• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    輪對(duì)系統(tǒng)的Hopf 分岔研究1)

    2021-11-10 09:49:28武世江張繼業(yè)殷中慧
    力學(xué)學(xué)報(bào) 2021年9期
    關(guān)鍵詞:轉(zhuǎn)動(dòng)慣量陀螺線性

    武世江 張繼業(yè) ,2) 隋 皓 殷中慧 胥 奇

    * (西南交通大學(xué)牽引動(dòng)力國(guó)家重點(diǎn)實(shí)驗(yàn)室,成都 610031)

    ? (西南交通大學(xué)力學(xué)與工程學(xué)院,成都 610031)

    引言

    近年來(lái)隨著高速列車運(yùn)行速度的提高,車輛系統(tǒng)的蛇行失穩(wěn)問(wèn)題越發(fā)突出,蛇形運(yùn)動(dòng)作為車輛系統(tǒng)的固有屬性,嚴(yán)重影響著車輛系統(tǒng)的運(yùn)行平穩(wěn)性、乘坐舒適性和安全性[1],對(duì)車輛系統(tǒng)進(jìn)行非線性動(dòng)力學(xué)理論方面的研究,不僅可以從車輛動(dòng)力學(xué)角度更加全面地了解蛇形運(yùn)動(dòng),而且對(duì)車輛系統(tǒng)的設(shè)計(jì)與參數(shù)優(yōu)化也具有非常重要的意義.

    在國(guó)外研究中,True[2]用延續(xù)算法求解了非線性車輛系統(tǒng)中的分岔問(wèn)題.Wagner[3]將非線性輪軌力分段函數(shù)擬合為關(guān)于橫移量的三次方與五次方的疊加函數(shù),并用該非線性輪軌函數(shù)求解了輪對(duì)系統(tǒng)的分岔圖,極大地方便了理論研究非線性輪軌接觸對(duì)輪對(duì)蛇形運(yùn)動(dòng)的影響.Zboinski 和Dusza[4-6]研究了車輛系統(tǒng)中懸掛參數(shù)、曲線半徑、踏面和車輪名義滾動(dòng)圓半徑在曲線軌道上的穩(wěn)定性.Kim 等[7]建立了31 個(gè)自由度的車輛系統(tǒng)動(dòng)力學(xué)模型,通過(guò)分岔圖研究發(fā)現(xiàn)輪對(duì)系統(tǒng)的線性臨界速度對(duì)應(yīng)亞臨界Hopf 分岔,而非線性臨界速度對(duì)應(yīng)的是一個(gè)鞍結(jié)點(diǎn).Park 等[8]利用分岔理論研究了懸掛參數(shù)與輪軌接觸關(guān)系對(duì)車輛系統(tǒng)蛇形運(yùn)動(dòng)的影響,發(fā)現(xiàn)輪軌接觸關(guān)系比懸掛參數(shù)更加影響車輛系統(tǒng)的蛇形運(yùn)動(dòng).

    在國(guó)內(nèi)研究中,張衛(wèi)華等[9-10]通過(guò)研究Poincaré 映射面上不動(dòng)點(diǎn)的穩(wěn)定性,得到了軌道車輛系統(tǒng)的周期解,并將其結(jié)果與滾動(dòng)振動(dòng)試驗(yàn)臺(tái)所得結(jié)果進(jìn)行對(duì)比分析,解釋了相關(guān)結(jié)果出現(xiàn)差異的可能原因.曾京[11]針對(duì)17 個(gè)自由度的經(jīng)典客車模型,應(yīng)用QR 算法和黃金分割法計(jì)算了該客車系統(tǒng)蛇形失穩(wěn)的臨界速度,并用打靶法對(duì)其領(lǐng)域的極限環(huán)進(jìn)行了求解.張繼業(yè)等[12-13]利用Hurwitz 行列式得到了平衡點(diǎn)失穩(wěn)的Hopf 分岔代數(shù)判據(jù),極大地方便了車輛系統(tǒng)中尋找Hopf 分岔點(diǎn)的過(guò)程.黃世凱[14]在研究輪對(duì)系統(tǒng)陀螺效應(yīng)的時(shí)候,定義了輪對(duì)系統(tǒng)的陀螺力貢獻(xiàn)率,但其并沒(méi)有從Hopf 分岔的角度研究陀螺效應(yīng).董浩等[15-16]建立了中國(guó)高速動(dòng)車組CRH2和CRH3 的轉(zhuǎn)向架和半車車輛系統(tǒng)動(dòng)力學(xué)模型,采用范式法證明了其在簡(jiǎn)單輪軌接觸關(guān)系下均存在亞臨界和超臨界Hopf 分岔,但并沒(méi)有建立整車動(dòng)力學(xué)模型,所以該結(jié)論不一定適應(yīng)整車動(dòng)力學(xué)模型.高學(xué)軍等[17-20]對(duì)車輛系統(tǒng)提出了“合成分岔圖”,研究發(fā)現(xiàn)車輛系統(tǒng)在擬周期運(yùn)動(dòng)后出現(xiàn)混沌現(xiàn)象.張波等[21-22]對(duì)輪對(duì)系統(tǒng)的陀螺效應(yīng)進(jìn)行了分析,對(duì)比了考慮陀螺效應(yīng)與不考慮陀螺效應(yīng)的分岔圖,研究發(fā)現(xiàn)陀螺力不做功,具有增穩(wěn)效果.Zeng 等[23]在研究輪對(duì)系統(tǒng)的陀螺效應(yīng)時(shí)發(fā)現(xiàn),輪對(duì)系統(tǒng)的陀螺效應(yīng)關(guān)于縱向的分量會(huì)降低系統(tǒng)的穩(wěn)定性,而關(guān)于垂向的分量有助于提高系統(tǒng)的穩(wěn)定性,兩者的綜合作用可以提高車輛系統(tǒng)的臨界速度并抑制極限環(huán)的幅值.張婷婷等[24-25]研究了單輪對(duì)系統(tǒng)的Hopf 分岔類型及其遷移機(jī)理,但該模型過(guò)于簡(jiǎn)單,沒(méi)有考慮陀螺效應(yīng)和阻尼約束.Ge 等[26]用實(shí)測(cè)踏面數(shù)據(jù)修正了輪軌非線性關(guān)系,使用MATCONT 求解了修正后的輪對(duì)系統(tǒng)的周期解,但對(duì)修正后的輪對(duì)系統(tǒng)出現(xiàn)的部分周期解缺少相關(guān)理論解釋.

    目前關(guān)于輪對(duì)系統(tǒng)非線性動(dòng)力學(xué)的文獻(xiàn)中,缺少同時(shí)考慮陀螺效應(yīng)和退化Hopf 分岔理論的研究.本文在文獻(xiàn)[3]的基礎(chǔ)上,研究輪對(duì)系統(tǒng)中有、無(wú)陀螺效應(yīng)對(duì)單參數(shù)下的Hopf 分岔類型以及雙參數(shù)下的退化Hopf 分岔的影響.

    1 考慮陀螺效應(yīng)的輪對(duì)模型

    1.1 輪對(duì)模型建立

    輪對(duì)系統(tǒng)作為機(jī)車車輛里面最簡(jiǎn)單的系統(tǒng),研究輪對(duì)系統(tǒng)可以從原理上簡(jiǎn)單的解釋蛇形運(yùn)動(dòng).如圖1 所示,假設(shè)輪對(duì)系統(tǒng)在直線軌道上做微幅振動(dòng),輪軌之間采用kalker[27]線性蠕滑模型,建立考慮陀螺效應(yīng)、剛度約束和非線性輪軌關(guān)系的輪對(duì)系統(tǒng)動(dòng)力學(xué)模型.

