Now,we will establish one-condition criteria of property A of(1.1).

    Theorem 2.1Assume(H1)-(H4).If

    then(1.1)has property A.

    ProofFirst of all,it is important to note that if(H2)and(2.1)hold,then

    that is,

    Now,suppose on the contrary thatyis a nonoscillatory solution of(1.1)on[t0,∞).Without loss of generality,we may assume thatt1≥t0such thaty(t)>0 andy(σ(t))>0 fort≥t1.Using Lemma 2.1,we know thatyeventually belongs to one of the four classes in Lemma 2.1.We will consider each of them separately.

    Assumey∈S1.Then fromL1y<0,that is,r1(y′)α<0,we see thaty′<0 andyis decreasing.On the other words,there exists a finite constant?≥0 such thatObviously,,too.

    We claim that?=0.Assume on the contrary that?>0.Then there exists at2≥t1such thaty(t)≥y(σ(t))≥?fort≥t2.Thus,

    fort≥t2.Integrating(2.4)fromt2tot,we have

    Therefore,

    Integrating(2.5)again fromt2tot,we have

    that is,

    Integrating(2.6)fromt2tot,and taking account of(2.1),we have

    ast→ ∞,which contradicts the positivity ofy.Thus,

    Assumey∈S2.Proceeding the same steps as above,we arrive at(2.4).Integrating(2.4)fromt2tot,we have

    where we used(2.3).This contradicts the positivity ofL2yand thus.

    Assumey∈S3.We define a function

    Obviously,w(t)is positive fort≥t2.Using(1.1),we obtain

    Integrating the above inequality fromt2tot,and taking(2.3)into account,we have

    This contradicts the positivity ofw.Hence,S3=?.

    Assumey∈S4.Considering thatyis increasing,and integrating(1.1)fromt2tot,we obtain

    that is,

    wherek:=yγ(σ(t2)).Integrating(2.8)fromt2totand using(2.2),we have

    This contradicts the positivity ofL1y.Thus,S4=?.The proof is complete.

    Remark 2.1It is clear that any nonoscillatory solution in Theorem 2.1 eventually belongs to eitherS1orS2in Lemma 2.1,that is,S3=S4=?.

    Next,we formulate some additional information about the monotonicity of solutions inS2orS1.

    Lemma 2.2Assume(H1)-(H4).Let y∈S2in Lemma2.1on[t1,∞)for some t1≥t0,and define a function

    If

    then there exists a t2≥t1such that

    for t≥t2.

    ProofLety∈S2in Lemma 2.1 on[t1,∞)for somet1≥t0.First,we prove that(2.11)implies

    Using I’Hospital rule,we obtain

    Taking the decrease ofL2y(t)into account,there exists a finite constant?≥0 such thatWe claim that?=0.If not,thenL2y(t)≥?>0,andeventually,fort≥t2andt2∈[t1,∞).Using this relation in(1.1),we obtain

    Integrating the above inequality fromt2tot,we have

    which is a contradiction.Thus(2.13)holds and consequently,also

    due to the decreasing properties ofπ(t)andπ2(t),respectively.Considering the monotonicity ofL2ytogether with(2.14)yields

    hence,there exists at3≥t2such that

    Therefore,there exists at4≥t3such that

    and we conclude thaty/πis decreasing on[t4,∞).Hence,(2.12)holds.The proof is complete.

    Corollary 2.1Assume(H1)-(H4).Let y∈S2in Lemma2.1on[t1,∞)for some t1≥t0,and a function π(t)be defined by(2.10).If(2.11)holds,then there exists a t2≥t1such that

    for every constant k>0and t≥t2.

    Lemma 2.3Assume(H1)-(H4).Let y∈S1in Lemma2.1on[t1,∞)for some t1≥t0.If(2.11)holds,then there exists a t2≥t1such that

    for t≥t2.

    ProofLety∈S1in Lemma 2.1 on[t1,∞)for somet1≥t0.It follows from the monotonicity ofL1ythat,for?≥t,

    Letting?to∞,we have

    From(2.17),we conclude thaty/π1is nondecreasing,since

    The proof is complete.

    Theorem 2.2Assume(H1)-(H4).If

    then(1.1)has property A.

    ProofSuppose on the contrary and assume thatyis a nonoscillatory solution of(1.1)on[t0,∞).Without loss of generality,we may assume thaty(t)>0 andy(σ(t))>0 fort∈[t1,∞)?[t0,∞).Then we obtain thatyeventually belongs to one of the four classes in Lemma 2.1.We will consider each of them separately.

