• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Association between chromosomal aberration of COX8C and tethered spinal cord syndrome: arraybased comparative genomic hybridization analysis

    2016-12-01 09:23:40QiujiongZhaoShaocongBaiChengChengBenzhangTaoLekaiWangShuangLiangLingYinXingyiHangAijiaShangDepartmentofNeurosurgeryChinesePLAGeneralHospitalBeijingChina2iGeneTechBiotechnologyCoLtdBeijingChinaDepartmentofNeurology

    Qiu-jiong Zhao, Shao-cong Bai, Cheng Cheng Ben-zhang Tao Le-kai Wang Shuang Liang Ling Yin, Xing-yi Hang, Ai-jia Shang Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China2 iGeneTech Biotechnology Co., Ltd., Beijing, China Department of Neurology, Chinese PLA General Hospital, Beijing, China

    Association between chromosomal aberration of COX8C and tethered spinal cord syndrome: arraybased comparative genomic hybridization analysis

    Qiu-jiong Zhao1,#, Shao-cong Bai1,#, Cheng Cheng1, Ben-zhang Tao1, Le-kai Wang1, Shuang Liang1, Ling Yin3, Xing-yi Hang2,*, Ai-jia Shang1,*
    1 Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
    2 iGeneTech Biotechnology Co., Ltd., Beijing, China
    3 Department of Neurology, Chinese PLA General Hospital, Beijing, China

    How to cite this article: Zhao QJ, Bai SC, Cheng C, Tao BZ, Wang LK, Liang S, Yin L, Hang XY, Shang AJ (2016) Association between chromosomal aberration of COX8C and tethered spinal cord syndrome∶ array-based comparative genomic hybridization analysis. Neural Regen Res 11(8)∶1333-1338.

    Ai-jia Shang, M.D., Ph.D. or Xing-yi Hang, Ph.D.,

    shangaj@163.com or

    xingyi.hang@igenetech.com.

    #These authors contributed

    equally to this study.

    orcid:

    0000-0002-4895-5442

    (Ai-jia Shang)

    0000-0002-3736-2203

    (Xing-yi Hang)

    Accepted: 2016-08-09

    Graphical Abstract

    Copy number variations have been found in patients with neural tube abnormalities. In this study, we performed genome-wide screening using high-resolution array-based comparative genomic hybridization in three children with tethered spinal cord syndrome and two healthy parents. Of eight copy number variations, four were non-polymorphic. These non-polymorphic copy number variations were associated with Angelman and Prader-Willi syndromes, and microcephaly. Gene function enrichment analysis revealed that COX8C, a gene associated with metabolic disorders of the nervous system, was located in the copy number variation region of Patient 1. Our results indicate that array-based comparative genomic hybridization can be used to diagnose tethered spinal cord syndrome. Our results may help determine the pathogenesis of tethered spinal cord syndrome and prevent occurrence of this disease.

    nerve regeneration; neural tube defects; tethered spinal cord syndrome; comparative genomic hybridization; COX8C; gene function enrichment analysis; database of genomic variants; database of DECIPHER; copy number variations; neural regeneration

    Introduction

    Tethered spinal cord syndrome (TCS) is a neurodevelopmental disorder that results in spinal cord malformation (Payne, 2007; Cearns et al., 2016). TCS is classified as a neural tube defect, and although the incidence of neural tube defects is approximately 1% worldwide (Feuchtbaum et al., 1999; Tun?bilek et al., 1999; van der Put et al., 2001; Khoshnood et al., 2015; Atta et al., 2016), infants born with neural tube defects account for 20-25% of all congenital malformations (Laharwal et al., 2016). The causes of neural tube defects are multivariate, yet to date there is no convincing mechanistic evidence for their occurrence. Some possible contributing factors include gene mutations, chromosomal abnormalities, and environmental factors (Bassuk and Kibar, 2009; Joó, 2009a, b; Molloy et al., 2009; Wen et al., 2009). Recent studies have revealed novel risk factors for neural tube defects including heterozygous missense mutations in the genes, VANGL1 and FUZZY (Bartsch et al., 2012; Seo et al., 2015), as well as maternal folic acid deficiency (Bartsch et al., 2012; Seo et al., 2015). Altered methylation of MGMT, aDNA repair gene, is also associated with neural tube defects (Tran et al., 2012). Moreover, abnormal expression of genes coding for zinc finger proteins is reported to be risk factors (Grinberg and Millen, 2005; Costa-Lima et al., 2008).

    Previous studies have shown that chromosomal imbalances due to genomic instability are closely associated with neural developmental disorders (Au et al., 2010; Zhao et al., 2013). Copy number variations (CNVs) are found in patients with neural tube abnormalities in cerebral and spinal sections (Bassuk et al., 2013; Chen et al., 2013). Array-based comparative genomic hybridization (aCGH) is a modern technique for molecular karyotype analysis that combines conventional comparative genomic hybridization and microarray analysis (Saberi et al., 2014). In contrast to conventional hybridization, aCGH does not detect metaphase chromosomes. Instead, it targets genomic DNA to perform high-throughput screening of the whole genome for CNVs (Vissers et al., 2003). The aCGH approach can accurately locate CNVs on chromosomes, and clearly calculate CNV length and identify genes within variant fragments (Mosse et al., 2005). Nowadays, aCGH is commonly used for cancer and genetic disorder research (Kallioniemi, 2008; Sireteanu et al., 2012). In this study, we used aCGH to detect CNVs in three children with TCS and two healthy parents. In order to examine TCS pathogenesis at the chromosome and gene levels, we determined the relationship between these chromosomal aberrations and TCS, and consequently detected CNVs linked with occurrence and development of TCS.

    Subjects and Methods

    Subjects

    Three children diagnosed with typical TCS based on clinical criteria (Filippidis et al., 2010) by the Department of Neurosurgery at the Chinese PLA General Hospital and the Second Artillery General Hospital, and the healthy parents of Patient 1 were enrolled in the study. Peripheral blood samples were collected from the patients and healthy controls. Before initiation of the study, written consent was obtained from the guardians of all children. The study (Project ID: S2013-117-01) was approved by the ethics committee of the Chinese PLA General Hospital, China.