    圖1 輪對(duì)模型圖Fig.1 Wheelset model diagram

    記x=(y,φ)T,主要影響輪對(duì)系統(tǒng)蛇形運(yùn)動(dòng)的橫移和搖頭運(yùn)動(dòng)方程為[3]

    式中m,Iz,Iy和W分別為輪對(duì)質(zhì)量、垂向轉(zhuǎn)動(dòng)慣量、橫向轉(zhuǎn)動(dòng)慣量和軸重;r0,b,l和 λ 分別為名義滾動(dòng)圓半徑、兩滾動(dòng)圓跨距之半、左右懸掛距離之半和踏面等效錐度;kx和ky分別為縱向和橫向剛度;f11,f22,f23和f33分別為縱向蠕 滑系數(shù)、橫向蠕 滑系數(shù)、橫向自旋蠕滑系數(shù)和自旋蠕滑系數(shù);δ1和 δ2為非線性輪軌力系數(shù);v為輪對(duì)運(yùn)行速度,以上各參數(shù)取值見(jiàn)附錄A 中表A1.

    方程(1)中的矩陣G為陀螺矩陣[21],可以看出影響輪對(duì)系統(tǒng)陀螺效應(yīng)的主要參數(shù)是橫向自旋蠕滑系數(shù)和橫向轉(zhuǎn)動(dòng)慣量.本文將動(dòng)力學(xué)方程中不考慮橫向自旋蠕滑系數(shù)和橫向轉(zhuǎn)動(dòng)慣量的輪對(duì)系統(tǒng)稱為不考慮陀螺效應(yīng)的輪對(duì)系統(tǒng),動(dòng)力學(xué)方程中考慮橫向自旋蠕滑系數(shù)和橫向轉(zhuǎn)動(dòng)慣量的輪對(duì)系統(tǒng)稱為考慮陀 螺效應(yīng)的輪對(duì)系統(tǒng).

    1.2 輪對(duì)系統(tǒng)在Hopf 分岔點(diǎn)處的線性臨界速度表達(dá)式推導(dǎo)

    式中p1,p2,p3,f1,f2,g,s和c的具體表達(dá)式見(jiàn)附錄B 中式(B1)~ 式(B8).

    方程(2)的線性部分對(duì)應(yīng)的特征方程如下

    根據(jù)Hopf 分岔代數(shù)判據(jù)[12]可知,方程(4)的4 個(gè)特征值中存在一對(duì)純虛根且其余兩個(gè)根的實(shí)部均為負(fù)數(shù)的條件為

    其中 Δ3為Hurwitz 行列式.

    由方程(5) 可知,當(dāng)輪對(duì)系統(tǒng)的參數(shù)滿足ai>0 (i=0,1,···,4) 時(shí),令 Δ3=0可得關(guān)于輪對(duì)系統(tǒng)運(yùn)行速度v的一元六次方程如下

    其中b0,b1,b2和b3的具體表達(dá)式參見(jiàn)附錄B 中式(B9)~ 式(B12).

    令v2=d,由方程(6)可得關(guān)于x的一元三次方程如下

    在Hopf 分岔點(diǎn)處,輪對(duì)系統(tǒng)有且僅有一個(gè)線性臨界速度(正實(shí)數(shù)),故方程(7)中的一元三次方程的根中必須有且僅有一個(gè)正實(shí)根,根據(jù)文獻(xiàn)[28]中對(duì)一元三次方程根的討論,令可得考慮陀螺效應(yīng)的輪對(duì)系統(tǒng),在Hopf 分岔點(diǎn)處的線性臨界速度表達(dá)式為

    其中

    不考慮陀螺效應(yīng)的輪對(duì)系統(tǒng),即橫向自旋蠕滑系數(shù)和橫向轉(zhuǎn)動(dòng)慣量均為零時(shí),方程(7)中的系數(shù)b0和b1變?yōu)榱?b2和b3也會(huì)分別簡(jiǎn) 化為b22和b33,b22和b33的表達(dá)式見(jiàn)附錄B 中式(B13)和式(B14),方程(7)簡(jiǎn)化為一元一次方程

    求得不考慮陀螺效應(yīng)的輪對(duì)系統(tǒng)在Hopf 分岔點(diǎn)處的線性臨界速度表達(dá)式為

    其與文獻(xiàn)[24]中是一樣的.

    取縱向剛度為4 MN/m,其他參數(shù)取值見(jiàn)附錄A 中表A1,將參數(shù)值代入本文推導(dǎo)的考慮陀螺效應(yīng)的輪對(duì)系統(tǒng)線性臨界速度解析表達(dá)式(8)~ 式(11)與不考慮陀螺效應(yīng)的輪對(duì)系統(tǒng)線性臨界速度解析表達(dá)式(13),求得考慮陀螺效應(yīng)的輪對(duì)系統(tǒng)在Hopf 分岔點(diǎn)處的線性臨界速度值為140.5364 m/s,不考慮陀螺效應(yīng)的輪對(duì)系統(tǒng)在Hopf 分岔點(diǎn)處的線性臨界速度值為135.4532 m/s.

    同理取縱向剛度kx為4 MN/m,其他參數(shù)取值見(jiàn)附錄A 中表A1,對(duì)方程(2)的線性部分使用根軌跡法[11]求解Hopf 分岔點(diǎn)處輪對(duì)系統(tǒng)的線性臨界速度,即設(shè)初速度為v0,步長(zhǎng)為 Δv和特征值控制精為ep.令v=v0,計(jì)算速度v對(duì)應(yīng)的方程(2) 中J(v)矩陣的特征值.然后對(duì)每一個(gè)速度v對(duì)應(yīng)下的所有特征值的實(shí)部取絕對(duì)值,找出每一個(gè)速度v對(duì)應(yīng)的特征值實(shí)部絕對(duì)值的最大值 |Rmax|,若 |Rmax|≤ep,則此時(shí)的速度就是輪對(duì)系統(tǒng)在Hopf 分岔點(diǎn)處的線性臨界速度.若|Rmax|>ep,此 時(shí) 當(dāng)Rmax<0 時(shí),則 設(shè)v=v0+Δv,當(dāng)Rmax>0 時(shí),則v=v0?Δv,重復(fù)以上計(jì)算過(guò)程,直到得到滿足控制精度ep的輪對(duì)系統(tǒng)Hopf 分岔線性速度值為止.最后求得考慮陀螺效應(yīng)的輪對(duì)系統(tǒng)在Hopf 分岔點(diǎn)處的線性臨界速度值為140.5364 m/s,不考慮陀螺效應(yīng)的輪對(duì)在Hopf 分岔點(diǎn)處的線性臨界速度值為135.4532 m/s.

    該結(jié)果與本文推導(dǎo)的考慮陀螺效應(yīng)的輪對(duì)系統(tǒng)線性臨界速度解析表達(dá)式(8)~ 式(11)與不考慮陀螺效應(yīng)的輪對(duì)系統(tǒng)線性臨界速度解析表達(dá)式(13)的結(jié)果是一樣的.

    1.3 輪對(duì)系統(tǒng)的陀螺效應(yīng)參數(shù)分析

    由方程(1)中的陀螺矩陣G可知,影響輪對(duì)系統(tǒng)陀螺效應(yīng)的主要參數(shù)為橫向自旋蠕滑系數(shù)和橫向轉(zhuǎn)動(dòng)慣量,假設(shè)橫向自旋蠕滑系數(shù)和橫向轉(zhuǎn)動(dòng)慣量的數(shù)值變化不引起輪對(duì)系統(tǒng)其他參數(shù)的變化.

    取縱向剛度值為4 MN/m,橫向自旋蠕滑系數(shù)分別取0.01 MN,0.13 MN 與0.2 MN,橫向轉(zhuǎn)動(dòng)慣量的值從50 k g·m2取到150 k g·m2,其他參數(shù)取附錄A 中表A1,將其代入式(8)~ 式(11)中,得到考慮陀螺效應(yīng)的輪對(duì)系統(tǒng)中,線性臨界速度與橫向轉(zhuǎn)動(dòng)慣量的關(guān)系如圖2 所示.

