• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Association between chromosomal aberration of COX8C and tethered spinal cord syndrome: arraybased comparative genomic hybridization analysis

    2016-12-01 09:23:40QiujiongZhaoShaocongBaiChengChengBenzhangTaoLekaiWangShuangLiangLingYinXingyiHangAijiaShangDepartmentofNeurosurgeryChinesePLAGeneralHospitalBeijingChina2iGeneTechBiotechnologyCoLtdBeijingChinaDepartmentofNeurology

    Qiu-jiong Zhao, Shao-cong Bai, Cheng Cheng Ben-zhang Tao Le-kai Wang Shuang Liang Ling Yin, Xing-yi Hang, Ai-jia Shang Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China2 iGeneTech Biotechnology Co., Ltd., Beijing, China Department of Neurology, Chinese PLA General Hospital, Beijing, China

    Association between chromosomal aberration of COX8C and tethered spinal cord syndrome: arraybased comparative genomic hybridization analysis

    Qiu-jiong Zhao1,#, Shao-cong Bai1,#, Cheng Cheng1, Ben-zhang Tao1, Le-kai Wang1, Shuang Liang1, Ling Yin3, Xing-yi Hang2,*, Ai-jia Shang1,*
    1 Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
    2 iGeneTech Biotechnology Co., Ltd., Beijing, China
    3 Department of Neurology, Chinese PLA General Hospital, Beijing, China

    How to cite this article: Zhao QJ, Bai SC, Cheng C, Tao BZ, Wang LK, Liang S, Yin L, Hang XY, Shang AJ (2016) Association between chromosomal aberration of COX8C and tethered spinal cord syndrome∶ array-based comparative genomic hybridization analysis. Neural Regen Res 11(8)∶1333-1338.

    Ai-jia Shang, M.D., Ph.D. or Xing-yi Hang, Ph.D.,

    shangaj@163.com or

    xingyi.hang@igenetech.com.

    #These authors contributed

    equally to this study.

    orcid:

    0000-0002-4895-5442

    (Ai-jia Shang)

    0000-0002-3736-2203

    (Xing-yi Hang)

    Accepted: 2016-08-09

    Graphical Abstract

    Copy number variations have been found in patients with neural tube abnormalities. In this study, we performed genome-wide screening using high-resolution array-based comparative genomic hybridization in three children with tethered spinal cord syndrome and two healthy parents. Of eight copy number variations, four were non-polymorphic. These non-polymorphic copy number variations were associated with Angelman and Prader-Willi syndromes, and microcephaly. Gene function enrichment analysis revealed that COX8C, a gene associated with metabolic disorders of the nervous system, was located in the copy number variation region of Patient 1. Our results indicate that array-based comparative genomic hybridization can be used to diagnose tethered spinal cord syndrome. Our results may help determine the pathogenesis of tethered spinal cord syndrome and prevent occurrence of this disease.

    nerve regeneration; neural tube defects; tethered spinal cord syndrome; comparative genomic hybridization; COX8C; gene function enrichment analysis; database of genomic variants; database of DECIPHER; copy number variations; neural regeneration

    Introduction

    Tethered spinal cord syndrome (TCS) is a neurodevelopmental disorder that results in spinal cord malformation (Payne, 2007; Cearns et al., 2016). TCS is classified as a neural tube defect, and although the incidence of neural tube defects is approximately 1% worldwide (Feuchtbaum et al., 1999; Tun?bilek et al., 1999; van der Put et al., 2001; Khoshnood et al., 2015; Atta et al., 2016), infants born with neural tube defects account for 20-25% of all congenital malformations (Laharwal et al., 2016). The causes of neural tube defects are multivariate, yet to date there is no convincing mechanistic evidence for their occurrence. Some possible contributing factors include gene mutations, chromosomal abnormalities, and environmental factors (Bassuk and Kibar, 2009; Joó, 2009a, b; Molloy et al., 2009; Wen et al., 2009). Recent studies have revealed novel risk factors for neural tube defects including heterozygous missense mutations in the genes, VANGL1 and FUZZY (Bartsch et al., 2012; Seo et al., 2015), as well as maternal folic acid deficiency (Bartsch et al., 2012; Seo et al., 2015). Altered methylation of MGMT, aDNA repair gene, is also associated with neural tube defects (Tran et al., 2012). Moreover, abnormal expression of genes coding for zinc finger proteins is reported to be risk factors (Grinberg and Millen, 2005; Costa-Lima et al., 2008).

    Previous studies have shown that chromosomal imbalances due to genomic instability are closely associated with neural developmental disorders (Au et al., 2010; Zhao et al., 2013). Copy number variations (CNVs) are found in patients with neural tube abnormalities in cerebral and spinal sections (Bassuk et al., 2013; Chen et al., 2013). Array-based comparative genomic hybridization (aCGH) is a modern technique for molecular karyotype analysis that combines conventional comparative genomic hybridization and microarray analysis (Saberi et al., 2014). In contrast to conventional hybridization, aCGH does not detect metaphase chromosomes. Instead, it targets genomic DNA to perform high-throughput screening of the whole genome for CNVs (Vissers et al., 2003). The aCGH approach can accurately locate CNVs on chromosomes, and clearly calculate CNV length and identify genes within variant fragments (Mosse et al., 2005). Nowadays, aCGH is commonly used for cancer and genetic disorder research (Kallioniemi, 2008; Sireteanu et al., 2012). In this study, we used aCGH to detect CNVs in three children with TCS and two healthy parents. In order to examine TCS pathogenesis at the chromosome and gene levels, we determined the relationship between these chromosomal aberrations and TCS, and consequently detected CNVs linked with occurrence and development of TCS.

    Subjects and Methods

    Subjects

    Three children diagnosed with typical TCS based on clinical criteria (Filippidis et al., 2010) by the Department of Neurosurgery at the Chinese PLA General Hospital and the Second Artillery General Hospital, and the healthy parents of Patient 1 were enrolled in the study. Peripheral blood samples were collected from the patients and healthy controls. Before initiation of the study, written consent was obtained from the guardians of all children. The study (Project ID: S2013-117-01) was approved by the ethics committee of the Chinese PLA General Hospital, China.