    Assumey∈S1.Note that(2.3)and(2.11)are necessary for(2.19)to be valid.In fact,since the functiondsis unbounded due to(H2)andπ′<0,(2.3)and(2.11)must hold.Furthermore,by(2.19),we see that(2.1)holds,and we also obtain

    Then using Lemma 2.3,it follows from(2.16)that there existc>0 andt2≥t1such thaty(t)≥cπ1(t)fort≥t2.Substituting this inequality into(1.1),we obtain

    Integrating(2.21)fromt2tot,we have

    that is,

    Integrating the above inequality fromt2tot,we have

    that is,

    Integrating(2.22)fromt2tot,and taking(2.20)into account,we have

    which contradicts the positivity ofy.Thus,S1=?.

    Assumey∈S2.Noting(2.1)is necessary for the validity of(2.20),we have.

    Finally,noting(2.3)and(2.2)are necessary for the validity of(2.19),it follows immediately from Remark 2.1 thatS3=S4=?.The proof is complete.

    Theorem 2.3Assume(H1)-(H4).If

    for any t1≥t0,and γ=αβ,then(1.1)has property A.

    ProofOn the contrary,suppose thatyis a nonoscillatory solution of(1.1)on[t0,∞).Without loss of generality,we may assume thaty(t)>0 andy(σ(t))>0 fort∈[t1,∞)?[t0,∞).Then we obtain thatyeventually belongs to one of the four classes in Lemma 2.1.We will consider each of them separately.

    First,note that(2.23)along with(H2)implies(2.3)and(2.2).Then,using Theorem 2.1,we getS3=S4=?.Moreover,ify∈S2,then.

    Next,we consider the classS1.Assumey∈S1.Integrating(1.1)fromt1totand using the decrease ofy,we have

    that is,

    Integrating the above inequality fromt1tot,we have

    Similar to the proof of Lemma 2.3,we obtain(2.17),which along with(2.26)leads to

    Takingγ=αβinto account,the above inequality becomes

    which results in a contradiction

    Thus,S1=?.The proof is complete.

    Theorem 2.4Assume(H1)-(H4)and suppose that(2.1)holds.If

    and γ=αβ,then(1.1)has property A.

    ProofUsing Theorem 2.1,we haveS3=S4=?,and ify∈S2,then.

    Now,we only need to consider the classS1.Assumey∈S1.Similar to the proof of Theorem 2.3,we arrive at

    fort≥t2.Thus,fort≥t2,we have

    Integrating the above inequality fromt2tot,we have

    There also exists at3>t2such that

    fort≥t3.Thus,fort≥t3,we obtain

    The rest of proof is similar and hence we omit it.Finally,we obtainS1=?.The proof is complete.

    Next,we will establish various oscillation criteria for(1.1).

    Theorem 2.5Assume(H1)-(H4).If

    and

    hold,and moreover,αβ=γ,then(1.1)is oscillatory.

    ProofSuppose thatyis a nonoscillatory solution of(1.1)on[t0,∞).Without loss of generality,we may assume thatt1≥t0such thaty(t)>0 andy(σ(t))>0 fort≥t1.Then we obtain thatyeventually belongs to one of the four classes in Lemma 2.1.In following,we consider each of these classes separately.

    Assumey∈S1.Similar to the proof of Theorem 2.3,we arrive at(2.26),that is

    Usingαβ=γ,the above inequality becomes

    However,it is well-known(see,e.g.,[5,Theorem 2.4.1])that condition(2.28)implies the oscillation of(2.30).Thus,it contradicts our initial assumption.ThenS1=?.

    Assumey∈S2.Integrating(1.1)fromttou(t

    that is,

    Integrating the above inequality fromttou,we have

    that is,

    Takingγ=αβinto account,we have

    Settingu=σ(t)in(2.31),we get

    that is,

    However,condition(2.29)implies the oscillation of(2.32),(see,e.g.,[5,Theorem 2.4.1]).It means that(1.1)cannot have a positive solutionyin the classS2,which is a contradiction.Thus,S2=?.

    Finally,noting that(2.1)is necessary for the validity of(2.28),it follows immediately from Remark 2.1 thatS3=S4=?.The proof is complete.

    The following results are simple consequences of the above theorem and Corollary 2.1.

    Theorem 2.6Assume(H1)-(H4).If γ=αβ,(2.11)and(2.28)hold,then all positive solutions of(1.1)satisfy(2.15)for any k>0and t large enough.

    Theorem 2.7Assume(H1)-(H4).If γ=αβ,(2.19)and(2.29)hold,then(1.1)is oscillatory.

    Remark 2.2If

    holds,we have the validity of(2.29).Thus,the conclusions of Theorems 2.5 and 2.7 remain valid if condition(2.29)is replaced by(2.33).

    Theorem 2.8Assume(H1)-(H4).If γ=αβ,(2.23)and(2.33)hold,then(1.1)is oscillatory.

    Theorem 2.9Assume(H1)-(H4).If γ=αβ,(2.1),(2.27)and(2.33)hold,then(1.1)is oscillatory.