    圖2 輪對(duì)系統(tǒng)線性臨界速度與橫向轉(zhuǎn)動(dòng)慣量的關(guān)系Fig.2 The relationship between the linear critical speed of the wheelset system and the lateral moment of inertia

    取縱向剛度為4 MN/m,橫向轉(zhuǎn)動(dòng)慣量分別取80 k g·m2,100 k g·m2與120 k g·m2,橫向自旋蠕滑系數(shù)的值從0.001 MN 取到0.25 MN,其他參數(shù)取附錄A 中表A1,將其代入式(8)~ 式(11)中,得到考慮陀螺效應(yīng)的輪對(duì)系統(tǒng)中,線性臨界速度與橫向自旋蠕滑系數(shù)的關(guān)系如圖3 所示.

    圖2 與圖3 中Iy為輪對(duì)系統(tǒng)的橫向轉(zhuǎn)動(dòng)慣量,v為輪對(duì)系統(tǒng)的運(yùn)行速度,f23為輪對(duì)系統(tǒng)的橫向自旋蠕滑系數(shù).由圖2 可知,在同一橫向自旋蠕滑系數(shù)下,輪對(duì)系統(tǒng)的線性臨界速度隨著橫向轉(zhuǎn)動(dòng)慣量的增大而增大,該變化趨勢(shì)比較明顯.在同一橫向轉(zhuǎn)動(dòng)慣量下,橫向自旋蠕滑系數(shù)分別為0.01 MN,0.13 MN與0.2 MN 對(duì)應(yīng)的輪對(duì)系統(tǒng)的線性臨界速度依次增大,該變化趨勢(shì)不太明顯.由圖3 可知,在同一橫向轉(zhuǎn)動(dòng)慣量下,輪對(duì)系統(tǒng)的線性臨界速度隨著橫向自旋蠕滑系數(shù)的增大而增大,該變化趨勢(shì)不太明顯.在同一橫向自旋蠕滑系數(shù)下,橫向轉(zhuǎn)動(dòng)慣量分別為80 k g·m2,100 k g·m2與120 k g·m2對(duì)應(yīng)的輪對(duì)系統(tǒng)的線性臨界速度依次增大,該變化趨勢(shì)比較明顯.

    圖3 輪對(duì)系統(tǒng)的線性臨界速度與橫向自旋蠕滑系數(shù)關(guān)系Fig.3 The relationship between the linear critical speed of the wheelset system and the lateral spin-slip coefficient

    對(duì)比圖2 與圖3 可知,橫向轉(zhuǎn)動(dòng)慣量在輪對(duì)系統(tǒng)陀螺效應(yīng)中起主導(dǎo)作用,橫向自旋蠕滑系數(shù)起次要作用.

    2 輪對(duì)系統(tǒng)第一、第二Lyapunov 系數(shù)的求解

    為更好地研究輪對(duì)系統(tǒng)在Hopf 分岔點(diǎn)處的運(yùn)動(dòng)形式,采用分岔理論中的投影法[29-30]求解輪對(duì)系統(tǒng)的第一、第二Lyapunov 系數(shù),從而方便研究輪對(duì)系統(tǒng)在單參數(shù)下的Hopf 分岔類型與雙參數(shù)下的退化Hopf 分岔類型.

    2.1 輪對(duì)系統(tǒng)第一Lyapunov 系數(shù)求解

    在輪對(duì)系統(tǒng)的Hopf 分岔點(diǎn)處,即v=vcr時(shí),方程(2) 中的矩陣J(v)的特征值中存在一對(duì)純虛根±ω0i 與兩個(gè)具有負(fù)實(shí)部的根,設(shè)矩陣J(v)的特征值為純虛根時(shí)對(duì)應(yīng)的特征向量為q=[x1,x2,x3,x4]T,滿足J(v)q=iω0q,其中

    在輪對(duì)系統(tǒng)的Hopf 分岔點(diǎn)處,即v=vcr時(shí),方程(2)中的矩陣J(v) 的轉(zhuǎn)置矩陣為JT(v),該轉(zhuǎn)置矩陣的特征值中存在一對(duì)純虛根 ± iω0和兩個(gè)具有負(fù)實(shí)部的根,設(shè)矩陣JT(v)的特征值為純虛根時(shí)對(duì)應(yīng)的特征向量為p=[x11,x22,x33,x44]T,滿足JT(v)p=?iω0p,其中

    從方程(1)中可知非線性輪軌力為關(guān)于橫移量的三次方和五次方的疊加,根據(jù)投影法[29-30]求解可得

    當(dāng)系統(tǒng)在平衡點(diǎn)發(fā)生Hopf 分岔時(shí),若第一Lyapunov 系數(shù)大于零,系統(tǒng)發(fā)生亞臨界Hopf 分岔.若第一Lyapunov 系數(shù)小于零,系統(tǒng)發(fā)生超臨界Hopf 分岔.若第一Lyapunov 系數(shù)等于零,系統(tǒng)發(fā)生退化的Hopf 分岔.故可通過(guò)計(jì)算輪對(duì)系統(tǒng)的第一Lyapunov 系數(shù)判斷系統(tǒng)發(fā)生的Hopf 分岔類型.

    2.2 輪對(duì)系統(tǒng)第二Lyapunov 系數(shù)求解

    為研究第一Lyapunov 系數(shù)等于零時(shí)輪對(duì)系統(tǒng)在退化Hopf 分岔點(diǎn)附近的Bautin 分岔形式,根據(jù)投影法[29-30]求解輪對(duì)系統(tǒng)的第二Lyapunov 系數(shù),其中輪對(duì)系統(tǒng)對(duì)應(yīng)的投影法中各系數(shù)分別如下

    3 輪對(duì)系統(tǒng)的分岔圖

    3.1 采用打靶法求解輪對(duì)系統(tǒng)分岔圖

    采用打靶法[11]求解輪對(duì)系統(tǒng)的分岔圖,其原理為假設(shè)極限環(huán)周期為T,滿足Y(t+T)=Y(t),令t=Tz,則方程(2)可以被表示為

    方程(20)滿足邊界條件Y(1)=Y(0),對(duì)方程(20)在區(qū)間[0,1]內(nèi)積分可以得到Y(jié)(1)=G(Y,T,v),使得其滿足

    通過(guò)使用得到的輪對(duì)系統(tǒng)在Hopf 分岔點(diǎn)處的線性臨界速度表達(dá)式(8)~ 式(11)與式(13),參數(shù)值代入附錄A 中表A1,計(jì)算輪對(duì)系統(tǒng)Hopf 分岔點(diǎn)處的線性臨界速度vcr.

    取初值分別為T0=2π/ω0,v0=vcr,y=y0,=0,φ=0 和=0,其中,y0為輪對(duì)橫移量初始微小擾動(dòng),使用Newton?Raphson 迭代法[31]求解方程(21),每次使用Newton?Raphson 迭代法求解方程(21)的過(guò)程中,都要用變步長(zhǎng)歐拉法[31]在區(qū)間[0,1]內(nèi)積分求解方程(21),并判斷F(Y,T,v)的范數(shù)是否滿足控制精度,若滿足則得到輪對(duì)系統(tǒng)的極限環(huán)解(輪對(duì)橫移量周期解),然后選取下一極限環(huán)的初值為y=y0+h(h為步長(zhǎng))與=0,其他值取前一極限環(huán)的值,重復(fù)循環(huán)計(jì)算最終可以得到輪對(duì)系統(tǒng)的分岔圖.

    令D=?G/?Y,當(dāng)矩陣D的特征值最大模小于1 時(shí),極限環(huán)穩(wěn)定,否則不穩(wěn)定.

    為對(duì)比考慮陀螺效應(yīng)與不考慮陀螺效應(yīng)對(duì)輪對(duì)系統(tǒng)分岔圖的影響,取輪對(duì)系統(tǒng)的縱向剛度分別為4.0 MN/m,5.0 MN/m,5.5 MN/m,6.0 MN/m,6.5 MN/m 與7.0 MN/m,其他參數(shù)值取附錄A 中表A1,采用打靶法[11]求解出不同縱向剛度值下不考慮陀螺效應(yīng)與考慮陀螺效應(yīng)的輪對(duì)系統(tǒng)分岔圖如下圖4與圖5 所示.