    Case 1 was a 2-year-old girl with a sacrococcygeal mass and right foot deformity. The sacrococcygeal mass was identified at birth. Physical examination revealed spina bifida. Strephenopodia of the right foot and a second enlarging sacrococcygeal mass were first observed at 8 months of age. The patient was diagnosed with TCS with myelomeningocele.

    Case 2 was a 12-year-old boy who presented with a lumbosacral mass at the age of 8 months. The patient was diagnosed with TCS with spinal cord lipoma. Surgical treatment was performed. Urinary abnormality occurred 11 years after surgery, along with urinary incontinence, nocturnal enuresis, urinary frequency, and urinary urgency. A further surgery was performed because magnetic resonance imaging showed spinal cord lipoma and recurrence of TCS.

    Case 3 was a 5-year-old girl with abnormal hair growth in the lumbosacral region at birth. Physical examination revealed a partial spinal canal defect. Because the hair growth increased, magnetic resonance imaging examination was performed. The results revealed a tethered spinal cord and split cord malformation (Type I). Surgery was performed to correct the malformation.

    aCGH analysis

    aCGH is a specific array-based genomic hybridization method that uses different fluorescent dyes to label DNA from patients and controls, to identify differences between the two groups (Sealfon and Chu, 2011; Brady and Vermeesch, 2012). By comparing the ratio of two different fluorescence signals at each target spot in the microarray, CNVs are detected in specific sequences or genes between two genomes (Gijsbers et al., 2011; Shoukier et al., 2013).

    Total DNA was extracted from peripheral whole blood using a commercially available DNA-isolation kit (BioChain Inc., Beijing, China), according to the manufacturer’s protocol. For each aCGH experiment, purified DNA and normal sex-matched DNA (1 μg each; Promega, Madison, WI, USA) were digested with AluI and RsaI (10 U each; Promega), and differentially labelled with cyanine-5 and cyanine-3 fluorescent dyes using a Genomic DNA Enzymatic Labeling Kit (Agilent, Santa Clara, CA, USA). aCGH analysis was performed using the Agilent 8 × 60K commercial array. This platform contains 60-mer oligonucleotide probes spanning the entire human genome with an overall mean probe spacing of 50 kb. After hybridization, arrays were scanned using a dual-laser scanner (Agilent), and images extracted and analyzed using the Feature Extraction (Agilent) and Workbench genomics software, respectively. Changes in test DNA copy number at specific loci were considered only if they were <-0.38 (deletion) or > 0.38 (amplification) of the log2 ratio values from at least five consecutive probes.

    TCS-related CNV analysis

    Removal of polymorphic CNVs using the Database of Genomic Variants

    CNV fragments were scanned against the Database of Genomic Variants (Iafrate et al., 2004; Wong et al., 2007). CNVs that completely matched those in the database were removed as they represent common polymorphic variants present in the normal population. Partially overlapping (< 40%) CNVs were considered non-polymorphic and retained for further analysis. In addition, discontinuous polymorphic fragments appearing within CNV sequences (total fragment length was shorter than half-lengths of detected CNVs) were not treated as common polymorphisms and were also retained for further analysis.

    Comparison of non-polymorphic CNVs with DECIPHER

    The non-polymorphic CNV fragments selected above were searched against the DECIPHER database (Firth et al., 2009). Cases were identified with CNVs similar to those reported in previously tested samples (partial overlap >60%) or containing documented CNVs. Additionally, chromosomal abnormalities, related phenotypes, and syndromes associated with these cases were identified.

    Table 1 Array-comparative genome hybridization analysis of TCS patients and controls

    Table 2 DECIPHER search results for non-polymorphic copy number variations (CNVs)

    Table 3 Syndromes and clinical phenotypes linked to non-polymorphic copy number variations

    Table 4 Genes contained in non-polymorphic copy number variations

    Figure 1 Chromosome maps of the three patients with tethered spinal cord syndrome.

    Table 5 Enrichment results for gene ontology (GO) analysis

    Gene function enrichment analysis

    Entire genes incorporated in non-polymorphic CNVs were identified using the University of California, Santa Cruz (UCSC) Genome Browser database (http://genome.ucsc.edu/). Gene function enrichment analyses were performed for the genes identified, including Gene Ontology (GO) (http://geneontology.org/) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway (http://www.genome.jp/kegg/) analyses.

    Enrichment P-values for each GO term or KEGG pathway were calculated using the hyper-geometric distribution method. P-values were then corrected for multiple hypotheses testing using the false discovery rate method. A P-value of 0.05 was set as the threshold value for significant gene enrichment for each GO term or KEGG pathway.

    Results

    Gene micro-repeat fragment location in TCS patients

    Results of the aCGH analysis for all three patients and two parents are shown in Table 1. Three micro-repeat fragments were detected in DNA isolated from Patient 1. A micro-deletion fragment was detected in Patient 2, while a micro-deletion and micro-repeat were detected in Patient 3. The father of Patient 1 had a normal karyotype, whereas the mother’s chromosome map showed micro-deletion and micro-repeat fragments. The micro-deletion fragment in Patient 2 and micro-repeat fragment in Patient 3 were located in the same region: 15q11.1q11.2 (Figure 1).

    Database searching of CNVs

    The eight identified CNVs were searched against the Database of Genomic Variants. The results showed that four CNVs were normal chromosomal polymorphisms, specifically, the 1p21.2 micro-repeat in Patient 1, 2p11.2 micro-deletion in Patient 3, and 7q11.22q11.23 micro-deletion and 19p12 micro-repeat in the mother of Patient 1.