    Case 1 was a 2-year-old girl with a sacrococcygeal mass and right foot deformity. The sacrococcygeal mass was identified at birth. Physical examination revealed spina bifida. Strephenopodia of the right foot and a second enlarging sacrococcygeal mass were first observed at 8 months of age. The patient was diagnosed with TCS with myelomeningocele.

    Case 2 was a 12-year-old boy who presented with a lumbosacral mass at the age of 8 months. The patient was diagnosed with TCS with spinal cord lipoma. Surgical treatment was performed. Urinary abnormality occurred 11 years after surgery, along with urinary incontinence, nocturnal enuresis, urinary frequency, and urinary urgency. A further surgery was performed because magnetic resonance imaging showed spinal cord lipoma and recurrence of TCS.

    Case 3 was a 5-year-old girl with abnormal hair growth in the lumbosacral region at birth. Physical examination revealed a partial spinal canal defect. Because the hair growth increased, magnetic resonance imaging examination was performed. The results revealed a tethered spinal cord and split cord malformation (Type I). Surgery was performed to correct the malformation.

    aCGH analysis

    aCGH is a specific array-based genomic hybridization method that uses different fluorescent dyes to label DNA from patients and controls, to identify differences between the two groups (Sealfon and Chu, 2011; Brady and Vermeesch, 2012). By comparing the ratio of two different fluorescence signals at each target spot in the microarray, CNVs are detected in specific sequences or genes between two genomes (Gijsbers et al., 2011; Shoukier et al., 2013).

    Total DNA was extracted from peripheral whole blood using a commercially available DNA-isolation kit (BioChain Inc., Beijing, China), according to the manufacturer’s protocol. For each aCGH experiment, purified DNA and normal sex-matched DNA (1 μg each; Promega, Madison, WI, USA) were digested with AluI and RsaI (10 U each; Promega), and differentially labelled with cyanine-5 and cyanine-3 fluorescent dyes using a Genomic DNA Enzymatic Labeling Kit (Agilent, Santa Clara, CA, USA). aCGH analysis was performed using the Agilent 8 × 60K commercial array. This platform contains 60-mer oligonucleotide probes spanning the entire human genome with an overall mean probe spacing of 50 kb. After hybridization, arrays were scanned using a dual-laser scanner (Agilent), and images extracted and analyzed using the Feature Extraction (Agilent) and Workbench genomics software, respectively. Changes in test DNA copy number at specific loci were considered only if they were <-0.38 (deletion) or > 0.38 (amplification) of the log2 ratio values from at least five consecutive probes.

    TCS-related CNV analysis

    Removal of polymorphic CNVs using the Database of Genomic Variants

    CNV fragments were scanned against the Database of Genomic Variants (Iafrate et al., 2004; Wong et al., 2007). CNVs that completely matched those in the database were removed as they represent common polymorphic variants present in the normal population. Partially overlapping (< 40%) CNVs were considered non-polymorphic and retained for further analysis. In addition, discontinuous polymorphic fragments appearing within CNV sequences (total fragment length was shorter than half-lengths of detected CNVs) were not treated as common polymorphisms and were also retained for further analysis.

    Comparison of non-polymorphic CNVs with DECIPHER

    The non-polymorphic CNV fragments selected above were searched against the DECIPHER database (Firth et al., 2009). Cases were identified with CNVs similar to those reported in previously tested samples (partial overlap >60%) or containing documented CNVs. Additionally, chromosomal abnormalities, related phenotypes, and syndromes associated with these cases were identified.

    Table 1 Array-comparative genome hybridization analysis of TCS patients and controls

    Table 2 DECIPHER search results for non-polymorphic copy number variations (CNVs)

    Table 3 Syndromes and clinical phenotypes linked to non-polymorphic copy number variations

    Table 4 Genes contained in non-polymorphic copy number variations

    Figure 1 Chromosome maps of the three patients with tethered spinal cord syndrome.

    Table 5 Enrichment results for gene ontology (GO) analysis

    Gene function enrichment analysis

    Entire genes incorporated in non-polymorphic CNVs were identified using the University of California, Santa Cruz (UCSC) Genome Browser database (http://genome.ucsc.edu/). Gene function enrichment analyses were performed for the genes identified, including Gene Ontology (GO) (http://geneontology.org/) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway (http://www.genome.jp/kegg/) analyses.

    Enrichment P-values for each GO term or KEGG pathway were calculated using the hyper-geometric distribution method. P-values were then corrected for multiple hypotheses testing using the false discovery rate method. A P-value of 0.05 was set as the threshold value for significant gene enrichment for each GO term or KEGG pathway.

    Results

    Gene micro-repeat fragment location in TCS patients

    Results of the aCGH analysis for all three patients and two parents are shown in Table 1. Three micro-repeat fragments were detected in DNA isolated from Patient 1. A micro-deletion fragment was detected in Patient 2, while a micro-deletion and micro-repeat were detected in Patient 3. The father of Patient 1 had a normal karyotype, whereas the mother’s chromosome map showed micro-deletion and micro-repeat fragments. The micro-deletion fragment in Patient 2 and micro-repeat fragment in Patient 3 were located in the same region: 15q11.1q11.2 (Figure 1).

    Database searching of CNVs

    The eight identified CNVs were searched against the Database of Genomic Variants. The results showed that four CNVs were normal chromosomal polymorphisms, specifically, the 1p21.2 micro-repeat in Patient 1, 2p11.2 micro-deletion in Patient 3, and 7q11.22q11.23 micro-deletion and 19p12 micro-repeat in the mother of Patient 1.