    圖4 不同縱向剛度下不考慮陀螺效應(yīng)的輪對(duì)系統(tǒng)分岔圖Fig.4 The bifurcation diagram of wheelset system without considering the gyroscopic action under different longitudinal stiffness

    圖5 不同縱向剛度下考慮陀螺效應(yīng)的輪對(duì)系統(tǒng)分岔圖Fig.5 The bifurcation diagram of wheelset system considering the gyroscopic action under different longitudinal stiffness

    圖中y1表示輪對(duì)系統(tǒng)的橫移量,v表示輪對(duì)系統(tǒng)的運(yùn)行速度,實(shí)線表示穩(wěn)定的極限環(huán),虛線表示不穩(wěn)定極限環(huán).vi,j(i=1,2,···,12;j=1)為輪對(duì)系統(tǒng)的線性臨界速度,其余的vi,j為輪對(duì)系統(tǒng)的非線性臨界速度,各值見(jiàn)附錄A 中表A2 與表A3.

    由方程(17)可得,圖4 中不考慮陀螺效應(yīng)的輪對(duì)系統(tǒng),縱向剛度依次取4.0 MN/m,5.0 MN/m,5.5 MN/m,6.0 MN/m,6.5 MN/m 與7.0 MN/m 時(shí),分別對(duì)應(yīng)的第一Lyapunov 系數(shù)依次為0.051 5,0.0238,0.0108,?0.0024,?0.0168 與?0.033 6.圖5 中考慮陀螺效應(yīng)的輪對(duì)系統(tǒng),縱向剛度依次取4.0 MN/m,5.0 MN/m,5.5 MN/m,6.0 MN/m,6.5 MN/m 與7.0 MN/m 時(shí),分別對(duì)應(yīng)的第一Lyapunov系 數(shù) 依 次 為0.045 2,0.017 2,0.003 7,?0.010 3,?0.0258 與?0.044 2.可知當(dāng)縱向剛度為4.0 MN/m,5.0 MN/m,5.5 MN/m 時(shí),考慮陀螺效應(yīng)與不考慮陀螺效應(yīng)的輪對(duì)系統(tǒng)第一Lyapunov 系數(shù)均大于零,即輪對(duì)系統(tǒng)在Hopf 分岔點(diǎn)處發(fā)生亞臨界Hopf 分岔.當(dāng)縱向剛度為6.0 MN/m,6.5 MN/m,7.0 MN/m 時(shí),考慮陀螺效應(yīng)與不考慮陀螺效應(yīng)的輪對(duì)系統(tǒng)第一Lyapunov 系數(shù)均小于零,即輪對(duì)系統(tǒng)在Hopf 分岔點(diǎn)處發(fā)生超臨界Hopf 分岔.

    圖4 與圖5 對(duì)比可知,輪對(duì)系統(tǒng)的縱向剛度依次取4.0 MN/m,5.0 MN/m,5.5 MN/m,6.0 MN/m,6.5 MN/m 與7.0 MN/m 時(shí),考慮陀螺效應(yīng)與不考慮陀螺效應(yīng)的輪對(duì)系統(tǒng)均經(jīng)歷了從亞臨界Hopf 分岔到超臨界Hopf 分岔的變化,在輪對(duì)系統(tǒng)中,當(dāng)縱向剛度值與其他各參數(shù)值均已知時(shí),考慮陀螺效應(yīng)的線性臨界速度和非線性臨界速度均高于不考慮陀螺效應(yīng)的線性臨界速度和非線性臨界速度,即在同一縱向剛度值下,陀螺效應(yīng)既可以提高輪對(duì)系統(tǒng)的線性臨界速度,又可以提高輪對(duì)系統(tǒng)的非線性臨界速度,陀螺效應(yīng)對(duì)輪對(duì)系統(tǒng)具有增穩(wěn)效果.

    3.2 輪對(duì)系統(tǒng)在退化Hopf 分岔點(diǎn)處的分岔圖

    由分岔理論[29-30]可知,若在Hopf 分岔點(diǎn)處系統(tǒng)滿足第一Lyapunov 系數(shù)為零,系統(tǒng)發(fā)生退化Hopf分岔.

    針對(duì)輪對(duì)系統(tǒng),若考慮陀螺效應(yīng),輪對(duì)橫向轉(zhuǎn)動(dòng)慣量取100 k g·m2,橫向自旋蠕滑系數(shù)取0.13 MN,其他參數(shù)取值見(jiàn)附錄A 中表A1,根據(jù)第一Lyapunov系數(shù)表達(dá)式(17)與Hopf 分岔點(diǎn)處的線性臨界速度表達(dá)式(8)~ 式(11),得到考慮陀螺效應(yīng)的輪對(duì)系統(tǒng)在退化Hopf 分岔點(diǎn)處的縱向剛度與輪對(duì)線性臨界速度分別為kc1與vc1

    針對(duì)輪對(duì)系統(tǒng),若不考慮陀螺效應(yīng),輪對(duì)系統(tǒng)的橫向轉(zhuǎn)動(dòng)慣量取0 k g·m2,橫向自旋蠕滑系數(shù)取0 MN,其他參數(shù)取值見(jiàn)附錄A 中表A1,根據(jù)第一Lyapunov 系數(shù)表達(dá)式(17)與Hopf 分岔點(diǎn)處的線性臨界速度表達(dá)式(13),得到不考慮陀螺效應(yīng)的輪對(duì)系統(tǒng)在退化Hopf 分岔點(diǎn)處的縱向剛度與輪對(duì)線性臨界速度分別為kc2與vc2

    采用打靶法[11]分別計(jì)算考慮陀螺效應(yīng)與不考慮陀螺效應(yīng)的輪對(duì)系統(tǒng)在退化Hopf 分岔點(diǎn)處的分岔圖如下圖6 所示.

    圖6 輪對(duì)系統(tǒng)退化Hopf 分岔圖Fig.6 Degenerate Hopf bifurcation diagram of the wheelset system

    圖中y1表示輪對(duì)系統(tǒng)的橫移量,v表示輪對(duì)系統(tǒng)的運(yùn)行速度,實(shí)線表示穩(wěn)定的極限環(huán),虛線表示不穩(wěn)定極限環(huán).v13,1與v14,1為輪對(duì)系統(tǒng)的線性臨界速度,且v13,1=vc1,v14,1=vc2,vi,j(i=13,14;j=2,3)為輪對(duì)系統(tǒng)的非線性臨界速度,其值參見(jiàn)附錄A 中表A4.

    由圖6 可知,考慮陀螺效應(yīng)與不考慮陀螺效應(yīng)的輪對(duì)系統(tǒng)在各自的退化Hopf 分岔點(diǎn)處,考慮陀螺效應(yīng)的線性臨界速度與非線性臨界速度值均高于不考慮陀螺效應(yīng)的輪對(duì)系統(tǒng).

    4 輪對(duì)系統(tǒng)的退化Hopf 分岔形式

    4.1 輪對(duì)系統(tǒng)在退化Hopf 分岔點(diǎn)處的Bautin 分岔拓?fù)湫问?/h3>

    當(dāng)?shù)谝籐yapunov 系數(shù)為零時(shí),輪對(duì)系統(tǒng)發(fā)生退化Hopf 分岔.

    根據(jù)文獻(xiàn)[30]中對(duì)于退化Hopf 分岔的討論可知,兩參數(shù)平面系統(tǒng)經(jīng)過(guò)一系列時(shí)間尺度變換最終可化簡(jiǎn)為

    當(dāng)L(μ)>0,即退化H o p f 分岔點(diǎn)處的第二Lyapunov 系數(shù)大于零時(shí),s=1 .當(dāng)L(μ)<0,即退化Hopf 分岔點(diǎn)處的第二Lyapunov 系數(shù)小于零時(shí),s=?1.