    Investigation of the other four non-polymorphic CNVsin DECIPHER revealed eight specific CNVs in these regions (Table 2). Non-polymorphic CNVs in Patients 2 and 3 (ID 4 and 6 in Table 1) shared the same chromosomal initiation site, indicating that multiple CNVs occur in the same location. Further analyses revealed that these CNVs are associated with two syndromes (Angelman and Prader-Willi) and one phenotype (microcephaly) (Table 3).

    Table 6 Gene enrichment analysis

    Gene function enrichment analysis

    Within the four non-polymorphic CNVs regions, 13 genes were identified by the UCSC Genome Browser (Table 4). Function enrichment analysis of GO terms and KEGG pathways were performed for these genes. The results included a number of biological functions (e.g., gamete generation), molecular functions (e.g., ubiquitin-protein ligase activity), two cellular components (mitochondrial inner membrane and integral membrane component), as well as eight KEGG pathways, including viral myocarditis, cardiac muscle contraction, Parkinson’s disease, oxidative phosphorylation, ubiquitin-mediated proteolysis, Alzheimer’s disease, Huntington’s disease, and olfactory transduction. From these results, we found that the COX8C gene is closely related to neural system diseases such as Parkinson’s disease, Alzheimer’s disease, and Huntington’s disease (Tables 5, 6).

    Discussion

    Advantages of using aCGH for detection of rare chromosomal micro-variations

    Chromosomal sub-microscopic variations are strongly associated with human disease (Feuk et al., 2006). In clinical settings, the definite diagnosis of several diseases cannot be achieved using existing techniques. Consequently, some rare syndromes are labelled idiopathic or unexplained. Most of these syndromes are due to genomic imbalances created by chromosomal micro-variations such as micro-deletions and micro-repeats (D’Angelo et al., 2014). The aCGH approach efficiently detects chromosomal micro-aberrations and aids elucidation of idiopathic or unexplained diseases.

    Significance and limitations of aCGH analysis

    The main objective of this study was to identify non-random CNVs and evaluate their association with TCS. The main questions regarding the CNVs we identified are: (1) whether the CNVs are inherited; (2) whether they are found in the normal population; (3) whether their lengths are sufficient to contain genes with functional annotations; (4) whether they are linked to diseases in DECIPHER; and (5) whether any are unreported, unidentified, or novel. Although the Database of Genomic Variants and DECIPHER, which are globally representative databases, were used to determine the type of CNVs identified, ethnic differences are inevitable when using international databases.

    Diseases similar to TCS that are associated with COX8C

    CNVs similar to the ones we detected are found in the DECIPHER database. These CNVs are associated with Angelman and Prader-Willi syndromes, and microcephaly. All of these disorders involve significant neural abnormalities (Mabb et al., 2011; Mahmood et al., 2011; Cassidy et al., 2012). Furthermore, gene function analysis indicated a close association between COX8C and certain diseases including Parkinson’s, Alzheimer’s, and Huntington’s diseases, all of which are typical nervous system diseases (Bassil and Mollaei, 2012; Pogledi? and Relja, 2012; Gazewood et al., 2013). By comparing the CNVs from Patient 1 with those identified in her parents, we excluded the possibility of TCS being hereditary. Thus, we propose that the condition may be acquired during neural development.

    Conclusion

    In this study, we used high-resolution aCGH to identify pathogenic CNVs in samples from patients with typical TCS. Our findings suggest an association between certain CNVs and nervous system disease. Our data may be used in the future as a reference for the integration of available data, or for further studies with larger sample sizes. Ours study demonstrates specific transformation research, and shows that a molecular method can be used to clinically diagnose TCS. Our findings may help to shed new light on the pathogenesis of TCS.

    Acknowledgments: We are very grateful to the staffs of iGene-Tech Biotechnology Co., Ltd. in China for some of the experiment operations.

    Author contributions: QJZ and SCB performed the experiment. CC, BZT and LKW collected patients, and conducted clinical communication and treatment. SL and LY provided technical and capital supports. QJZ and XYH analyzed and explained data. AJS and XYH served as principle investigators. All authors approved the final version of the paper.

    Conflicts of interest: None declared.

    Plagiarism check: This paper was screened twice using Cross-Check to verify originality before publication.

    Peer review: This paper was double-blinded and stringently reviewed by international expert reviewers.

    References

    Atta CA, Fiest KM, Frolkis AD, Jette N, Pringsheim T, St Germaine-Smith C, Rajapakse T, Kaplan GG, Metcalfe A (2016) Global birth prevalence of spina bifida by folic acid fortification status: A systematic review and meta-analysis. Am J Public Health 106:e24-34.

    Au KS, Ashley-Koch A, Northrup H (2010) Epidemiologic and genetic aspects of spina bifida and other neural tube defects. Dev Disabil Res Rev 16:6-15.

    Bartsch O, Kirmes I, Thiede A, Lechno S, Gocan H, Florian IS, Haaf T, Zechner U, Sabova L, Horn F (2012) Novel VANGL1 gene mutations in 144 Slovakian, Romanian and German patients with neural tube defects. Mol Syndromol 3:76-81.

    Bassil N, Mollaei C (2012) Alzheimer’s dementia: a brief review. J Med Liban 60:192-199.

    Bassuk AG, Kibar Z (2009) Genetic basis of neural tube defects. Semin Pediatr Neurol 16:101-110.

    Bassuk AG, Muthuswamy LB, Boland R, Smith TL, Hulstrand AM, Northrup H, Hakeman M, Dierdorff JM, Yung CK, Long A, Brouillette RB, Au KS, Gurnett C, Houston DW, Cornell RA, Manak JR (2013) Copy number variation analysis implicates the cell polarity gene glypican 5 as a human spina bifida candidate gene. Hum Mol Genet 22:1097-1111.

    Brady PD, Vermeesch JR (2012) Genomic microarrays: a technology overview. Prenat Diagn 32:336-343.

    Cassidy SB, Schwartz S, Miller JL, Driscoll DJ (2012) Prader-Willi syndrome. Genet Med 14:10-26.