    Investigation of the other four non-polymorphic CNVsin DECIPHER revealed eight specific CNVs in these regions (Table 2). Non-polymorphic CNVs in Patients 2 and 3 (ID 4 and 6 in Table 1) shared the same chromosomal initiation site, indicating that multiple CNVs occur in the same location. Further analyses revealed that these CNVs are associated with two syndromes (Angelman and Prader-Willi) and one phenotype (microcephaly) (Table 3).

    Table 6 Gene enrichment analysis

    Gene function enrichment analysis

    Within the four non-polymorphic CNVs regions, 13 genes were identified by the UCSC Genome Browser (Table 4). Function enrichment analysis of GO terms and KEGG pathways were performed for these genes. The results included a number of biological functions (e.g., gamete generation), molecular functions (e.g., ubiquitin-protein ligase activity), two cellular components (mitochondrial inner membrane and integral membrane component), as well as eight KEGG pathways, including viral myocarditis, cardiac muscle contraction, Parkinson’s disease, oxidative phosphorylation, ubiquitin-mediated proteolysis, Alzheimer’s disease, Huntington’s disease, and olfactory transduction. From these results, we found that the COX8C gene is closely related to neural system diseases such as Parkinson’s disease, Alzheimer’s disease, and Huntington’s disease (Tables 5, 6).

    Discussion

    Advantages of using aCGH for detection of rare chromosomal micro-variations

    Chromosomal sub-microscopic variations are strongly associated with human disease (Feuk et al., 2006). In clinical settings, the definite diagnosis of several diseases cannot be achieved using existing techniques. Consequently, some rare syndromes are labelled idiopathic or unexplained. Most of these syndromes are due to genomic imbalances created by chromosomal micro-variations such as micro-deletions and micro-repeats (D’Angelo et al., 2014). The aCGH approach efficiently detects chromosomal micro-aberrations and aids elucidation of idiopathic or unexplained diseases.

    Significance and limitations of aCGH analysis

    The main objective of this study was to identify non-random CNVs and evaluate their association with TCS. The main questions regarding the CNVs we identified are: (1) whether the CNVs are inherited; (2) whether they are found in the normal population; (3) whether their lengths are sufficient to contain genes with functional annotations; (4) whether they are linked to diseases in DECIPHER; and (5) whether any are unreported, unidentified, or novel. Although the Database of Genomic Variants and DECIPHER, which are globally representative databases, were used to determine the type of CNVs identified, ethnic differences are inevitable when using international databases.

    Diseases similar to TCS that are associated with COX8C

    CNVs similar to the ones we detected are found in the DECIPHER database. These CNVs are associated with Angelman and Prader-Willi syndromes, and microcephaly. All of these disorders involve significant neural abnormalities (Mabb et al., 2011; Mahmood et al., 2011; Cassidy et al., 2012). Furthermore, gene function analysis indicated a close association between COX8C and certain diseases including Parkinson’s, Alzheimer’s, and Huntington’s diseases, all of which are typical nervous system diseases (Bassil and Mollaei, 2012; Pogledi? and Relja, 2012; Gazewood et al., 2013). By comparing the CNVs from Patient 1 with those identified in her parents, we excluded the possibility of TCS being hereditary. Thus, we propose that the condition may be acquired during neural development.

    Conclusion

    In this study, we used high-resolution aCGH to identify pathogenic CNVs in samples from patients with typical TCS. Our findings suggest an association between certain CNVs and nervous system disease. Our data may be used in the future as a reference for the integration of available data, or for further studies with larger sample sizes. Ours study demonstrates specific transformation research, and shows that a molecular method can be used to clinically diagnose TCS. Our findings may help to shed new light on the pathogenesis of TCS.

    Acknowledgments: We are very grateful to the staffs of iGene-Tech Biotechnology Co., Ltd. in China for some of the experiment operations.

    Author contributions: QJZ and SCB performed the experiment. CC, BZT and LKW collected patients, and conducted clinical communication and treatment. SL and LY provided technical and capital supports. QJZ and XYH analyzed and explained data. AJS and XYH served as principle investigators. All authors approved the final version of the paper.

    Conflicts of interest: None declared.

    Plagiarism check: This paper was screened twice using Cross-Check to verify originality before publication.

    Peer review: This paper was double-blinded and stringently reviewed by international expert reviewers.

    References

    Atta CA, Fiest KM, Frolkis AD, Jette N, Pringsheim T, St Germaine-Smith C, Rajapakse T, Kaplan GG, Metcalfe A (2016) Global birth prevalence of spina bifida by folic acid fortification status: A systematic review and meta-analysis. Am J Public Health 106:e24-34.

    Au KS, Ashley-Koch A, Northrup H (2010) Epidemiologic and genetic aspects of spina bifida and other neural tube defects. Dev Disabil Res Rev 16:6-15.

    Bartsch O, Kirmes I, Thiede A, Lechno S, Gocan H, Florian IS, Haaf T, Zechner U, Sabova L, Horn F (2012) Novel VANGL1 gene mutations in 144 Slovakian, Romanian and German patients with neural tube defects. Mol Syndromol 3:76-81.

    Bassil N, Mollaei C (2012) Alzheimer’s dementia: a brief review. J Med Liban 60:192-199.

    Bassuk AG, Kibar Z (2009) Genetic basis of neural tube defects. Semin Pediatr Neurol 16:101-110.

    Bassuk AG, Muthuswamy LB, Boland R, Smith TL, Hulstrand AM, Northrup H, Hakeman M, Dierdorff JM, Yung CK, Long A, Brouillette RB, Au KS, Gurnett C, Houston DW, Cornell RA, Manak JR (2013) Copy number variation analysis implicates the cell polarity gene glypican 5 as a human spina bifida candidate gene. Hum Mol Genet 22:1097-1111.

    Brady PD, Vermeesch JR (2012) Genomic microarrays: a technology overview. Prenat Diagn 32:336-343.

    Cassidy SB, Schwartz S, Miller JL, Driscoll DJ (2012) Prader-Willi syndrome. Genet Med 14:10-26.