    由式(19)、式(22)與式(23)可得,考慮陀螺效應(yīng)和不考慮陀螺效應(yīng)的輪對(duì)系統(tǒng)在退化Hopf 分岔點(diǎn)處的第二Lyapunov 系數(shù)分別為?0.01478 與?0.01463,均小于零,結(jié)合方程(25)可知,有、無(wú)陀螺效應(yīng)的輪對(duì)系統(tǒng)對(duì)應(yīng)的Bautin 分岔[30]的形式均為

    對(duì)應(yīng)的Bautin 分岔見(jiàn)圖7,其中H?和H+分別對(duì)應(yīng)Hopf 分岔的第一Lyapunov 系數(shù)小于0 和第一Lyapunov 系數(shù)大于0.

    在圖7 中繞著Bautin 點(diǎn)逆時(shí)針?lè)较蚩疾?從區(qū)域①中的點(diǎn)開始,在該區(qū)域里面系統(tǒng)有單個(gè)穩(wěn)定平衡點(diǎn)而沒(méi)有極限環(huán).從區(qū)域①到區(qū)域②穿過(guò)Hopf 分岔邊界H?,出現(xiàn)唯一穩(wěn)定極限環(huán).當(dāng)穿過(guò)Hopf 分岔邊界H+進(jìn)入?yún)^(qū)域③時(shí),該穩(wěn)定的極限環(huán)依然存在,此時(shí)平衡點(diǎn)恢復(fù)它的穩(wěn)定性,同時(shí)在第一個(gè)環(huán)內(nèi)部額外產(chǎn)生了一個(gè)不穩(wěn)定極限環(huán),兩個(gè)具有相反穩(wěn)定性的環(huán)在區(qū)域③中存在并在曲線T上相遇消失而留下單個(gè)穩(wěn)定平衡點(diǎn),這就走完了一圈.

    圖7 Bautin 分岔圖(ξ=?1)Fig.7 Bautin bifurcation diagram (ξ=?1)

    在圖7 中每次穿越 β1軸時(shí)系統(tǒng)的第一Lyapunov 系數(shù)都會(huì)出現(xiàn)變號(hào),若逆時(shí)針?lè)较虼┰?β1負(fù)半軸,系統(tǒng)從亞臨界Hopf 分岔轉(zhuǎn)變?yōu)槌R界Hopf 分岔,若逆時(shí)針穿越 β1正半軸,系統(tǒng)從超臨界Hopf 分岔轉(zhuǎn)變?yōu)閬喤R界Hopf 分岔.這就是系統(tǒng)在雙參數(shù)下,由亞臨界Hopf 分岔到超臨界Hopf 分岔,再?gòu)某R 界Hopf 分岔到亞臨界Hopf 分岔的遷移轉(zhuǎn)化機(jī)理.

    4.2 輪對(duì)系統(tǒng)考慮陀螺效應(yīng)與不考慮陀螺效應(yīng)時(shí)在退化Hopf 分岔點(diǎn)附近的Bautin 分岔拓?fù)鋱D對(duì)比

    通過(guò)式(26)~ 式(30)中的坐標(biāo)變化,得到考慮陀螺效應(yīng)的輪對(duì)系統(tǒng)在運(yùn)行速度與縱向剛度坐標(biāo)系下的Bautin 分岔拓?fù)鋱D如圖8 所示.

    圖8 輪對(duì)系統(tǒng)考慮陀螺效應(yīng)時(shí)的Bautin 分岔拓?fù)鋱DFig.8 Bautin bifurcation topology diagram of wheelset system when considering gyroscopic action

    系統(tǒng)中若存在穩(wěn)定的周期解,其相圖必然存在,在圖8 的區(qū)域①中取一個(gè)點(diǎn)(170 m/s,5.8 MN/m),在區(qū)域②中取一個(gè)點(diǎn)(170 m/s,5.2 MN/m),在區(qū)域③中取一個(gè)點(diǎn)(160 m/s,5.13 MN/m),在T曲線上取一個(gè)點(diǎn)(160 m/s,5544590 N/m),分別得到對(duì)應(yīng)的相圖如圖9~ 圖12 所示.

    圖9 圖8 中區(qū)域①對(duì)應(yīng)的相圖Fig.9 Phase diagram corresponding to area ①in Fig 8

    圖10 圖8 中區(qū)域②對(duì)應(yīng)的相圖Fig.10 Phase diagram corresponding to area ② in Fig 8

    圖11 圖8 中區(qū)域③對(duì)應(yīng)的相圖Fig.11 Phase diagram corresponding to area ③in Fig 8

    圖12 圖8 中T 區(qū)域?qū)?yīng)的相圖Fig.12 Phase diagram corresponding to the T region in Fig 8

    通過(guò)式(26)~ 式(30)中的坐標(biāo)變化,得到不考慮陀螺效應(yīng)的輪對(duì)系統(tǒng)在運(yùn)行速度與縱向剛度坐標(biāo)系下的Bautin 分岔拓?fù)鋱D如圖13 所示.

    在圖13 的區(qū)域①中取點(diǎn)(170 m/s,6.5 MN/m),在區(qū)域②中取點(diǎn)(170 m/s,5.5 MN/m),在區(qū)域③中取點(diǎn)(160 m/s,5.54 MN/m),在T曲線上取點(diǎn)(160.3 m/s,5558921 N/m),分別得到對(duì)應(yīng)的相圖如圖14~圖17 所示.

    圖13 輪對(duì)系統(tǒng)不考慮陀螺效應(yīng)時(shí)的Bautin 分岔拓?fù)鋱DFig.13 Bautin bifurcation topology diagram of wheelset system without considering gyroscopic action

    圖14 圖9 中區(qū)域①對(duì)應(yīng)的相圖Fig.14 Phase diagram corresponding to area ①in Fig 9

    圖15 圖9 中區(qū)域②對(duì)應(yīng)的相圖Fig.15 Phase diagram corresponding to area ② in Fig 9

    圖16 圖9 中區(qū)域③對(duì)應(yīng)的相圖Fig.16 Phase diagram corresponding to area ③in Fig 9

    圖17 圖9 中T 區(qū)域?qū)?yīng)的相圖Fig.17 Phase diagram corresponding to the T region in Fig 9

    圖8 與圖13 分別展示了考慮陀螺效應(yīng)與不考慮陀螺效應(yīng)的輪對(duì)系統(tǒng)在退化Hopf 分岔點(diǎn)附近,依靠雙參數(shù)(縱向速度和縱向剛度)從亞臨界Hopf 分岔到超臨界Hopf 分岔,再?gòu)某R界Hopf 分岔到亞臨界Hopf 分岔的轉(zhuǎn)化過(guò)程.

    由圖9~ 圖12 可知,考慮陀螺效應(yīng)的輪對(duì)系統(tǒng),其在退化Hopf 分岔點(diǎn)附近的Bautin 分岔拓?fù)鋱D的區(qū)域①中的點(diǎn)具有單個(gè)穩(wěn)定平衡點(diǎn).區(qū)域②中的點(diǎn)具有單個(gè)穩(wěn)定極限環(huán).區(qū)域③中的點(diǎn)具有單個(gè)穩(wěn)定極限環(huán)和單個(gè)穩(wěn)定平衡點(diǎn),T曲線上只有單個(gè)穩(wěn)定平衡點(diǎn).該結(jié)論與圖7 中的理論結(jié)果是一致的.

    由圖14~ 圖17 可知,不考慮陀螺效應(yīng)的輪對(duì)系統(tǒng),其在退化Hopf 分岔點(diǎn)附近的Bautin 分岔拓?fù)鋱D的區(qū)域①中的點(diǎn)具有單個(gè)穩(wěn)定平衡點(diǎn).區(qū)域②中的點(diǎn)具有單個(gè)穩(wěn)定極限環(huán).區(qū)域③中的點(diǎn)具有單個(gè)穩(wěn)定極限環(huán)和單個(gè)穩(wěn)定平衡點(diǎn),T曲線上只有單個(gè)穩(wěn)定平衡點(diǎn).該結(jié)論與圖7 中的理論結(jié)果是一致的.