    Cearns MD, Escuin S, Alexandre P, Greene ND, Copp AJ (2016) Microtubules, polarity and vertebrate neural tube morphogenesis. J Anat 229:63-74.

    Chen X, Shen Y, Gao Y, Zhao H, Sheng X, Zou J, Lip V, Xie H, Guo J, Shao H, Bao Y, Shen J, Niu B, Gusella JF, Wu BL, Zhang T (2013) Detection of copy number variants reveals association of cilia genes with neural tube defects. PLoS One 8:e54492.

    Costa-Lima MA, Meneses HN, El-Jaick KB, Amorim MR, Castilla EE, Orioli IM (2008) No association of the polyhistidine tract polymorphism of the ZIC2 gene with neural tube defects in a South American (ECLAMC) population. Mol Med Rep 1:443-446.

    D’Angelo CS, Varela MC, de Castro CI, Kim CA, Bertola DR, Louren?o CM, Perez ABA, Koiffmann CP (2014) Investigation of selected genomic deletions and duplications in a cohort of 338 patients presenting with syndromic obesity by multiplex ligation-dependent probe amplification using synthetic probes. Mol Cytogenet 7:75.

    Feuchtbaum LB, Currier RJ, Riggle S, Roberson M, Lorey FW, Cunningham GC (1999) Neural tube defect prevalence in California (1990-1994): eliciting patterns by type of defect and maternal race/ ethnicity. Genet Test 3:265-272.

    Feuk L, Marshall CR, Wintle RF, Scherer SW (2006) Structural variants: changing the landscape of chromosomes and design of disease studies. Hum Mol Genet 15:R57-66.

    Filippidis AS, Kalani MY, Theodore N, Rekate HL (2010) Spinal cord traction, vascular compromise, hypoxia, and metabolic derangements in the pathophysiology of tethered cord syndrome. Neurosurg Focus 29:E9.

    Firth HV, Richards SM, Bevan AP, Clayton S, Corpas M, Rajan D, Vooren SV, Moreau Y, Pettett RM, Carter NP (2009) DECIPHER: Database of chromosomal imbalance and phenotype in humans using ensembl resources. Am J Hum Genet 84:524-533.

    Gazewood JD, Richards DR, Clebak K (2013) Parkinson disease: an update. Am Fam Physician 87:267-273.

    Gijsbers AC, Schoumans J, Ruivenkamp CA (2011) Interpretation of array comparative genome hybridization data: a major challenge. Cytogenet Genome Res 135:222-227.

    Grinberg I, Millen KJ (2005) The ZIC gene family in development and disease. Clin Genet 67:290-296.

    Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, Scherer SW, Lee C (2004) Detection of large-scale variation in the human genome. Nat Genet 36:949-951.

    Joó JG (2009a) Recent perspectives on the development of the central nervous system and the genetic background of neural tube defects. Orv Hetil 150:873-882.

    Joó JG (2009b) Recent perspectives on the genetic background of neural tube defects with special regard to iniencephaly. Expert Rev Mol Diagn 9:281-293.

    Kallioniemi A (2008) CGH microarrays and cancer. Curr Opin Biotechnol 19:36-40.

    Khoshnood B, Loane M, de Walle H, Arriola L, Addor MC, Barisic I, Beres J, Bianchi F, Dias C, Draper E, Garne E, Gatt M, Haeusler M, Klungsoyr K, Latos-Bielenska A, Lynch C, McDonnell B, Nelen V, Neville AJ, O’Mahony MT, et al. (2015) Long term trends in prevalence of neural tube defects in Europe: population based study. BMJ 351:h5949.

    Laharwal MA, Sarmast AH, Ramzan AU, Wani AA, Malik NK, Arif SH, Rizvi M (2016) Epidemiology of the neural tube defects in Kashmir Valley. Surg Neurol Int 7:35.

    Mabb AM, Judson MC, Zylka MJ, Philpot BD (2011) Angelman syndrome: insights into genomic imprinting and neurodevelopmental phenotypes. Trends Neurosci 34:293-303.

    Mahmood S, Ahmad W, Hassan MJ (2011) Autosomal recessive primary microcephaly (MCPH): clinical manifestations, genetic heterogeneity and mutation continuum. Orphanet J Rare Dis 6:39-39.

    Molloy AM, Brody LC, Mills JL, Scott JM, Kirke PN (2009) The search for genetic polymorphisms in the homocysteine/folate pathway that contribute to the etiology of human neural tube defects. Birth Defects Res A Clin Mol Teratol 85:285-294.

    Mosse YP, Greshock J, Weber BL, Maris JM (2005) Measurement and relevance of neuroblastoma DNA copy number changes in the post-genome era. Cancer Lett 228:83-90.

    Payne J (2007) Tethered spinal cord syndrome. BMJ 335:42-43.

    Pogledi? I, Relja M (2012) Huntington’s disease. Lijec Vjesn 134:346-350.

    Saberi A, Shariati G, Hamid M, Galehdari H, Abdorasouli N (2014) Wolf-Hirschhorn syndrome: a case with normal karyotype, demonstrated by array CGH (aCGH). Arch Iran Med 17:642-644.

    Sealfon SC, Chu TT (2011) RNA and DNA Microarrays. Methods Mol Biol 671:3-34.

    Seo JH, Zilber Y, Babayeva S, Liu J, Kyriakopoulos P, De Marco P, Merello E, Capra V, Gros P, Torban E (2015) Mutations in the planar cell polarity gene, Fuzzy, are associated with neural tube defects in humans. Hum Mol Genet 24:3893.

    Shoukier M, Klein N, Auber B, Wickert J, Schr?der J, Zoll B, Burfeind P, Bartels I, Alsat EA, Lingen M, Grzmil P, Schulze S, Keyser J, Weise D, Borchers M, Hobbiebrunken E, R?bl M, G?rtner J, Brockmann K, Zirn B (2013) Array CGH in patients with developmental delay or intellectual disability: are there phenotypic clues to pathogenic copy number variants? Clin Genet 83:53-65.