    Cearns MD, Escuin S, Alexandre P, Greene ND, Copp AJ (2016) Microtubules, polarity and vertebrate neural tube morphogenesis. J Anat 229:63-74.

    Chen X, Shen Y, Gao Y, Zhao H, Sheng X, Zou J, Lip V, Xie H, Guo J, Shao H, Bao Y, Shen J, Niu B, Gusella JF, Wu BL, Zhang T (2013) Detection of copy number variants reveals association of cilia genes with neural tube defects. PLoS One 8:e54492.

    Costa-Lima MA, Meneses HN, El-Jaick KB, Amorim MR, Castilla EE, Orioli IM (2008) No association of the polyhistidine tract polymorphism of the ZIC2 gene with neural tube defects in a South American (ECLAMC) population. Mol Med Rep 1:443-446.

    D’Angelo CS, Varela MC, de Castro CI, Kim CA, Bertola DR, Louren?o CM, Perez ABA, Koiffmann CP (2014) Investigation of selected genomic deletions and duplications in a cohort of 338 patients presenting with syndromic obesity by multiplex ligation-dependent probe amplification using synthetic probes. Mol Cytogenet 7:75.

    Feuchtbaum LB, Currier RJ, Riggle S, Roberson M, Lorey FW, Cunningham GC (1999) Neural tube defect prevalence in California (1990-1994): eliciting patterns by type of defect and maternal race/ ethnicity. Genet Test 3:265-272.

    Feuk L, Marshall CR, Wintle RF, Scherer SW (2006) Structural variants: changing the landscape of chromosomes and design of disease studies. Hum Mol Genet 15:R57-66.

    Filippidis AS, Kalani MY, Theodore N, Rekate HL (2010) Spinal cord traction, vascular compromise, hypoxia, and metabolic derangements in the pathophysiology of tethered cord syndrome. Neurosurg Focus 29:E9.

    Firth HV, Richards SM, Bevan AP, Clayton S, Corpas M, Rajan D, Vooren SV, Moreau Y, Pettett RM, Carter NP (2009) DECIPHER: Database of chromosomal imbalance and phenotype in humans using ensembl resources. Am J Hum Genet 84:524-533.

    Gazewood JD, Richards DR, Clebak K (2013) Parkinson disease: an update. Am Fam Physician 87:267-273.

    Gijsbers AC, Schoumans J, Ruivenkamp CA (2011) Interpretation of array comparative genome hybridization data: a major challenge. Cytogenet Genome Res 135:222-227.

    Grinberg I, Millen KJ (2005) The ZIC gene family in development and disease. Clin Genet 67:290-296.

    Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, Scherer SW, Lee C (2004) Detection of large-scale variation in the human genome. Nat Genet 36:949-951.

    Joó JG (2009a) Recent perspectives on the development of the central nervous system and the genetic background of neural tube defects. Orv Hetil 150:873-882.

    Joó JG (2009b) Recent perspectives on the genetic background of neural tube defects with special regard to iniencephaly. Expert Rev Mol Diagn 9:281-293.

    Kallioniemi A (2008) CGH microarrays and cancer. Curr Opin Biotechnol 19:36-40.

    Khoshnood B, Loane M, de Walle H, Arriola L, Addor MC, Barisic I, Beres J, Bianchi F, Dias C, Draper E, Garne E, Gatt M, Haeusler M, Klungsoyr K, Latos-Bielenska A, Lynch C, McDonnell B, Nelen V, Neville AJ, O’Mahony MT, et al. (2015) Long term trends in prevalence of neural tube defects in Europe: population based study. BMJ 351:h5949.

    Laharwal MA, Sarmast AH, Ramzan AU, Wani AA, Malik NK, Arif SH, Rizvi M (2016) Epidemiology of the neural tube defects in Kashmir Valley. Surg Neurol Int 7:35.

    Mabb AM, Judson MC, Zylka MJ, Philpot BD (2011) Angelman syndrome: insights into genomic imprinting and neurodevelopmental phenotypes. Trends Neurosci 34:293-303.

    Mahmood S, Ahmad W, Hassan MJ (2011) Autosomal recessive primary microcephaly (MCPH): clinical manifestations, genetic heterogeneity and mutation continuum. Orphanet J Rare Dis 6:39-39.

    Molloy AM, Brody LC, Mills JL, Scott JM, Kirke PN (2009) The search for genetic polymorphisms in the homocysteine/folate pathway that contribute to the etiology of human neural tube defects. Birth Defects Res A Clin Mol Teratol 85:285-294.

    Mosse YP, Greshock J, Weber BL, Maris JM (2005) Measurement and relevance of neuroblastoma DNA copy number changes in the post-genome era. Cancer Lett 228:83-90.

    Payne J (2007) Tethered spinal cord syndrome. BMJ 335:42-43.

    Pogledi? I, Relja M (2012) Huntington’s disease. Lijec Vjesn 134:346-350.

    Saberi A, Shariati G, Hamid M, Galehdari H, Abdorasouli N (2014) Wolf-Hirschhorn syndrome: a case with normal karyotype, demonstrated by array CGH (aCGH). Arch Iran Med 17:642-644.

    Sealfon SC, Chu TT (2011) RNA and DNA Microarrays. Methods Mol Biol 671:3-34.

    Seo JH, Zilber Y, Babayeva S, Liu J, Kyriakopoulos P, De Marco P, Merello E, Capra V, Gros P, Torban E (2015) Mutations in the planar cell polarity gene, Fuzzy, are associated with neural tube defects in humans. Hum Mol Genet 24:3893.

    Shoukier M, Klein N, Auber B, Wickert J, Schr?der J, Zoll B, Burfeind P, Bartels I, Alsat EA, Lingen M, Grzmil P, Schulze S, Keyser J, Weise D, Borchers M, Hobbiebrunken E, R?bl M, G?rtner J, Brockmann K, Zirn B (2013) Array CGH in patients with developmental delay or intellectual disability: are there phenotypic clues to pathogenic copy number variants? Clin Genet 83:53-65.