    由圖8~ 圖17 可知,陀螺效應(yīng)將改變輪對(duì)系統(tǒng)的退化Hopf 分岔點(diǎn),但對(duì)于在退化Hopf 分岔點(diǎn)附近的Bautin 分岔形式影響不大.

    5 結(jié)論

    本文基于Hopf 分岔代數(shù)判據(jù)、分岔理論和打靶法,分別得到考慮陀螺效應(yīng)與不考慮陀螺效的輪對(duì)系統(tǒng)Hopf 分岔點(diǎn)解析表達(dá)式、在不同縱向剛度下的分岔圖和在退化Hopf 分岔點(diǎn)附近的Bautin 分岔拓?fù)鋱D.發(fā)現(xiàn)影響輪對(duì)系統(tǒng)陀螺效應(yīng)的主要參數(shù)是輪對(duì)系統(tǒng)的橫向轉(zhuǎn)動(dòng)慣量,次要參數(shù)是輪對(duì)系統(tǒng)的橫向自旋蠕滑系數(shù).陀螺效應(yīng)不僅可以提高輪對(duì)系統(tǒng)的線性臨界速度,也可以提高輪對(duì)系統(tǒng)的非線性臨界速度,即陀螺效應(yīng)對(duì)輪對(duì)系統(tǒng)的運(yùn)動(dòng)穩(wěn)定性具有增穩(wěn)作用.陀螺效應(yīng)會(huì)改變輪對(duì)系統(tǒng)的退化Hopf 分岔點(diǎn),但對(duì)退化Hopf 分岔點(diǎn)附近的Bautin分岔形式影響不大.