    In order to prove the following conclusions,we recall an auxiliary result which is taken from Wu et al.[6,Lemma2.3].

    Lemma 2.4[6,Lemma2.3]Let,where B>0,A andC are constants,and α is a quotient of odd positive numbers.Then g attains itsmaximum value onRatand

    for t≥t2.

    Theorem 2.10Assume(H1)-(H4)and γ=αβ.If(2.3)and(2.33)hold,and also there exists a function ρ∈C1([t0,∞),(0,∞))such that

    for any T∈[t0,∞),then(1.1)is oscillatory.

    ProofOn the contrary,suppose thatyis a nonoscillatory solution of(1.1)on[t0,∞).Without loss of generality,we may assume thaty(t)>0 andy(σ(t))>0 fort∈[t1,∞)?[t0,∞).Then we know thatyeventually belongs to one of the four classes in Lemma 2.1.We will consider each of them separately.

    Assumey∈S1.Define the generalized Riccati substitution

    Taking(2.17)into account,we see thatw≥0 on[t1,∞).Differentiating(2.36),we arrive at

    Similar to the proof of Theorem 2.3,we arrive at(2.25).Using(2.16)in(2.25),we deduce that the inequality

    holds fort≥t2,wheret2∈[t1,∞)is large enough.Considering(2.37)and(2.38),it follows that

    Let

    Using(2.34)with the above inequality,we have

    Integrating(2.39)fromt2tot,we obtain

    Taking the definition ofwinto account,we get

    On the other hand,using(2.17),it follows that

    Substituting the above estimate into(2.40),we get

    Multiplying(2.41)byand taking the limsup on both sides of the resulting inequality,we obtain a contradiction with(2.35).Thus,S1=?.

    Assumey∈S2.Similar to the proof of Theorem 2.5,one arrives at a contradiction with(2.33).Thus,S2=?.

    In following,we showS3=S4=?.Since(2.3)holds due to(H2),then the function

    is unbounded,and so(2.2)holds.The rest of proof proceeds in the same manner as that of Theorem 2.1.The proof is complete.

    Depending on the appropriate choice of the functionρ,we can use Theorem 2.10 in a wide range of applications for studying the oscillation of(1.1).Thus,by choosing,ρ(t)=π1(t)andρ(t)=1,we obtain the following results,respectively.

    Corollary 2.2Assume(H1)-(H4)and γ=αβ.Moreover,assume that(2.3)and(2.33)hold.If

    for any T∈[t0,∞),then(1.1)is oscillatory.

    Corollary 2.3Assume(H1)-(H4)and γ=αβ.Moreover,assume that(2.3)and(2.33)hold.If

    for any T∈[t0,∞),then(1.1)is oscillatory.

    Corollary 2.4Assume(H1)-(H4)and γ=αβ.Moreover,assume that(2.3)and(2.33)hold.If

    for any T∈[t0,∞),then(1.1)is oscillatory.

    Remark 2.3The conclusions of Theorem 2.10 and Corollaries 2.2-2.4 remain valid if condition(2.3)is replaced by(2.1).

    Lemma 2.5Assume(H1)-(H4)and γ=αβ.Furthermore,assume that(2.1)holds.Suppose that(1.1)has a positive solution y∈S1on[t1,∞)?[t0,∞)and that λ andμare constants satisfying

    and

    Then there exists a t?∈[t1,∞)such that

    and

    on[t?,∞).

    ProofAssumey∈S1.Similar to the proof of Theorem 2.3,we arrive at(2.25).Considering(1.1),(2.17)and(2.37),we see that

    It is easy to verify that

    and thus,we get

    Therefore,

    Next,we will prove the last monotonicity.Similar to the proof of Theorem 2.3,we arrive at(2.26),that is

    Using(2.16)with the above inequality,we have

    that is,

    fort≥t2,wheret2≥t1.Using the above relation in the equality

    and taking the condition(2.47)into account,we get

    Theorem 2.11Assume(H1)-(H4)and γ=αβ.Furthermore,suppose that(2.33)holds and λ andμare constants satisfying(2.45)-(2.47).If

    for any t1≥t0,then(1.1)is oscillatory.

    Proof Suppose on the contrary thatyis a nonoscillatory solution of(1.1)on[t0,∞).Without loss of generality,we may assume thaty(t)>0 andy(σ(t))>0 fort∈[t1,∞)?[t0,∞).Then we know thatyeventually belongs to one of the four classes in Lemma 2.1.We will consider each of them separately.

    Before proceeding further,note that(2.11)and

    are necessary for(2.19)to be valid.To verify this,it suffices to see that(H2)implies

    From the above inequality,we conclude that the function

    and consequently

    must be unbounded.