    Sireteanu A, Covic M, Gorduza EV (2012) Array CGH: technical considerations and applications. Rev Med Chir Soc Med Nat Iasi 116:545-551.

    Tran S, Wang L, Le J, Guan J, Wu L, Zou J, Wang Z, Wang J, Wang F, Chen X, Cai L, Lu X, Zhao H, Guo J, Bao Y, Zheng X, Zhang T (2012) Altered methylation of the DNA repair gene MGMT is associated with neural tube defects. J Mol Neurosci 47:42-51.

    Tun?bilek E, Boduro lu K, Alika ifo lu M (1999) Neural tube defects in Turkey: prevalence, distribution and risk factors. Turk J Pediatr 41:299-305.

    van der Put NM, van Straaten HW, Trijbels FJ, Blom HJ (2001) Folate, homocysteine and neural tube defects: an overview. Exp Biol Med (Maywood) 226:243-270.

    Vissers Lisenka E, de Vries Bert B, Osoegawa K, Janssen Irene M, Feuth T, Choy Chik O, Straatman H, van der Vliet W, Huys Erik H, van Rijk A, Smeets D, van Ravenswaaij-Arts Conny M, Knoers Nine V, van der Burgt I, de Jong Pieter J, Brunner Han G, van Kessel Ad G, Schoenmakers Eric F, Veltman Joris A (2003) Array-based comparative genomic hybridization for the genomewide detection of submicroscopic chromosomal abnormalities. Am J Hum Genet 73:1261-1270.

    Wen S, Lu W, Zhu H, Yang W, Shaw GM, Lammer EJ, Islam A, Finnell RH (2009) Genetic polymorphisms in the thioredoxin 2 (TXN2) gene and risk for spina bifida. Am J Med Genet A 149A:155-160.

    Wong Kendy K, deLeeuw Ronald J, Dosanjh Nirpjit S, Kimm Lindsey R, Cheng Z, Horsman Douglas E, MacAulay C, Ng Raymond T, Brown Carolyn J, Eichler Evan E, Lam Wan L (2007) A comprehensive analysis of common copy-number variations in the human genome. Am J Hum Genet 80:91-104.

    Zhao J, Guan T, Wang J, Xiang Q, Wang M, Wang X, Guan Z, Xie Q, Niu B, Zhang T (2013) Influence of the antifolate drug Methotrexate on the development of murine neural tube defects and genomic instability. J Appl Toxicol 33:915-923.

    Copyedited by James R, Frenchman B, Yu J, Qiu Y, Li CH, Song LP, Zhao M

    10.4103/1673-5374.189200

    *Correspondence to:

    最好的美女福利视频网| 中文在线观看免费www的网站| 丰满乱子伦码专区| 国产99白浆流出| 又黄又爽又免费观看的视频| 成人18禁在线播放| 国产成人影院久久av| 国产欧美日韩精品亚洲av| 91字幕亚洲| av福利片在线观看| 国产精品99久久99久久久不卡| 久久精品国产综合久久久| 久久草成人影院| 午夜免费激情av| 亚洲熟妇熟女久久| 亚洲av成人不卡在线观看播放网| 亚洲va日本ⅴa欧美va伊人久久| 校园春色视频在线观看| 成年人黄色毛片网站| 男女之事视频高清在线观看| 国产蜜桃级精品一区二区三区| 成人av一区二区三区在线看| 午夜两性在线视频| 国产亚洲精品av在线| xxx96com| 国产v大片淫在线免费观看| 午夜激情欧美在线| tocl精华| 国模一区二区三区四区视频| 香蕉丝袜av| 天堂动漫精品| 在线观看一区二区三区| 国产极品精品免费视频能看的| 三级男女做爰猛烈吃奶摸视频| 国产精品亚洲美女久久久| 日韩欧美国产在线观看| www.www免费av| 乱人视频在线观看| 久久精品国产清高在天天线| 国产成人福利小说| 欧美一区二区国产精品久久精品| 欧美性感艳星| 国产黄色小视频在线观看| 一二三四社区在线视频社区8| 亚洲色图av天堂| 成人精品一区二区免费| 日本在线视频免费播放| 最新美女视频免费是黄的| 一级毛片女人18水好多| 欧美乱色亚洲激情| 亚洲无线观看免费| 久久久精品大字幕| 怎么达到女性高潮| xxx96com| 99久国产av精品| 九色国产91popny在线| 中文字幕av在线有码专区| 国产亚洲精品久久久久久毛片| 最好的美女福利视频网| www.色视频.com| 18禁在线播放成人免费| 天天躁日日操中文字幕| 美女 人体艺术 gogo| 日韩欧美在线二视频| 成人精品一区二区免费| 搡老岳熟女国产| 制服丝袜大香蕉在线| 欧美丝袜亚洲另类 | 观看美女的网站| 成年免费大片在线观看| 亚洲av五月六月丁香网| 日本精品一区二区三区蜜桃| 51国产日韩欧美| 99久久99久久久精品蜜桃| 免费看a级黄色片| 嫩草影院精品99| 亚洲欧美激情综合另类| 激情在线观看视频在线高清| 美女黄网站色视频| 亚洲人成电影免费在线| 一区二区三区国产精品乱码| 国产不卡一卡二| 夜夜爽天天搞| 国产色婷婷99| 日韩欧美精品v在线| 51午夜福利影视在线观看| 欧美日韩亚洲国产一区二区在线观看| 免费av不卡在线播放| 国产精品久久久久久精品电影| 一本久久中文字幕| 成人精品一区二区免费| 最好的美女福利视频网| 中国美女看黄片| 久久国产精品人妻蜜桃| 欧美+亚洲+日韩+国产| 亚洲无线在线观看| 91麻豆av在线| 国产精品98久久久久久宅男小说| 国产国拍精品亚洲av在线观看 | 熟女电影av网| 九色成人免费人妻av| 热99re8久久精品国产| 9191精品国产免费久久| 丁香欧美五月| 日韩欧美精品免费久久 | 国产亚洲精品一区二区www| 亚洲一区二区三区色噜噜| 草草在线视频免费看| 欧美日韩中文字幕国产精品一区二区三区| 午夜激情福利司机影院| 国产精品一区二区三区四区免费观看 | 亚洲av成人av| aaaaa片日本免费| 久久精品亚洲精品国产色婷小说| 国产免费av片在线观看野外av| 午夜福利视频1000在线观看| a级一级毛片免费在线观看| 国产精品久久久久久亚洲av鲁大| 我要搜黄色片| 午夜久久久久精精品| 国产精品久久久久久久电影 | 中文字幕高清在线视频| 亚洲精品日韩av片在线观看 | 色综合婷婷激情| 国产午夜福利久久久久久| eeuss影院久久| 十八禁网站免费在线| 啪啪无遮挡十八禁网站| 午夜激情欧美在线| 国产单亲对白刺激| 真人做人爱边吃奶动态| h日本视频在线播放| 在线观看免费视频日本深夜| 亚洲中文字幕日韩| 熟女电影av网| 亚洲成人免费电影在线观看| 成人av一区二区三区在线看| 成人av一区二区三区在线看| 小说图片视频综合网站| 在线观看舔阴道视频| 欧美成人免费av一区二区三区| 国产精品嫩草影院av在线观看 | 亚洲人成电影免费在线| x7x7x7水蜜桃| 欧洲精品卡2卡3卡4卡5卡区| 中文资源天堂在线| 国产免费一级a男人的天堂| 国内揄拍国产精品人妻在线| 久久久久久久午夜电影| 午夜精品在线福利| www.熟女人妻精品国产| 久久久久国产精品人妻aⅴ院| 午夜免费成人在线视频| 美女高潮喷水抽搐中文字幕| 久久亚洲真实| 国产精品久久电影中文字幕| 久久精品亚洲精品国产色婷小说| 天堂√8在线中文| 最近视频中文字幕2019在线8| 中国美女看黄片| 欧美色视频一区免费| 一本久久中文字幕| 国产亚洲精品久久久com| 女人十人毛片免费观看3o分钟| 夜夜爽天天搞| 中国美女看黄片| 国产精华一区二区三区| 久久精品国产99精品国产亚洲性色| 日韩欧美在线二视频| 免费在线观看日本一区| 99国产精品一区二区三区| 国产乱人视频| 丰满的人妻完整版| 亚洲黑人精品在线| 毛片女人毛片| 国产中年淑女户外野战色| 欧美中文日本在线观看视频| 蜜桃久久精品国产亚洲av| 国产精品一区二区免费欧美| 脱女人内裤的视频| 欧美日本视频| 岛国在线观看网站| 亚洲成人免费电影在线观看| 1000部很黄的大片| 久久久久亚洲av毛片大全| 亚洲国产精品999在线| 国产一区二区在线观看日韩 | 男女之事视频高清在线观看| 国产亚洲av嫩草精品影院| 熟女人妻精品中文字幕| 国产视频内射| 女人被狂操c到高潮| 国产精品永久免费网站| 丁香六月欧美| 免费无遮挡裸体视频| 男人舔奶头视频| 18禁国产床啪视频网站| 精品久久久久久久毛片微露脸| 最近最新中文字幕大全免费视频| av女优亚洲男人天堂| 亚洲avbb在线观看| 日韩欧美在线乱码| 老熟妇乱子伦视频在线观看| 国产精品亚洲一级av第二区| 日韩免费av在线播放| 久久精品国产自在天天线| 嫩草影院精品99| 午夜免费激情av| 日本黄色片子视频| 