    附錄A

    附表 A1 輪對(duì)參數(shù)表Table A1 Wheelset parameter list

    附表 A2 圖4 中各速度值Table A2 Values of each speed in Fig.4

    附表 A3 圖5 中各速度值Table A3 Values of each speed in Fig.5

    附表 A4 圖6 中各速度值Table A4 Values of each speed in Fig.6

    附錄B

    猜你喜歡
    轉(zhuǎn)動(dòng)慣量陀螺線性
    漸近線性Klein-Gordon-Maxwell系統(tǒng)正解的存在性
    線性回歸方程的求解與應(yīng)用
    差值法巧求剛體轉(zhuǎn)動(dòng)慣量
    三線擺測(cè)剛體轉(zhuǎn)動(dòng)慣量誤差分析及改進(jìn)
    做個(gè)紙陀螺
    玩陀螺
    陀螺轉(zhuǎn)轉(zhuǎn)轉(zhuǎn)
    軍事文摘(2018年24期)2018-12-26 00:58:18
    二階線性微分方程的解法
    我最喜歡的陀螺
    基于扭擺振動(dòng)的轉(zhuǎn)動(dòng)慣量識(shí)別方法
    亚洲熟妇中文字幕五十中出| 国产精品久久久人人做人人爽| 欧美一级a爱片免费观看看| 国产麻豆成人av免费视频| 午夜亚洲福利在线播放| 亚洲av美国av| 午夜两性在线视频| 又黄又爽又免费观看的视频| 精品99又大又爽又粗少妇毛片 | 两个人的视频大全免费| 日本三级黄在线观看| 在线看三级毛片| 久久天躁狠狠躁夜夜2o2o| 久久精品影院6| 黄色 视频免费看| 国产精品一区二区免费欧美| 成人无遮挡网站| 1024香蕉在线观看| 国产成人系列免费观看| av天堂在线播放| 哪里可以看免费的av片| 国产男靠女视频免费网站| 91九色精品人成在线观看| 成人鲁丝片一二三区免费| 国产精品 国内视频| 99在线人妻在线中文字幕| 2021天堂中文幕一二区在线观| 国产精品国产高清国产av| 亚洲天堂国产精品一区在线| 中国美女看黄片| 长腿黑丝高跟| 欧美日本亚洲视频在线播放| 又黄又爽又免费观看的视频| 国产又黄又爽又无遮挡在线| 一进一出抽搐动态| 69av精品久久久久久| 国产精品,欧美在线| 亚洲精品美女久久久久99蜜臀| 亚洲成人精品中文字幕电影| 国产精品1区2区在线观看.| 午夜久久久久精精品| 桃红色精品国产亚洲av| 亚洲熟妇中文字幕五十中出| 婷婷精品国产亚洲av在线| 亚洲国产日韩欧美精品在线观看 | 视频区欧美日本亚洲| 国产成人系列免费观看| 女同久久另类99精品国产91| 精品福利观看| 不卡av一区二区三区| 久久精品亚洲精品国产色婷小说| 精品国产乱子伦一区二区三区| 国产人伦9x9x在线观看| 国产成人aa在线观看| 69av精品久久久久久| 亚洲av第一区精品v没综合| 97超视频在线观看视频| 婷婷六月久久综合丁香| 午夜免费成人在线视频| 人人妻,人人澡人人爽秒播| 12—13女人毛片做爰片一| 精品一区二区三区视频在线观看免费| 99国产精品一区二区三区| 亚洲中文日韩欧美视频| 成年免费大片在线观看| 操出白浆在线播放| 精品一区二区三区四区五区乱码| 亚洲精华国产精华精| www.自偷自拍.com| av天堂中文字幕网| 国产精品电影一区二区三区| 制服人妻中文乱码| 成人三级做爰电影| 精品无人区乱码1区二区| 又大又爽又粗| 麻豆国产97在线/欧美| 亚洲熟妇熟女久久| 色噜噜av男人的天堂激情| 身体一侧抽搐| 18禁观看日本| 人妻夜夜爽99麻豆av| 网址你懂的国产日韩在线| 国产精品99久久久久久久久| 在线国产一区二区在线| 国产成人欧美在线观看| 老司机午夜福利在线观看视频| 精品久久蜜臀av无| 婷婷丁香在线五月| 精品国内亚洲2022精品成人| 99久久精品一区二区三区| 亚洲欧美日韩东京热| 变态另类成人亚洲欧美熟女| 亚洲中文字幕日韩| 男人舔奶头视频| 热99在线观看视频| 黄片小视频在线播放| 九九久久精品国产亚洲av麻豆 | 午夜免费成人在线视频| 日韩精品青青久久久久久| 欧美日韩综合久久久久久 | 色精品久久人妻99蜜桃| 久久亚洲真实| av视频在线观看入口| 日日干狠狠操夜夜爽| 国产精品女同一区二区软件 | 国产三级在线视频| 老熟妇仑乱视频hdxx| 亚洲国产高清在线一区二区三| www日本在线高清视频| 波多野结衣巨乳人妻| 国产av麻豆久久久久久久| 久久午夜综合久久蜜桃| 国产激情久久老熟女| 免费在线观看成人毛片| 亚洲欧美精品综合久久99| 国产高清三级在线| 脱女人内裤的视频| 精品国产乱子伦一区二区三区| 国产精品野战在线观看| 怎么达到女性高潮| 两个人看的免费小视频| 日本一本二区三区精品| 国产人伦9x9x在线观看| 怎么达到女性高潮| 高潮久久久久久久久久久不卡| 国产精品电影一区二区三区| 又黄又粗又硬又大视频| 国产乱人伦免费视频| 757午夜福利合集在线观看| netflix在线观看网站| 成年免费大片在线观看| 嫩草影视91久久| 韩国av一区二区三区四区| 老司机午夜福利在线观看视频| 国模一区二区三区四区视频 | 999久久久国产精品视频| 国产精品一区二区精品视频观看| svipshipincom国产片| 日本三级黄在线观看| 很黄的视频免费| 欧美成人一区二区免费高清观看 | 免费在线观看成人毛片| 精品熟女少妇八av免费久了| 嫩草影院入口| 欧美性猛交黑人性爽| 国产欧美日韩一区二区三| 日本免费一区二区三区高清不卡| 国产成+人综合+亚洲专区| 中文字幕高清在线视频| 国产 一区 欧美 日韩| 国产精品久久电影中文字幕| 欧美极品一区二区三区四区| 亚洲成人久久爱视频| 九色成人免费人妻av| 制服丝袜大香蕉在线| 我的老师免费观看完整版| 久久久久亚洲av毛片大全| 国产精品美女特级片免费视频播放器 | 日韩人妻高清精品专区| 一本综合久久免费| 小蜜桃在线观看免费完整版高清| 国产高清三级在线| 99久久精品国产亚洲精品| 日本一二三区视频观看| 丝袜人妻中文字幕| 亚洲国产欧美一区二区综合| 在线永久观看黄色视频| 91老司机精品| 午夜福利在线观看免费完整高清在 | 欧美中文日本在线观看视频| 无人区码免费观看不卡| a在线观看视频网站| 18禁黄网站禁片免费观看直播| 亚洲午夜精品一区,二区,三区| 欧美色欧美亚洲另类二区| 欧美zozozo另类| 国产精品爽爽va在线观看网站| 日韩三级视频一区二区三区| 亚洲av免费在线观看| 琪琪午夜伦伦电影理论片6080| 一二三四社区在线视频社区8| 日韩欧美三级三区| 午夜福利18| 少妇丰满av| 1024香蕉在线观看| 国产精品久久久人人做人人爽| 三级男女做爰猛烈吃奶摸视频| 亚洲欧美日韩东京热| 亚洲自偷自拍图片 自拍| 精品久久久久久久久久免费视频| 日日摸夜夜添夜夜添小说| 婷婷丁香在线五月| 免费看日本二区| 亚洲欧美激情综合另类| 18禁黄网站禁片午夜丰满| e午夜精品久久久久久久| 欧美中文综合在线视频| 国产成人av教育| 一进一出抽搐动态| 国产亚洲欧美98| 夜夜夜夜夜久久久久| 色视频www国产| 欧美色欧美亚洲另类二区| 精品一区二区三区四区五区乱码| 又爽又黄无遮挡网站| 国产69精品久久久久777片 | 岛国在线免费视频观看| 88av欧美| 丰满人妻一区二区三区视频av | 中文字幕精品亚洲无线码一区| 狂野欧美激情性xxxx在线观看| 我要看日韩黄色一级片| 日日啪夜夜撸| 精品一区二区三区人妻视频| 欧美日韩一区二区视频在线观看视频在线 | 久久精品久久精品一区二区三区| 成年女人看的毛片在线观看| 高清毛片免费看| 狠狠狠狠99中文字幕| 国产av不卡久久| 在线观看66精品国产| 男女那种视频在线观看| 丰满少妇做爰视频| 亚洲欧美日韩卡通动漫| 国产精品熟女久久久久浪| 亚洲精品一区蜜桃| 色视频www国产| 蜜桃亚洲精品一区二区三区| 建设人人有责人人尽责人人享有的 | 国产精品一及| 国产免费福利视频在线观看| 网址你懂的国产日韩在线| 最近中文字幕2019免费版| 欧美区成人在线视频| 亚洲不卡免费看| 最近手机中文字幕大全| 精品久久久久久久久av| 国产亚洲5aaaaa淫片| 欧美精品一区二区大全| 精品国产露脸久久av麻豆 | 噜噜噜噜噜久久久久久91| 久久99精品国语久久久| 91狼人影院| 精品久久久久久久人妻蜜臀av| 九九爱精品视频在线观看| 精品一区二区三区视频在线| 久久精品国产自在天天线| 午夜福利网站1000一区二区三区| 欧美极品一区二区三区四区| 国产视频首页在线观看| 亚洲中文字幕日韩| 国产乱人偷精品视频| 亚洲欧美日韩高清专用| 最近中文字幕高清免费大全6| 99在线人妻在线中文字幕| 久久国产乱子免费精品| h日本视频在线播放| 亚洲欧美成人精品一区二区| 免费看日本二区| 久久久色成人| 久久99热这里只频精品6学生 | 亚洲国产最新在线播放| 美女黄网站色视频| 亚洲乱码一区二区免费版| 成人亚洲精品av一区二区| 国产片特级美女逼逼视频| 亚洲av免费高清在线观看| 国产黄a三级三级三级人| 村上凉子中文字幕在线| 身体一侧抽搐| 国产精品综合久久久久久久免费| 高清午夜精品一区二区三区| 真实男女啪啪啪动态图| 精品久久久噜噜| 国产综合懂色| 久久精品国产亚洲av天美| 视频中文字幕在线观看| ponron亚洲| 成人毛片60女人毛片免费| 三级国产精品欧美在线观看| 国产精品电影一区二区三区| 久久久久久久亚洲中文字幕| 中文在线观看免费www的网站| 亚洲精品一区蜜桃| 国产真实乱freesex| eeuss影院久久| 亚洲国产日韩欧美精品在线观看| 九九爱精品视频在线观看| 精品99又大又爽又粗少妇毛片| 99久国产av精品| 干丝袜人妻中文字幕| 免费在线观看成人毛片| 麻豆av噜噜一区二区三区| 国产在视频线精品| 一级毛片我不卡| 久久久久网色| 久久99热6这里只有精品| 色视频www国产| 又爽又黄无遮挡网站| 亚洲国产精品国产精品| 国产乱来视频区| 美女高潮的动态| 性插视频无遮挡在线免费观看| 青春草亚洲视频在线观看| 亚洲内射少妇av| 听说在线观看完整版免费高清| 在线a可以看的网站| 99久国产av精品| 精品无人区乱码1区二区| 禁无遮挡网站| 国产在视频线精品| 中文字幕熟女人妻在线| 日韩av不卡免费在线播放| 国产精品1区2区在线观看.