    Assumey∈S1.Similar to the proof of Theorem 2.3,we arrive at(2.26),that is

    Using the conclusions of Lemma 2.5 thatis nonincreasing andis nondecreasing,we obtain

    Using(2.52)in the above inequality,we have

    that is,

    Taking the limsup on both sides of the above inequality,we reach a contradiction with(2.53).Thus,S1=?.

    Accounting to Remark 2.2 with(2.33),we haveS2=?.Also,using Theorem 2.1,we arrive atS3=S4=?.The proof is complete.

    Theorem 2.12Assume(H1)-(H4)and γ=αβ.Furthermore,suppose that(2.3)and(2.33)hold,and λ∈[0,α)is a constant satisfying(2.46).If there exists a function ρ∈C1([t0,∞),(0,∞))and T∈[t0,∞)such that

    then(1.1)is oscillatory.

    ProofFor the proof of this theorem,it suffices to use(2.48)instead of(2.16)in(2.25)in the proof of Theorem 2.10.

    Corollary 2.5Assume(H1)-(H4)and γ=αβ.Furthermore,suppose that(2.3)and(2.33)hold and λ∈[0,α)is a constant satisfying(2.46).If

    for any T∈[t0,∞),then(1.1)is oscillatory.

    3 Examples

    In this section,we illustrate the strength of our results using two Euler-type differential equations,as two examples.

    Example 3.1Consider the third-order advanced differential equation

    It is easy to verify that condition(2.1)is satisfied.Using Theorem 2.1,we obtain that equation(3.1)has property A.

    Example 3.2Consider the third-order advanced differential equation

    wherem>1,,q0>0 andδ≥1 .

    Clearly,r1(t)=tm,r2(t)=tn,α=1,,σ(t)=δt,and

    From Theorem 2.1(On the asymptotic properties of nonoscillatory solutions),it is easy to verify that condition(2.1)holds.Thus,any nonoscillatory,say positive solution of equation(3.2)converges to zero ast→∞,without any additional requirement.

    In following,we consider the oscillation of equation(3.2).

    After some computations,we note that conditions(2.23),(2.28)and(2.33)reduce to

    and

    respectively.

    Theorem 2.5 and Remark 2.2 imply if both(3.4)and(3.5)hold,then equation(3.2)is oscillatory.

    Since condition(2.19)is not satisfied,the related result from Theorem 2.7 can not be applied.

    Theorems 2.8 and 2.9 can deduce that oscillation of equation(3.2)is guaranteed by conditions(3.3)and(3.5).

    4 Summary

    In this paper,we studied the third-order differential equation(1.1)with noncanonical operators.First,we established one-condition criteria for property A of(1.1).Next,we presented various two-condition criteria ensuring oscillation of all solutions of(1.1).Finally,our results are applicable on Euler-type equations of the forms(3.1)and(3.2).It remains open how to generalize these results for higher-order noncanonical equations with deviating arguments.

    Acknowledgements The authors would like to express their highly appreciation to the editors and the referees for their valuable comments.