    Sireteanu A, Covic M, Gorduza EV (2012) Array CGH: technical considerations and applications. Rev Med Chir Soc Med Nat Iasi 116:545-551.

    Tran S, Wang L, Le J, Guan J, Wu L, Zou J, Wang Z, Wang J, Wang F, Chen X, Cai L, Lu X, Zhao H, Guo J, Bao Y, Zheng X, Zhang T (2012) Altered methylation of the DNA repair gene MGMT is associated with neural tube defects. J Mol Neurosci 47:42-51.

    Tun?bilek E, Boduro lu K, Alika ifo lu M (1999) Neural tube defects in Turkey: prevalence, distribution and risk factors. Turk J Pediatr 41:299-305.

    van der Put NM, van Straaten HW, Trijbels FJ, Blom HJ (2001) Folate, homocysteine and neural tube defects: an overview. Exp Biol Med (Maywood) 226:243-270.

    Vissers Lisenka E, de Vries Bert B, Osoegawa K, Janssen Irene M, Feuth T, Choy Chik O, Straatman H, van der Vliet W, Huys Erik H, van Rijk A, Smeets D, van Ravenswaaij-Arts Conny M, Knoers Nine V, van der Burgt I, de Jong Pieter J, Brunner Han G, van Kessel Ad G, Schoenmakers Eric F, Veltman Joris A (2003) Array-based comparative genomic hybridization for the genomewide detection of submicroscopic chromosomal abnormalities. Am J Hum Genet 73:1261-1270.

    Wen S, Lu W, Zhu H, Yang W, Shaw GM, Lammer EJ, Islam A, Finnell RH (2009) Genetic polymorphisms in the thioredoxin 2 (TXN2) gene and risk for spina bifida. Am J Med Genet A 149A:155-160.

    Wong Kendy K, deLeeuw Ronald J, Dosanjh Nirpjit S, Kimm Lindsey R, Cheng Z, Horsman Douglas E, MacAulay C, Ng Raymond T, Brown Carolyn J, Eichler Evan E, Lam Wan L (2007) A comprehensive analysis of common copy-number variations in the human genome. Am J Hum Genet 80:91-104.

    Zhao J, Guan T, Wang J, Xiang Q, Wang M, Wang X, Guan Z, Xie Q, Niu B, Zhang T (2013) Influence of the antifolate drug Methotrexate on the development of murine neural tube defects and genomic instability. J Appl Toxicol 33:915-923.

    Copyedited by James R, Frenchman B, Yu J, Qiu Y, Li CH, Song LP, Zhao M

    10.4103/1673-5374.189200

    *Correspondence to:

    亚洲av不卡在线观看| 日本欧美国产在线视频| 一区二区三区四区激情视频| 久久女婷五月综合色啪小说| 亚洲av国产av综合av卡| 精品一区二区三区视频在线| 这个男人来自地球电影免费观看 | 一级二级三级毛片免费看| 欧美xxⅹ黑人| 国产亚洲av片在线观看秒播厂| 青春草亚洲视频在线观看| 日韩人妻高清精品专区| 免费黄网站久久成人精品| 成人18禁高潮啪啪吃奶动态图 | 大话2 男鬼变身卡| 日本黄色片子视频| 国产成人精品婷婷| 成年美女黄网站色视频大全免费 | av播播在线观看一区| 麻豆成人av视频| 麻豆精品久久久久久蜜桃| 噜噜噜噜噜久久久久久91| 日韩欧美 国产精品| 久久国产精品男人的天堂亚洲 | 一区二区三区乱码不卡18| 五月伊人婷婷丁香| 一区在线观看完整版| 午夜免费男女啪啪视频观看| 国产乱来视频区| av在线播放精品| 97超视频在线观看视频| 国产真实伦视频高清在线观看| 久久久久久久久久人人人人人人| 亚洲三级黄色毛片| 亚洲精品456在线播放app| 最后的刺客免费高清国语| 自拍欧美九色日韩亚洲蝌蚪91 | 国精品久久久久久国模美| 国产一区二区在线观看av| 你懂的网址亚洲精品在线观看| av线在线观看网站| 久久久久久久精品精品| 亚洲经典国产精华液单| 国产在线一区二区三区精| 精品人妻熟女av久视频| 嫩草影院新地址| 久久午夜综合久久蜜桃| 一边亲一边摸免费视频| 99久久精品热视频| 欧美 亚洲 国产 日韩一| 一级二级三级毛片免费看| a级毛片免费高清观看在线播放| 国产一区二区在线观看av| 欧美精品一区二区免费开放| 大话2 男鬼变身卡| 国产av码专区亚洲av| 国产精品99久久久久久久久| 极品少妇高潮喷水抽搐| 亚洲国产成人一精品久久久| 国产69精品久久久久777片| av女优亚洲男人天堂| 亚洲高清免费不卡视频| 亚洲国产精品一区三区| av一本久久久久| 国产一区二区在线观看av| 国产成人精品无人区| av福利片在线观看| 五月开心婷婷网| 欧美人与善性xxx| 久久久久久人妻| 欧美日韩av久久| 亚洲欧美清纯卡通| 高清不卡的av网站| 日韩成人av中文字幕在线观看| 激情五月婷婷亚洲| 免费人妻精品一区二区三区视频| 亚洲电影在线观看av| av有码第一页| 不卡视频在线观看欧美| 免费看不卡的av| 大香蕉97超碰在线| 亚洲欧洲精品一区二区精品久久久 | 婷婷色av中文字幕| 欧美日韩亚洲高清精品| 女的被弄到高潮叫床怎么办| 亚洲精品中文字幕在线视频 | 久久久久精品性色| 免费观看的影片在线观看| 精品国产乱码久久久久久小说| 久久av网站| 高清视频免费观看一区二区| 伦精品一区二区三区| 精品人妻一区二区三区麻豆| 精品亚洲成国产av| 另类精品久久| 欧美成人精品欧美一级黄| 人人妻人人添人人爽欧美一区卜| 美女主播在线视频| 最黄视频免费看| 久久久久精品久久久久真实原创| 国产极品粉嫩免费观看在线 | 亚洲精品国产色婷婷电影| 有码 亚洲区| 天堂8中文在线网| 一本久久精品| 国产精品久久久久久精品古装| 大又大粗又爽又黄少妇毛片口| 国产探花极品一区二区| 色婷婷av一区二区三区视频| 美女主播在线视频| 国产亚洲午夜精品一区二区久久| 久久韩国三级中文字幕| 简卡轻食公司| 精品亚洲乱码少妇综合久久| 在线播放无遮挡| 亚洲国产精品一区二区三区在线| 精品久久久久久久久亚洲| 一级a做视频免费观看| 卡戴珊不雅视频在线播放| 简卡轻食公司| 丁香六月天网| 免费看光身美女| 日韩av不卡免费在线播放| 99re6热这里在线精品视频| 国产精品.久久久| 免费人妻精品一区二区三区视频| 国产成人精品婷婷| 一级毛片我不卡| 欧美丝袜亚洲另类| 久久狼人影院| 国产精品一区二区在线观看99| 亚洲激情五月婷婷啪啪| 女人精品久久久久毛片| 亚洲精品久久午夜乱码| 精品一区二区三区视频在线| 免费黄网站久久成人精品| 久久久欧美国产精品| 午夜福利在线观看免费完整高清在| 精华霜和精华液先用哪个| 男女边吃奶边做爰视频| 夜夜骑夜夜射夜夜干| 嘟嘟电影网在线观看| 国产精品国产av在线观看| 女人久久www免费人成看片| 最新的欧美精品一区二区| 18禁裸乳无遮挡动漫免费视频| 久久精品久久精品一区二区三区| 少妇 在线观看| 少妇精品久久久久久久| 国产精品.久久久| 如日韩欧美国产精品一区二区三区 | 免费人成在线观看视频色| 99精国产麻豆久久婷婷| 久久精品久久久久久噜噜老黄| 一级毛片久久久久久久久女| 国产片特级美女逼逼视频| 极品少妇高潮喷水抽搐| 岛国毛片在线播放| av在线观看视频网站免费| 亚洲精品乱久久久久久| 我要看黄色一级片免费的| 精品一区二区三卡| 欧美xxⅹ黑人| 街头女战士在线观看网站| 亚洲综合精品二区| 欧美丝袜亚洲另类| 午夜免费男女啪啪视频观看| 成人毛片a级毛片在线播放| 自拍欧美九色日韩亚洲蝌蚪91 | 国产又色又爽无遮挡免| 伊人久久精品亚洲午夜| 九九在线视频观看精品| 国产免费一级a男人的天堂| 国产精品99久久99久久久不卡 | 一本大道久久a久久精品| 亚洲人成网站在线播| 麻豆成人av视频| 蜜臀久久99精品久久宅男| 精品久久国产蜜桃| 国产精品熟女久久久久浪| 高清在线视频一区二区三区| 九草在线视频观看| 国产精品成人在线| 丰满乱子伦码专区| 女性被躁到高潮视频| 乱码一卡2卡4卡精品| 女人久久www免费人成看片| 亚洲熟女精品中文字幕| 狂野欧美激情性xxxx在线观看| 老司机亚洲免费影院| av在线app专区| 人体艺术视频欧美日本| 日本vs欧美在线观看视频 | 人人妻人人澡人人爽人人夜夜| 少妇被粗大猛烈的视频| av国产精品久久久久影院| 欧美3d第一页| 一个人看视频在线观看www免费| 欧美日韩在线观看h| 免费大片18禁| 麻豆乱淫一区二区| 午夜免费男女啪啪视频观看| 久久免费观看电影| 夫妻午夜视频| 2021少妇久久久久久久久久久| 