男女那种视频在线观看| 搡老熟女国产l中国老女人| 国产毛片a区久久久久| 久久精品91蜜桃| 精品人妻1区二区| 在线免费观看的www视频| 琪琪午夜伦伦电影理论片6080| 免费看十八禁软件| 亚洲男人的天堂狠狠| 亚洲va日本ⅴa欧美va伊人久久| 精品人妻1区二区| 亚洲美女视频黄频| 亚洲精品粉嫩美女一区| 日韩亚洲欧美综合| 国产69精品久久久久777片| 亚洲精品456在线播放app | 少妇的逼水好多| 久久精品国产综合久久久| 婷婷精品国产亚洲av| 婷婷精品国产亚洲av在线| 免费av毛片视频| 国产精品自产拍在线观看55亚洲| 国产精品美女特级片免费视频播放器| 亚洲精品乱码久久久v下载方式 | 亚洲精品成人久久久久久| 99热只有精品国产| 18禁在线播放成人免费| 亚洲精品久久国产高清桃花| 99精品久久久久人妻精品| 欧美中文日本在线观看视频| 午夜久久久久精精品| 日韩欧美在线乱码| 亚洲最大成人中文| 亚洲av五月六月丁香网| 国产精品综合久久久久久久免费| 91av网一区二区| 欧美黑人欧美精品刺激| av在线天堂中文字幕| 性色avwww在线观看| aaaaa片日本免费| 久久久久精品国产欧美久久久| 丁香六月欧美| 国产精品98久久久久久宅男小说| 国产高清视频在线播放一区| 亚洲乱码一区二区免费版| 97超视频在线观看视频| 精品免费久久久久久久清纯| 国产欧美日韩一区二区精品| 老司机午夜十八禁免费视频| 亚洲第一欧美日韩一区二区三区| 国内精品久久久久精免费| 18+在线观看网站| 成人高潮视频无遮挡免费网站| 我的老师免费观看完整版| 久久久久久久久大av| 欧美黑人巨大hd| 成熟少妇高潮喷水视频| 国产一级毛片七仙女欲春2| 日韩欧美精品v在线| 男女之事视频高清在线观看| 给我免费播放毛片高清在线观看| 久久草成人影院| 丁香六月欧美| 成年版毛片免费区| 欧美日本亚洲视频在线播放| 99精品欧美一区二区三区四区| 叶爱在线成人免费视频播放| 女人十人毛片免费观看3o分钟| 亚洲av免费高清在线观看| 中出人妻视频一区二区| 一区二区三区国产精品乱码| 午夜福利在线观看免费完整高清在 | 久久久久久久久久黄片| 香蕉丝袜av| 亚洲av免费高清在线观看| 99精品在免费线老司机午夜| 熟女电影av网| 美女大奶头视频| 国产蜜桃级精品一区二区三区| 久久亚洲精品不卡| 极品教师在线免费播放| 母亲3免费完整高清在线观看| 色av中文字幕| 国产精品国产高清国产av| 好男人电影高清在线观看| 国产三级在线视频| 国产精品久久久人人做人人爽| 欧美一区二区国产精品久久精品| 亚洲欧美一区二区三区黑人| 午夜福利视频1000在线观看| 夜夜夜夜夜久久久久| 观看免费一级毛片| 波多野结衣巨乳人妻| 亚洲中文字幕日韩| 午夜福利在线在线| 深夜精品福利| 亚洲熟妇中文字幕五十中出| 两个人视频免费观看高清| 日本撒尿小便嘘嘘汇集6| 99精品在免费线老司机午夜| 999久久久精品免费观看国产| 亚洲美女视频黄频| 18禁在线播放成人免费| 亚洲av免费高清在线观看| 欧美成人免费av一区二区三区| 天堂av国产一区二区熟女人妻| 国产视频一区二区在线看| 国产一区二区在线观看日韩 | 一个人免费在线观看的高清视频| 给我免费播放毛片高清在线观看| 国产av一区在线观看免费| 国产精品国产高清国产av| 五月伊人婷婷丁香| 极品教师在线免费播放| 黄色片一级片一级黄色片| 亚洲欧美日韩高清在线视频| 亚洲中文字幕日韩| 变态另类丝袜制服| 男插女下体视频免费在线播放| 中文字幕人妻熟人妻熟丝袜美 | 老汉色av国产亚洲站长工具| 亚洲五月婷婷丁香| 最近最新中文字幕大全电影3| 三级男女做爰猛烈吃奶摸视频| 国产精品一及| 男女视频在线观看网站免费| 精品日产1卡2卡| 日本熟妇午夜| 日韩成人在线观看一区二区三区| 国产亚洲欧美在线一区二区| 毛片女人毛片| 法律面前人人平等表现在哪些方面| 久久精品国产亚洲av涩爱 | 国产精品爽爽va在线观看网站| 女警被强在线播放| 99热这里只有是精品50| av天堂在线播放| 天天添夜夜摸| 国产97色在线日韩免费| 韩国av一区二区三区四区| 嫩草影视91久久| 国产黄a三级三级三级人| 真人一进一出gif抽搐免费| 两个人看的免费小视频| 中文亚洲av片在线观看爽| 99久久精品热视频| 丝袜美腿在线中文| 亚洲欧美精品综合久久99| 成人永久免费在线观看视频| 亚洲真实伦在线观看| 噜噜噜噜噜久久久久久91| 少妇人妻精品综合一区二区 | 国产黄片美女视频| 亚洲精品日韩av片在线观看 | 国产真实乱freesex| 天堂av国产一区二区熟女人妻| 国产99白浆流出| 国产一区二区亚洲精品在线观看| 在线免费观看不下载黄p国产 | 色噜噜av男人的天堂激情| 国产精品久久视频播放| 黑人欧美特级aaaaaa片| 老熟妇仑乱视频hdxx| 日日干狠狠操夜夜爽| 99久久成人亚洲精品观看| 精品99又大又爽又粗少妇毛片 | 亚洲av成人av| bbb黄色大片| 久久久久免费精品人妻一区二区| 久久人人精品亚洲av| 超碰av人人做人人爽久久 | 在线播放国产精品三级| 麻豆成人av在线观看| 免费av毛片视频| 亚洲成av人片免费观看| 国产欧美日韩精品一区二区| 91久久精品电影网| www.999成人在线观看| 麻豆国产av国片精品| 久久久精品大字幕| 免费在线观看影片大全网站| 国产高清视频在线观看网站| 国产精品美女特级片免费视频播放器| 一级毛片高清免费大全| 波多野结衣高清无吗| 一个人免费在线观看的高清视频| 两人在一起打扑克的视频| 免费看光身美女| 日韩欧美一区二区三区在线观看| 十八禁人妻一区二区| 午夜精品一区二区三区免费看| 一区二区三区高清视频在线| 亚洲av一区综合| 精品人妻一区二区三区麻豆 | 色av中文字幕| 欧美不卡视频在线免费观看| 国产主播在线观看一区二区| 色精品久久人妻99蜜桃| 