    av在线app专区| 精品福利永久在线观看| 美女午夜性视频免费| 国产精品免费视频内射| 啦啦啦视频在线资源免费观看| 人人妻人人澡人人看| 汤姆久久久久久久影院中文字幕| 看十八女毛片水多多多| 国产午夜精品一二区理论片| 老熟女久久久| 亚洲三区欧美一区| videossex国产| 免费观看性生交大片5| 高清av免费在线| 少妇人妻久久综合中文| 国产 一区精品| 欧美精品人与动牲交sv欧美| 亚洲精华国产精华液的使用体验| 成年av动漫网址| 三级国产精品片| 久久青草综合色| av网站在线播放免费| 少妇人妻 视频| 亚洲欧美精品自产自拍| 99re6热这里在线精品视频| 久久亚洲国产成人精品v| 久久毛片免费看一区二区三区| 欧美日韩亚洲高清精品| 亚洲av免费高清在线观看| 最近中文字幕高清免费大全6| 夫妻午夜视频| 国产黄频视频在线观看| 深夜精品福利| 18禁动态无遮挡网站| 一级a爱视频在线免费观看| 丰满少妇做爰视频| 亚洲精品国产色婷婷电影| 如日韩欧美国产精品一区二区三区| 国产在线免费精品| 人妻一区二区av| 亚洲少妇的诱惑av| 国产无遮挡羞羞视频在线观看| 不卡av一区二区三区| 午夜激情久久久久久久| 最黄视频免费看| 日本免费在线观看一区| 国产淫语在线视频| 麻豆精品久久久久久蜜桃| 免费观看无遮挡的男女| 中文字幕色久视频| 日本色播在线视频| 美女脱内裤让男人舔精品视频| 精品人妻在线不人妻| 午夜福利在线观看免费完整高清在| 久久精品久久久久久久性| 在线观看免费高清a一片| 少妇的丰满在线观看| 天天躁夜夜躁狠狠久久av| 色94色欧美一区二区| 国产精品二区激情视频| 久久久a久久爽久久v久久| 美女视频免费永久观看网站| 曰老女人黄片| 最近手机中文字幕大全| 中文字幕精品免费在线观看视频| 午夜日韩欧美国产| 久久精品国产综合久久久| 午夜福利视频精品| 人人澡人人妻人| 成人影院久久| 一级毛片电影观看| 91久久精品国产一区二区三区| 91久久精品国产一区二区三区| 爱豆传媒免费全集在线观看| 日本wwww免费看| 91国产中文字幕| 久久鲁丝午夜福利片| 黑人巨大精品欧美一区二区蜜桃| www日本在线高清视频| 夜夜骑夜夜射夜夜干| videossex国产| 少妇猛男粗大的猛烈进出视频| 国产成人免费无遮挡视频| 嫩草影院入口| 久久99热这里只频精品6学生| av在线播放精品| 国产一区二区 视频在线| 在线观看国产h片| av国产精品久久久久影院| 人妻人人澡人人爽人人| 日韩 亚洲 欧美在线| 免费黄色在线免费观看| 热re99久久精品国产66热6| 九九爱精品视频在线观看| 999久久久国产精品视频| 国产精品久久久av美女十八| 国产xxxxx性猛交| 国产在线一区二区三区精| 国产深夜福利视频在线观看| 国产在线一区二区三区精| 亚洲欧美色中文字幕在线| 精品国产一区二区三区四区第35| 美女午夜性视频免费| 热99久久久久精品小说推荐| 久久毛片免费看一区二区三区| 国产一区二区三区综合在线观看| 九草在线视频观看| 90打野战视频偷拍视频| 黑丝袜美女国产一区| 国产女主播在线喷水免费视频网站| 亚洲av中文av极速乱| 亚洲美女黄色视频免费看| 免费高清在线观看视频在线观看| 国产极品天堂在线| 天天躁夜夜躁狠狠久久av| 91aial.com中文字幕在线观看| 少妇被粗大猛烈的视频| 26uuu在线亚洲综合色| 日韩一卡2卡3卡4卡2021年| 国产精品免费大片| 日本av手机在线免费观看| 国产片特级美女逼逼视频| a 毛片基地| 成年人午夜在线观看视频| 成年人午夜在线观看视频| 一级黄片播放器| 国产精品久久久久久久久免| 老熟女久久久| 在线观看免费视频网站a站| 欧美在线黄色| 亚洲少妇的诱惑av| 一个人免费看片子| 久久精品国产a三级三级三级| 久久久久久人妻| 女人高潮潮喷娇喘18禁视频| tube8黄色片| 国产淫语在线视频| 午夜免费男女啪啪视频观看| 免费看不卡的av| 国产成人午夜福利电影在线观看| 国产成人一区二区在线| 国产白丝娇喘喷水9色精品| 99国产综合亚洲精品| 国产福利在线免费观看视频| 精品酒店卫生间| 肉色欧美久久久久久久蜜桃| 久久久久久久久久久久大奶| 69精品国产乱码久久久| 日韩大片免费观看网站| 自拍欧美九色日韩亚洲蝌蚪91| 美女xxoo啪啪120秒动态图| 91在线精品国自产拍蜜月| 精品少妇内射三级| 精品少妇久久久久久888优播| 少妇 在线观看| 不卡av一区二区三区| 侵犯人妻中文字幕一二三四区| 国产日韩欧美视频二区| 三上悠亚av全集在线观看| 欧美精品高潮呻吟av久久| 亚洲欧美成人精品一区二区| 看免费成人av毛片| 最近最新中文字幕大全免费视频 | 成人国语在线视频| 免费在线观看黄色视频的| 一级片'在线观看视频| www.