伊人久久国产一区二区| 欧美最新免费一区二区三区| 免费观看a级毛片全部| 国产日韩一区二区三区精品不卡 | videossex国产| 乱人伦中国视频| 国产探花极品一区二区| 中文天堂在线官网| 日本vs欧美在线观看视频 | 国产毛片在线视频| 亚洲成色77777| 亚洲成人av在线免费| av网站免费在线观看视频| 日本wwww免费看| 日韩强制内射视频| 欧美日韩av久久| 国产精品麻豆人妻色哟哟久久| 国产成人freesex在线| 精品国产露脸久久av麻豆| 亚洲精品乱久久久久久| av在线播放精品| av线在线观看网站| 久久久久久久久久人人人人人人| 免费播放大片免费观看视频在线观看| 午夜免费鲁丝| 亚洲精品成人av观看孕妇| 男人狂女人下面高潮的视频| 久久久久久久大尺度免费视频| 秋霞伦理黄片| 日韩在线高清观看一区二区三区| 亚洲av日韩在线播放| 又爽又黄a免费视频| 日本欧美视频一区| 久久女婷五月综合色啪小说| 免费观看a级毛片全部| 日韩成人av中文字幕在线观看| 国产精品国产三级国产专区5o| 免费看不卡的av| 婷婷色综合大香蕉| 欧美精品亚洲一区二区| 女性生殖器流出的白浆| 亚洲精品国产色婷婷电影| 国产日韩欧美亚洲二区| 黄片无遮挡物在线观看| 国产亚洲精品久久久com| 伦精品一区二区三区| 国产亚洲欧美精品永久| 国产爽快片一区二区三区| 一级毛片黄色毛片免费观看视频| 精品国产一区二区久久| 欧美高清成人免费视频www| 国产在线视频一区二区| 国产精品偷伦视频观看了| 一级二级三级毛片免费看| 一级黄片播放器| 国产毛片在线视频| av免费观看日本| 嫩草影院入口| 新久久久久国产一级毛片| 国产av码专区亚洲av| 国产男人的电影天堂91| 亚洲国产精品成人久久小说| 日日摸夜夜添夜夜添av毛片| 如日韩欧美国产精品一区二区三区 | av黄色大香蕉| 久久99一区二区三区| 久久ye,这里只有精品| 18禁动态无遮挡网站| 国产男女超爽视频在线观看| 草草在线视频免费看| 中文字幕av电影在线播放| 亚洲精品一区蜜桃| 大陆偷拍与自拍| 一级片'在线观看视频| 成年人午夜在线观看视频| 国产精品国产av在线观看| 婷婷色综合大香蕉| 午夜老司机福利剧场| 免费少妇av软件| 这个男人来自地球电影免费观看 | av在线观看视频网站免费| 亚洲欧洲日产国产| 国产日韩欧美视频二区| 久久精品国产亚洲av涩爱| 精品国产一区二区久久| 麻豆成人午夜福利视频| 国产在线视频一区二区| 亚洲国产av新网站| 一区二区三区乱码不卡18| 男女无遮挡免费网站观看| 美女大奶头黄色视频| 日韩成人av中文字幕在线观看| 高清在线视频一区二区三区| 永久免费av网站大全| 亚洲欧洲精品一区二区精品久久久 | 你懂的网址亚洲精品在线观看| √禁漫天堂资源中文www| 91精品国产九色| 亚洲电影在线观看av| 我要看日韩黄色一级片| 久久精品国产a三级三级三级| av网站免费在线观看视频| 嫩草影院新地址| 一级爰片在线观看| 亚洲美女黄色视频免费看| 好男人视频免费观看在线| 一级毛片aaaaaa免费看小| 欧美日韩在线观看h| 婷婷色综合www| 国产伦理片在线播放av一区| 美女国产视频在线观看| 狂野欧美白嫩少妇大欣赏| 女人久久www免费人成看片| 日韩av免费高清视频| 亚洲精品456在线播放app| 色网站视频免费| 国产亚洲最大av| 乱人伦中国视频| 汤姆久久久久久久影院中文字幕| 久久午夜综合久久蜜桃| 自线自在国产av| 久久热精品热| 噜噜噜噜噜久久久久久91| 国产爽快片一区二区三区| 午夜福利在线观看免费完整高清在| 搡老乐熟女国产| 亚洲人成网站在线播| 大话2 男鬼变身卡| 亚洲精品国产成人久久av| 久久久久久久大尺度免费视频| 欧美xxⅹ黑人| 我要看日韩黄色一级片| 成年av动漫网址| 日本-黄色视频高清免费观看| av天堂久久9| 精品99又大又爽又粗少妇毛片| 天天操日日干夜夜撸| 日韩成人av中文字幕在线观看| av在线app专区| 国产永久视频网站| 9色porny在线观看| 亚洲精品一区蜜桃| 久久久亚洲精品成人影院| 少妇猛男粗大的猛烈进出视频| 亚洲丝袜综合中文字幕| 久久精品久久久久久噜噜老黄| 亚洲国产色片| 国产精品一区二区三区四区免费观看| 桃花免费在线播放| 国产成人aa在线观看| 国产在线免费精品| 一本—道久久a久久精品蜜桃钙片| 精品一区二区三区视频在线| 欧美人与善性xxx| 黑人高潮一二区| 热re99久久精品国产66热6| 国产精品一区二区在线观看99| 亚洲精品国产成人久久av| 老熟女久久久| 亚洲av中文av极速乱| 啦啦啦中文免费视频观看日本| 99热这里只有是精品50| 国产真实伦视频高清在线观看| 欧美 亚洲 国产 日韩一| 亚洲精华国产精华液的使用体验| 视频区图区小说| 少妇人妻精品综合一区二区| 色94色欧美一区二区| 国产成人a∨麻豆精品| 欧美日韩av久久| 看十八女毛片水多多多| 啦啦啦在线观看免费高清www| 极品教师在线视频| 亚洲国产精品一区二区三区在线| 校园人妻丝袜中文字幕| 成人美女网站在线观看视频| 免费观看a级毛片全部| 精品一区二区三区视频在线| 欧美激情极品国产一区二区三区 | 亚洲丝袜综合中文字幕| 亚洲欧洲国产日韩| 国产成人aa在线观看| 成人亚洲精品一区在线观看| 国产精品欧美亚洲77777| 99久久人妻综合| 午夜日本视频在线| 亚洲高清免费不卡视频| 久久毛片免费看一区二区三区| 搡女人真爽免费视频火全软件| 亚洲精品第二区| 人体艺术视频欧美日本| 天堂8中文在线网| 男女无遮挡免费网站观看| 久久久久精品久久久久真实原创| 久久久久国产精品人妻一区二区| 免费av不卡在线播放| 成人18禁高潮啪啪吃奶动态图 | 51国产日韩欧美| .