| 国产亚洲av片在线观看秒播厂 | av在线天堂中文字幕| 亚洲成人av在线免费| 国产激情偷乱视频一区二区| 国产又黄又爽又无遮挡在线| 免费观看的影片在线观看| 少妇猛男粗大的猛烈进出视频 | 精品久久久久久久久久久久久| 午夜激情福利司机影院| 18禁裸乳无遮挡免费网站照片| 精品久久国产蜜桃| 91久久精品电影网| 久久欧美精品欧美久久欧美| 久久久久久久久久久免费av| 国产熟女欧美一区二区| 欧美高清成人免费视频www| 亚洲在线观看片| 日日摸夜夜添夜夜添av毛片| 三级男女做爰猛烈吃奶摸视频| 国产精品国产三级专区第一集| 精品人妻视频免费看| 国产精品国产三级国产av玫瑰| 国产精品爽爽va在线观看网站| 国产淫片久久久久久久久| 欧美色视频一区免费| 蜜桃久久精品国产亚洲av| 国产伦精品一区二区三区四那| 九九在线视频观看精品| 国内精品美女久久久久久| 五月伊人婷婷丁香| 长腿黑丝高跟| 亚洲精品国产av成人精品| 欧美3d第一页| 直男gayav资源| 岛国毛片在线播放| 麻豆av噜噜一区二区三区| 亚洲美女搞黄在线观看| 99国产精品一区二区蜜桃av| 中国国产av一级| 观看美女的网站| 毛片女人毛片| 一级黄片播放器| 国产黄色视频一区二区在线观看 | 亚洲国产精品久久男人天堂| 麻豆成人av视频| 日韩一本色道免费dvd| 国产极品天堂在线| 亚洲一级一片aⅴ在线观看| 欧美xxxx黑人xx丫x性爽| 国产乱来视频区| 大又大粗又爽又黄少妇毛片口| 小说图片视频综合网站| 精品不卡国产一区二区三区| 亚洲经典国产精华液单| 成年女人看的毛片在线观看| 国产成人freesex在线| 人妻制服诱惑在线中文字幕| 国产免费福利视频在线观看| 91久久精品电影网| 日韩av不卡免费在线播放| 日本午夜av视频| 在线免费观看的www视频| 99久久无色码亚洲精品果冻| 午夜精品国产一区二区电影 | 亚洲电影在线观看av| 国产精品久久电影中文字幕| 亚洲国产精品久久男人天堂| 国产久久久一区二区三区| 亚洲美女搞黄在线观看| 春色校园在线视频观看| 成人av在线播放网站| 国内精品宾馆在线| 特大巨黑吊av在线直播| 国产在线一区二区三区精 | 岛国毛片在线播放| 午夜福利在线观看免费完整高清在| 夜夜看夜夜爽夜夜摸| 日本黄色视频三级网站网址| 国产爱豆传媒在线观看| 神马国产精品三级电影在线观看| 91av网一区二区| 精品久久久久久久久av| 春色校园在线视频观看| 欧美成人精品欧美一级黄| 亚洲不卡免费看| 大又大粗又爽又黄少妇毛片口| 特大巨黑吊av在线直播| 99热精品在线国产| 老司机影院毛片| 亚洲色图av天堂| 夜夜爽夜夜爽视频| 天堂影院成人在线观看| 韩国高清视频一区二区三区| 热99re8久久精品国产| av线在线观看网站| 亚洲人成网站在线观看播放| 国产精品一区二区性色av| 国产午夜精品久久久久久一区二区三区| 九九在线视频观看精品| 你懂的网址亚洲精品在线观看 | 色综合色国产| 久久久久久久久久久免费av| 亚洲乱码一区二区免费版| 黄色日韩在线| 岛国毛片在线播放| 欧美日韩一区二区视频在线观看视频在线 | 欧美xxxx黑人xx丫x性爽| 久久久久久久久久黄片| 久久精品综合一区二区三区| 嫩草影院入口| 国产免费又黄又爽又色| 九九在线视频观看精品| 国产伦精品一区二区三区视频9| 欧美又色又爽又黄视频| 国产精品av视频在线免费观看| 国产亚洲午夜精品一区二区久久 | 岛国在线免费视频观看| 最近的中文字幕免费完整| 亚洲美女搞黄在线观看| 精品国产露脸久久av麻豆 | 老师上课跳d突然被开到最大视频| 久久人人爽人人片av| 日韩欧美国产在线观看| 三级毛片av免费| 色尼玛亚洲综合影院| 国产成人freesex在线| 久久这里有精品视频免费| 久久久久久久久久成人| 日韩国内少妇激情av| 精品人妻偷拍中文字幕| 国产亚洲最大av| 欧美xxxx黑人xx丫x性爽| 精品久久久久久久久久久久久| 秋霞在线观看毛片| 国产又黄又爽又无遮挡在线| 又爽又黄无遮挡网站| 成人一区二区视频在线观看| av在线蜜桃| 日韩成人伦理影院| 国产激情偷乱视频一区二区| 中文天堂在线官网| 超碰av人人做人人爽久久| 一本一本综合久久| 亚洲在线观看片| 在线a可以看的网站| 亚洲国产精品专区欧美| 长腿黑丝高跟| 99热这里只有是精品在线观看| 日本熟妇午夜| 日本黄大片高清| 99九九线精品视频在线观看视频| 啦啦啦啦在线视频资源| 人妻制服诱惑在线中文字幕| 九色成人免费人妻av| 麻豆乱淫一区二区| 久久久久国产网址| 国产一区二区在线av高清观看| 秋霞在线观看毛片| 高清视频免费观看一区二区 | 免费观看精品视频网站| 午夜视频国产福利| 国产熟女欧美一区二区| 亚洲欧美精品自产自拍| 亚洲欧美日韩无卡精品| 免费av毛片视频| 噜噜噜噜噜久久久久久91| 亚洲婷婷狠狠爱综合网| 成人无遮挡网站| 99久久成人亚洲精品观看| 中文资源天堂在线| 22中文网久久字幕| 日本wwww免费看| 欧美日韩精品成人综合77777| 99久久成人亚洲精品观看| 国产乱人偷精品视频| 日韩人妻高清精品专区| 亚洲av一区综合| АⅤ资源中文在线天堂| 久久综合国产亚洲精品| 亚洲婷婷狠狠爱综合网| 日韩一区二区三区影片| 日本一本二区三区精品| 欧美日韩国产亚洲二区| 老司机影院毛片| 少妇人妻一区二区三区视频| 亚洲精品国产成人久久av| 国产高清有码在线观看视频| 美女cb高潮喷水在线观看| 晚上一个人看的免费电影| 99热6这里只有精品| 校园人妻丝袜中文字幕| 久久久国产成人精品二区| 特级一级黄色大片| 一个人看视频在线观看www免费| 国产午夜精品一二区理论片| av播播在线观看一区| 国产精品女同一区二区软件| 国产精品美女特级片免费视频播放器| 国产高清三级在线| 国产伦精品一区二区三区四那| 色视频www国产| 夜夜爽夜夜爽视频| 成人毛片a级毛片在线播放| 99在线人妻在线中文字幕| 麻豆乱淫一区二区| 韩国高清视频一区二区三区| 亚洲av不卡在线观看| 女人久久www免费人成看片 | 久久精品熟女亚洲av麻豆精品 | 日本一二三区视频观看| 高清毛片免费看| 观看免费一级毛片| 亚洲欧美日韩东京热| 七月丁香在线播放| 少妇丰满av| 国内精品美女久久久久久| 丰满人妻一区二区三区视频av| 最后的刺客免费高清国语| 性插视频无遮挡在线免费观看| av国产久精品久网站免费入址| 中文字幕制服av| 日本黄色视频三级网站网址| 日韩制服骚丝袜av| 91久久精品国产一区二区三区| 国产老妇伦熟女老妇高清| 亚洲欧美清纯卡通| 久久精品国产99精品国产亚洲性色| 少妇熟女aⅴ在线视频| 亚洲成色77777| 午夜福利在线观看免费完整高清在| 变态另类丝袜制服| 美女高潮的动态| 成人美女网站在线观看视频| 成人高潮视频无遮挡免费网站| 综合色av麻豆| 亚洲图色成人| 国产亚洲5aaaaa淫片| 99国产精品一区二区蜜桃av| 国产综合懂色| 午夜福利在线在线| 最近视频中文字幕2019在线8| 春色校园在线视频观看| 国产成人a区在线观看| 精品一区二区三区人妻视频| 男女边吃奶边做爰视频| 欧美成人午夜免费资源| 伦理电影大哥的女人| 国产男人的电影天堂91| 久久国内精品自在自线图片| 国产色爽女视频免费观看| 男人舔奶头视频| 嫩草影院入口| 欧美日本视频| 国产精品三级大全| 国产精品永久免费网站| 国产精品综合久久久久久久免费| 亚州av有码| 性插视频无遮挡在线免费观看| a级毛色黄片| 波野结衣二区三区在线| 成年女人永久免费观看视频| 少妇熟女欧美另类| 在线天堂最新版资源| 亚洲av电影在线观看一区二区三区 | 特级一级黄色大片| 国产淫语在线视频| 中文亚洲av片在线观看爽| 国内揄拍国产精品人妻在线| 久久国内精品自在自线图片| 欧美+日韩+精品| 一区二区三区高清视频在线| 免费播放大片免费观看视频在线观看 | 国产视频内射| 午夜福利高清视频| 亚洲高清免费不卡视频| 久久久久网色| 国产伦理片在线播放av一区| 国产成年人精品一区二区| 精品免费久久久久久久清纯| 欧美丝袜亚洲另类| 日韩一区二区视频免费看| 日本五十路高清| 噜噜噜噜噜久久久久久91| 精品熟女少妇av免费看| 97人妻精品一区二区三区麻豆| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产欧美另类精品又又久久亚洲欧美| 国产淫片久久久久久久久| 欧美+日韩+精品| 在线免费观看的www视频| 2021少妇久久久久久久久久久| 免费看日本二区| 尾随美女入室| 国产精品一区二区三区四区久久| 久久草成人影院| 日韩av不卡免费在线播放| 亚洲va在线va天堂va国产| 天堂影院成人在线观看| 男人舔奶头视频| 精品免费久久久久久久清纯| 在线播放国产精品三级|