精华液| 人人澡人人妻人| 午夜老司机福利剧场| 亚洲av免费高清在线观看| 人妻少妇偷人精品九色| 国产精品一二三区在线看| 涩涩av久久男人的天堂| 美女中出高潮动态图| 日韩一区二区视频免费看| 欧美人与善性xxx| 久久久久精品人妻al黑| av.在线天堂| 久久精品国产亚洲av高清一级| 91国产中文字幕| 亚洲欧洲国产日韩| 日韩不卡一区二区三区视频在线| 日韩精品有码人妻一区| 国产一区亚洲一区在线观看| 国产精品三级大全| 青青草视频在线视频观看| 夜夜骑夜夜射夜夜干| 热99国产精品久久久久久7| 欧美成人午夜精品| 天天躁夜夜躁狠狠躁躁| 丁香六月天网| 宅男免费午夜| 狠狠婷婷综合久久久久久88av| 国产成人精品无人区| 黄片无遮挡物在线观看| 亚洲成国产人片在线观看| 亚洲国产欧美在线一区| 久久久国产一区二区| 午夜免费鲁丝| 久久国产亚洲av麻豆专区| av女优亚洲男人天堂| 国产日韩欧美视频二区| 女人被躁到高潮嗷嗷叫费观| 女人高潮潮喷娇喘18禁视频| 国产成人午夜福利电影在线观看| 国产一区二区三区综合在线观看| 男女免费视频国产| 永久免费av网站大全| 亚洲国产av影院在线观看| 一级片'在线观看视频| 搡老乐熟女国产| av国产久精品久网站免费入址| 久久久精品区二区三区| 极品少妇高潮喷水抽搐| 蜜桃在线观看..| 男女免费视频国产| 日本wwww免费看| 久久ye,这里只有精品| 日本欧美国产在线视频| 亚洲国产成人一精品久久久| 亚洲人成网站在线观看播放| 人体艺术视频欧美日本| 国产精品一国产av| 欧美日韩亚洲国产一区二区在线观看 | 麻豆乱淫一区二区| 久久精品国产鲁丝片午夜精品| 午夜福利,免费看| 亚洲一码二码三码区别大吗| 亚洲伊人久久精品综合| 国产精品三级大全| 99九九在线精品视频| 亚洲精品第二区| 精品亚洲成国产av| 久久久久国产网址| 一区二区三区精品91| 日本猛色少妇xxxxx猛交久久| av电影中文网址| 天天躁夜夜躁狠狠躁躁| 国产不卡av网站在线观看| 久久人妻熟女aⅴ| 日韩精品有码人妻一区| 综合色丁香网| 在线免费观看不下载黄p国产| 亚洲三级黄色毛片| 日本免费在线观看一区| 亚洲av成人精品一二三区| 97在线视频观看| 我要看黄色一级片免费的| 国产精品蜜桃在线观看| 99re6热这里在线精品视频| 免费看不卡的av| 久久久久久久国产电影| 一级毛片 在线播放| 青春草视频在线免费观看| 国产精品无大码| 亚洲精品第二区| 国产亚洲一区二区精品| 黑人欧美特级aaaaaa片| 亚洲精品av麻豆狂野| 亚洲av综合色区一区| 国产av一区二区精品久久| 午夜福利网站1000一区二区三区| 七月丁香在线播放| 久久 成人 亚洲| 秋霞在线观看毛片| 成人午夜精彩视频在线观看| 一级片免费观看大全| 国产国语露脸激情在线看| 国产av国产精品国产| 在线观看www视频免费| 成年女人在线观看亚洲视频| 熟女电影av网| 美女国产视频在线观看| 日韩欧美精品免费久久| av在线app专区| 最近中文字幕2019免费版| 国产精品秋霞免费鲁丝片| 黑人欧美特级aaaaaa片| 青春草国产在线视频| 国产精品不卡视频一区二区| 亚洲精品日韩在线中文字幕| 日日撸夜夜添| 午夜91福利影院| 久久精品国产亚洲av天美| 亚洲成av片中文字幕在线观看 | 国产精品人妻久久久影院| 国产成人a∨麻豆精品| 老熟女久久久| 叶爱在线成人免费视频播放| 少妇人妻久久综合中文| 亚洲国产欧美网| 狠狠精品人妻久久久久久综合| 亚洲视频免费观看视频| 黄频高清免费视频| 亚洲成国产人片在线观看| 超碰成人久久| 国产精品香港三级国产av潘金莲 | 91精品伊人久久大香线蕉| 晚上一个人看的免费电影| 国产精品二区激情视频| 成人手机av| 2018国产大陆天天弄谢| 欧美精品亚洲一区二区| 亚洲人成网站在线观看播放| 亚洲精品自拍成人| 搡老乐熟女国产| 亚洲精品在线美女| 