国产精品久久| 18禁在线播放成人免费| 欧美一级a爱片免费观看看| 久久久久精品久久久久真实原创| 亚洲精品第二区| 精品熟女少妇av免费看| 国产黄片视频在线免费观看| 久久婷婷青草| 丰满人妻一区二区三区视频av| 欧美成人精品欧美一级黄| 日韩一本色道免费dvd| 一级毛片我不卡| 欧美日本中文国产一区发布| 黑人猛操日本美女一级片| 在线观看人妻少妇| 久久精品国产自在天天线| 国产黄色视频一区二区在线观看| 最近中文字幕2019免费版| 日韩成人av中文字幕在线观看| 久久这里有精品视频免费| 色婷婷av一区二区三区视频| 热re99久久精品国产66热6| 交换朋友夫妻互换小说| 能在线免费看毛片的网站| 免费看光身美女| 伦理电影免费视频| 亚洲av成人精品一区久久| 国产一区二区在线观看日韩| 免费在线观看成人毛片| 欧美97在线视频| 热re99久久精品国产66热6| 熟女电影av网| 久久青草综合色| 亚洲欧美成人精品一区二区| 2018国产大陆天天弄谢| 亚洲av在线观看美女高潮| 国产真实伦视频高清在线观看| 熟女人妻精品中文字幕| 国产精品久久久久久久电影| 一二三四中文在线观看免费高清| 91精品一卡2卡3卡4卡| av又黄又爽大尺度在线免费看| 黑人巨大精品欧美一区二区蜜桃 | 精品亚洲成国产av| 日本wwww免费看| 在线亚洲精品国产二区图片欧美 | 久久精品久久久久久噜噜老黄| 99热全是精品| 日韩人妻高清精品专区| 久久韩国三级中文字幕| 不卡视频在线观看欧美| 久久午夜综合久久蜜桃| 国产av一区二区精品久久| 国产欧美另类精品又又久久亚洲欧美| 国产深夜福利视频在线观看| 少妇人妻一区二区三区视频| 亚洲人与动物交配视频| 国产免费一级a男人的天堂| 国语对白做爰xxxⅹ性视频网站| 欧美日本中文国产一区发布| 99久久精品热视频| 99热这里只有精品一区| 哪个播放器可以免费观看大片| 日韩一区二区三区影片| 久久免费观看电影| 曰老女人黄片| 亚洲欧美精品自产自拍| 好男人视频免费观看在线| 精品酒店卫生间| 久久青草综合色| 欧美人与善性xxx| av天堂久久9| kizo精华| a级毛片免费高清观看在线播放| 久久精品熟女亚洲av麻豆精品| 日韩三级伦理在线观看| 国产日韩欧美亚洲二区| 日本wwww免费看| 亚洲人成网站在线播| 最黄视频免费看| 香蕉精品网在线| 桃花免费在线播放| 精品99又大又爽又粗少妇毛片| 观看av在线不卡| 啦啦啦啦在线视频资源| 最新的欧美精品一区二区| 欧美xxxx性猛交bbbb| 欧美精品一区二区大全| 精品一区二区三区视频在线| 久久人妻熟女aⅴ| 夜夜骑夜夜射夜夜干| 在线天堂最新版资源| 99九九在线精品视频 | 国产免费视频播放在线视频| 久久久久国产网址| 免费观看性生交大片5| 免费看光身美女| 久久99热这里只频精品6学生| 国产伦理片在线播放av一区| 我要看日韩黄色一级片| 97超碰精品成人国产| 亚洲精品国产色婷婷电影| 另类亚洲欧美激情| 多毛熟女@视频| 午夜视频国产福利| a级毛片免费高清观看在线播放| 成人午夜精彩视频在线观看| 高清av免费在线| av专区在线播放| 免费av中文字幕在线| av视频免费观看在线观看| 免费av中文字幕在线| 国产午夜精品一二区理论片| 国产亚洲午夜精品一区二区久久| 久久婷婷青草| 国产精品三级大全| 一级毛片aaaaaa免费看小| 日本猛色少妇xxxxx猛交久久| 男人添女人高潮全过程视频| 国产亚洲欧美精品永久| 黄色欧美视频在线观看| 国产国拍精品亚洲av在线观看| 国产日韩欧美在线精品| 久久人人爽人人爽人人片va| 国产淫语在线视频| 一边亲一边摸免费视频| 秋霞伦理黄片| 男女国产视频网站| 国产成人午夜福利电影在线观看| 成人影院久久| 欧美+日韩+精品| 青青草视频在线视频观看| 亚洲欧美日韩东京热| 国产高清有码在线观看视频| 尾随美女入室| 久久久久人妻精品一区果冻| 免费看不卡的av| 欧美性感艳星| 国产探花极品一区二区| 国产成人免费无遮挡视频| 黑丝袜美女国产一区| 丰满少妇做爰视频| 99视频精品全部免费 在线| 我要看黄色一级片免费的| 国产成人精品无人区| 51国产日韩欧美| 国产精品福利在线免费观看| 国产精品伦人一区二区| 观看av在线不卡| 久久精品国产鲁丝片午夜精品| 亚州av有码| 人妻 亚洲 视频| 噜噜噜噜噜久久久久久91| 国产精品99久久久久久久久| 中文字幕av电影在线播放| 最近中文字幕2019免费版| 日韩亚洲欧美综合| 三级国产精品欧美在线观看| 乱系列少妇在线播放| 最新的欧美精品一区二区| 男人狂女人下面高潮的视频| 亚洲欧美成人综合另类久久久| 国产爽快片一区二区三区| 99久久中文字幕三级久久日本| 久久狼人影院| 日韩强制内射视频| 一级毛片黄色毛片免费观看视频| 国产精品久久久久久精品古装| 久久久久久伊人网av| 成人综合一区亚洲| 日韩强制内射视频| 两个人免费观看高清视频 | 日本欧美视频一区| 激情五月婷婷亚洲| 不卡视频在线观看欧美| 我要看日韩黄色一级片| 日韩,欧美,国产一区二区三区| 啦啦啦视频在线资源免费观看| 人体艺术视频欧美日本| 国产精品久久久久久精品电影小说| 日产精品乱码卡一卡2卡三| 国产精品蜜桃在线观看| 久久久久久伊人网av| 美女中出高潮动态图| 99九九线精品视频在线观看视频| 麻豆成人av视频| 王馨瑶露胸无遮挡在线观看| 欧美三级亚洲精品| 亚洲精品日本国产第一区| 在线观看免费日韩欧美大片 | tube8黄色片| 一级毛片电影观看| 成年人免费黄色播放视频 | 精品久久久噜噜| 视频中文字幕在线观看| 国产成人精品久久久久久| 亚洲av不卡在线观看| 成人影院久久| 三级国产精品欧美在线观看| 亚洲不卡免费看| 天堂8中文在线网| 22中文网久久字幕| 精品亚洲成国产av| 高清不卡的av网站| av在线观看视频网站免费| 男人添女人高潮全过程视频| 王馨瑶露胸无遮挡在线观看| 久久99蜜桃精品久久| 中文字幕久久专区| 欧美日韩国产mv在线观看视频| 国产真实伦视频高清在线观看| 久热这里只有精品99|