99久久成人亚洲精品观看| 中文亚洲av片在线观看爽| 波多野结衣高清作品| 欧美日韩一级在线毛片| 欧美绝顶高潮抽搐喷水| 少妇丰满av| 亚洲最大成人手机在线| 色综合婷婷激情| 97人妻精品一区二区三区麻豆| 欧美zozozo另类| 日韩欧美国产在线观看| 91久久精品电影网| 亚洲欧美一区二区三区黑人| 精品日产1卡2卡| 亚洲中文字幕日韩| 18禁在线播放成人免费| 少妇的丰满在线观看| 波野结衣二区三区在线 | 午夜福利免费观看在线| 国产成人aa在线观看| 亚洲国产日韩欧美精品在线观看 | 国产真实乱freesex| 一区二区三区国产精品乱码| 欧美av亚洲av综合av国产av| 欧美zozozo另类| 国产高清三级在线| 日本免费一区二区三区高清不卡| 琪琪午夜伦伦电影理论片6080| av片东京热男人的天堂| 手机成人av网站| 国产精品,欧美在线| 麻豆成人午夜福利视频| 亚洲午夜理论影院| 一级a爱片免费观看的视频| 日韩av在线大香蕉| 观看免费一级毛片| 精品人妻1区二区| 最近最新免费中文字幕在线| 久久久久久久亚洲中文字幕 | 日本五十路高清| 国产精品久久久人人做人人爽| 最后的刺客免费高清国语| 国产精品野战在线观看| 一级a爱片免费观看的视频| 午夜老司机福利剧场| 亚洲欧美日韩高清在线视频| 国产爱豆传媒在线观看| 国产精品久久久久久人妻精品电影| 高潮久久久久久久久久久不卡| 亚洲自拍偷在线| 国产精华一区二区三区| 亚洲国产日韩欧美精品在线观看 | 狠狠狠狠99中文字幕| 在线播放国产精品三级| 99久久99久久久精品蜜桃| 在线视频色国产色| 一个人观看的视频www高清免费观看| 日本三级黄在线观看| 欧美日韩综合久久久久久 | 久久久精品欧美日韩精品| 最近最新中文字幕大全电影3| 一级a爱片免费观看的视频| 99精品久久久久人妻精品| 无限看片的www在线观看| 天堂动漫精品| 欧美日韩亚洲国产一区二区在线观看| 国产一区二区三区视频了| 叶爱在线成人免费视频播放| 午夜久久久久精精品| 久久人人精品亚洲av| 男插女下体视频免费在线播放| 国产亚洲精品一区二区www| 香蕉av资源在线| 亚洲欧美激情综合另类| 欧美区成人在线视频| 午夜福利免费观看在线| 亚洲第一电影网av| 男人舔奶头视频| 亚洲黑人精品在线| 免费一级毛片在线播放高清视频| 搡老岳熟女国产| 国产淫片久久久久久久久 | 欧美黄色淫秽网站| 国产乱人视频| 久久久色成人| 又紧又爽又黄一区二区| 国产欧美日韩精品一区二区| 少妇丰满av| 很黄的视频免费| 一个人看的www免费观看视频| 黄片小视频在线播放| 精品午夜福利视频在线观看一区| 女同久久另类99精品国产91| 欧美日韩乱码在线| 少妇的逼水好多| 久久久成人免费电影| 特大巨黑吊av在线直播| 一进一出抽搐gif免费好疼| 欧美成人a在线观看| 小蜜桃在线观看免费完整版高清| 午夜免费观看网址| 狂野欧美激情性xxxx| av在线蜜桃| 天天躁日日操中文字幕| 欧美乱色亚洲激情| 亚洲精品色激情综合| 色综合欧美亚洲国产小说| 国内少妇人妻偷人精品xxx网站| 一边摸一边抽搐一进一小说| 欧美日本视频| 有码 亚洲区| 日韩大尺度精品在线看网址| 日本 av在线| 亚洲av不卡在线观看| 精品久久久久久,| 成年免费大片在线观看| 91久久精品电影网| 免费看十八禁软件| 一个人看视频在线观看www免费 | 成年女人毛片免费观看观看9| 久久久久久人人人人人| 国产精品久久视频播放| 久久精品国产亚洲av涩爱 | 精品午夜福利视频在线观看一区| 精品电影一区二区在线| 午夜老司机福利剧场| 无限看片的www在线观看| 99在线人妻在线中文字幕| 成人18禁在线播放| 在线视频色国产色| 在线观看日韩欧美| 在线观看免费视频日本深夜| 一个人免费在线观看电影| 中文字幕高清在线视频| 日韩欧美三级三区| 亚洲国产中文字幕在线视频| 日本五十路高清| 午夜精品在线福利| 欧美日韩精品网址| 我要搜黄色片| 可以在线观看毛片的网站| 色综合亚洲欧美另类图片| 99久国产av精品| 2021天堂中文幕一二区在线观| 日韩亚洲欧美综合| 午夜两性在线视频| 99久久无色码亚洲精品果冻| 一本综合久久免费| 国产亚洲欧美在线一区二区| 最新美女视频免费是黄的| 九九久久精品国产亚洲av麻豆| 女人被狂操c到高潮| 三级国产精品欧美在线观看| 男女视频在线观看网站免费| 欧美乱色亚洲激情| a级毛片a级免费在线| 啦啦啦观看免费观看视频高清| 久久精品夜夜夜夜夜久久蜜豆| 狂野欧美白嫩少妇大欣赏| 午夜福利在线观看免费完整高清在 | 18禁在线播放成人免费| 看黄色毛片网站| 久久精品国产清高在天天线| 内地一区二区视频在线| 久久国产乱子伦精品免费另类| 无人区码免费观看不卡| 免费在线观看影片大全网站| 亚洲成av人片免费观看| 免费av不卡在线播放| 欧美成人性av电影在线观看| 欧美+日韩+精品| 综合色av麻豆| 99精品在免费线老司机午夜| 一a级毛片在线观看| 蜜桃亚洲精品一区二区三区| 欧美日本亚洲视频在线播放| 国产视频内射| 国产av在哪里看| xxxwww97欧美| 午夜福利高清视频| 一级作爱视频免费观看| 一区二区三区高清视频在线| 99在线视频只有这里精品首页| 九九在线视频观看精品| 母亲3免费完整高清在线观看| 欧美日韩精品网址| 久久亚洲真实| 精品福利观看| 中亚洲国语对白在线视频| 国产精品98久久久久久宅男小说| 亚洲国产精品成人综合色| 少妇高潮的动态图| 岛国在线免费视频观看| 老司机深夜福利视频在线观看| 一个人免费在线观看电影| 欧美+日韩+精品| 日韩欧美免费精品| 无限看片的www在线观看| 性色av乱码一区二区三区2| 伊人久久精品亚洲午夜| 69人妻影院| 国产毛片a区久久久久| 欧美zozozo另类| 欧美不卡视频在线免费观看| 欧美激情在线99| 婷婷亚洲欧美| 国内毛片毛片毛片毛片毛片| 国产伦一二天堂av在线观看|