久久鲁丝午夜福利片| 搡女人真爽免费视频火全软件| 国产成人免费无遮挡视频| 久久精品国产亚洲av天美| 久久久国产精品麻豆| 少妇人妻久久综合中文| 人妻人人澡人人爽人人| 欧美97在线视频| 男女边摸边吃奶| 男女国产视频网站| 建设人人有责人人尽责人人享有的| 人人妻人人爽人人添夜夜欢视频| 大香蕉久久成人网| 中文字幕av电影在线播放| 三上悠亚av全集在线观看| 女性生殖器流出的白浆| 大香蕉久久成人网| 我的亚洲天堂| 中文字幕制服av| 肉色欧美久久久久久久蜜桃| 一级片'在线观看视频| 丰满饥渴人妻一区二区三| 国产在线免费精品| 成人国产av品久久久| 少妇的逼水好多| 亚洲精品视频女| av国产精品久久久久影院| 黑人巨大精品欧美一区二区蜜桃| 人体艺术视频欧美日本| 在线观看三级黄色| 最近的中文字幕免费完整| 亚洲精品美女久久久久99蜜臀 | 丝袜在线中文字幕| 国产在线免费精品| 少妇人妻久久综合中文| 一区二区三区乱码不卡18| 久久精品熟女亚洲av麻豆精品| 18在线观看网站| 校园人妻丝袜中文字幕| 韩国精品一区二区三区| 熟女电影av网| 欧美国产精品一级二级三级| 少妇 在线观看| kizo精华| 精品国产乱码久久久久久小说| 国产免费视频播放在线视频| 久久久a久久爽久久v久久| 亚洲av欧美aⅴ国产| 中国国产av一级| av线在线观看网站| 在线天堂最新版资源| 免费久久久久久久精品成人欧美视频| 最近2019中文字幕mv第一页| 成年人免费黄色播放视频| 久久久精品国产亚洲av高清涩受| 亚洲精品国产av成人精品| 成年动漫av网址| 中文欧美无线码| 精品卡一卡二卡四卡免费| 在线观看一区二区三区激情| 麻豆av在线久日| 观看美女的网站| 天天躁狠狠躁夜夜躁狠狠躁| freevideosex欧美| 美女福利国产在线| 巨乳人妻的诱惑在线观看| 亚洲精品久久久久久婷婷小说| 在线观看免费高清a一片| 欧美97在线视频| 亚洲天堂av无毛| 久久国内精品自在自线图片| 亚洲精华国产精华液的使用体验| 精品一区二区三区四区五区乱码 | 久久毛片免费看一区二区三区| 成人国产麻豆网| 国产老妇伦熟女老妇高清| 国产探花极品一区二区| 精品亚洲成国产av| 久久精品国产亚洲av高清一级| 观看美女的网站| 少妇精品久久久久久久| 婷婷色麻豆天堂久久| 久久青草综合色| 欧美97在线视频| av免费观看日本| 色婷婷久久久亚洲欧美| 欧美人与善性xxx| 桃花免费在线播放| 一级a爱视频在线免费观看| 国产成人精品福利久久| 各种免费的搞黄视频| 妹子高潮喷水视频| 99精国产麻豆久久婷婷| 丰满乱子伦码专区| 国产精品久久久久久精品古装| 叶爱在线成人免费视频播放| 中文字幕最新亚洲高清| 国产在线一区二区三区精| 永久网站在线| 激情五月婷婷亚洲| av线在线观看网站| 麻豆av在线久日| 9191精品国产免费久久| 国产淫语在线视频| 人人妻人人澡人人看| 亚洲欧美精品综合一区二区三区 | 五月伊人婷婷丁香| 亚洲精品日本国产第一区| 日韩熟女老妇一区二区性免费视频| 男女边吃奶边做爰视频| 国产爽快片一区二区三区| 国产女主播在线喷水免费视频网站| 我的亚洲天堂| 精品亚洲成国产av| 国产极品天堂在线| 美国免费a级毛片| 久久久欧美国产精品| 少妇的丰满在线观看| 中文字幕亚洲精品专区| 视频在线观看一区二区三区| 久久 成人 亚洲| 天天影视国产精品| av福利片在线| 一边摸一边做爽爽视频免费| 中文字幕另类日韩欧美亚洲嫩草| 成人漫画全彩无遮挡| 在线观看一区二区三区激情| 免费高清在线观看视频在线观看| 大片免费播放器 马上看| 人人妻人人爽人人添夜夜欢视频| 十分钟在线观看高清视频www| 日韩中文字幕欧美一区二区 | 午夜日韩欧美国产| av视频免费观看在线观看| 日本vs欧美在线观看视频| 国产乱来视频区| 你懂的网址亚洲精品在线观看| 午夜免费鲁丝| 成人午夜精彩视频在线观看| 日本wwww免费看| 老汉色∧v一级毛片| 亚洲av欧美aⅴ国产| 91精品伊人久久大香线蕉| 午夜福利乱码中文字幕| 哪个播放器可以免费观看大片| 曰老女人黄片| 国产高清不卡午夜福利| 午夜免费鲁丝| 美女午夜性视频免费| 99久久中文字幕三级久久日本| 蜜桃国产av成人99| 男的添女的下面高潮视频| 卡戴珊不雅视频在线播放| 亚洲人成网站在线观看播放| 少妇人妻久久综合中文| 天堂俺去俺来也www色官网| 精品国产露脸久久av麻豆| 青青草视频在线视频观看| 日韩电影二区| 亚洲美女视频黄频| 一区二区三区激情视频| 亚洲av福利一区| www.熟女人妻精品国产| 久久人人97超碰香蕉20202| 18在线观看网站| 国产精品熟女久久久久浪| 国产成人精品在线电影| 精品第一国产精品| 日韩一区二区视频免费看| 十分钟在线观看高清视频www| 建设人人有责人人尽责人人享有的| 成人毛片a级毛片在线播放| 久久 成人 亚洲| 欧美老熟妇乱子伦牲交| av又黄又爽大尺度在线免费看| 晚上一个人看的免费电影| 视频在线观看一区二区三区| 亚洲欧美清纯卡通| 捣出白浆h1v1| 国产日韩一区二区三区精品不卡| 国产精品香港三级国产av潘金莲 | 自线自在国产av| 91国产中文字幕| 久久久久国产精品人妻一区二区| 中文字幕另类日韩欧美亚洲嫩草| 在线观看免费高清a一片| 黄片小视频在线播放| 国产亚洲午夜精品一区二区久久| 精品亚洲成a人片在线观看| av免费观看日本| 一边摸一边做爽爽视频免费| 国产女主播在线喷水免费视频网站| 中文字幕精品免费在线观看视频| www.av在线官网国产| 青春草亚洲视频在线观看| 久久精品aⅴ一区二区三区四区 | 中文字幕av电影在线播放| 久久久精品免费免费高清| 国产男人的电影天堂91| 精品亚洲乱码少妇综合久久| 美女主播在线视频| 免费看av在线观看网站| 国产极品天堂在线| 97人妻天天添夜夜摸| 大话2 男鬼变身卡| 欧美 亚洲 国产 日韩一| 肉色欧美久久久久久久蜜桃| 99九九在线精品视频| av有码第一页| 啦啦啦视频在线资源免费观看| 午夜福利,免费看| 成人影院久久| 亚洲国产看品久久| 高清欧美精品videossex| 巨乳人妻的诱惑在线观看| 国产97色在线日韩免费| 亚洲国产成人一精品久久久| 成人手机av| 久久人人爽人人片av| 欧美日韩一区二区视频在线观看视频在线| 大片免费播放器 马上看| 国产成人精品福利久久| 黑人欧美特级aaaaaa片| 久久久欧美国产精品| 丰满乱子伦码专区| 国产xxxxx性猛交| 中文字幕色久视频| 亚洲国产精品国产精品| 少妇人妻 视频| 国产在线一区二区三区精| 国产麻豆69| 伊人久久国产一区二区| 国产欧美日韩综合在线一区二区| 久热久热在线精品观看| 国产精品成人在线| 麻豆精品久久久久久蜜桃| 免费高清在线观看视频在线观看| 少妇人妻精品综合一区二区| 男女啪啪激烈高潮av片| 水蜜桃什么品种好| 纵有疾风起免费观看全集完整版| 老司机影院成人| 在线天堂最新版资源| 一本大道久久a久久精品| 夫妻性生交免费视频一级片| 午夜福利视频精品| 九草在线视频观看| 一区二区三区四区激情视频| 黄色一级大片看看| 丝袜美足系列| 国产一区二区激情短视频 | 午夜日韩欧美国产| 老司机影院毛片| 精品国产国语对白av| 90打野战视频偷拍视频| 丝袜美足系列| 熟女电影av网| a级毛片黄视频| 亚洲激情五月婷婷啪啪| 黄网站色视频无遮挡免费观看| 免费人妻精品一区二区三区视频| 青春草国产在线视频| 超色免费av| 亚洲av综合色区一区| 在线观看免费日韩欧美大片| 国产日韩欧美视频二区| 一区二区三区精品91| 老汉色∧v一级毛片| 日韩中字成人| 丝袜在线中文字幕| 久久精品久久久久久噜噜老黄| 99久久人妻综合| 一级毛片 在线播放| 美女午夜性视频免费| av网站在线播放免费| 一区二区日韩欧美中文字幕| 国产人伦9x9x在线观看 | 国产男人的电影天堂91| h视频一区二区三区| 丰满迷人的少妇在线观看| 国产在线视频一区二区| 亚洲,一卡二卡三卡| 女性生殖器流出的白浆| 天天躁日日躁夜夜躁夜夜| 日本-黄色视频高清免费观看| 国产精品久久久久久精品电影小说| 交换朋友夫妻互换小说| 亚洲精品成人av观看孕妇| 波多野结衣一区麻豆| 高清在线视频一区二区三区| 日韩三级伦理在线观看| 精品人妻在线不人妻| 亚洲情色 制服丝袜| 十八禁网站网址无遮挡| 国产免费一区二区三区四区乱码| 香蕉丝袜av| 水蜜桃什么品种好| 如日韩欧美国产精品一区二区三区| 欧美成人精品欧美一级黄| 菩萨蛮人人尽说江南好唐韦庄| tube8黄色片| 91久久精品国产一区二区三区| 亚洲第一青青草原| 免费观看无遮挡的男女| 国产熟女欧美一区二区| 国产 精品1| 五月伊人婷婷丁香| 一个人免费看片子|