• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Diabetes mellitus susceptibility with varied diseased phenotypes and its comparison with phenome interactome networks

    2022-06-27 08:30:40MadhusmitaRoutBhumandeepKourSugunakarVureeSajithaLuluKrishnaMohanMedicherlaPrashanthSuravaihala
    World Journal of Clinical Cases 2022年18期

    lNTRODUCTlON

    Diabetes mellitus occurs as a result of insufficient insulin production or impaired insulin sensitivity, and it has become a serious threat to people's health[1,2]. It is a heterogeneous problem with numerous aetiologies comprising three main types,

    type 1 diabetes mellitus (T1DM), type 2 diabetes mellitus(T2DM), and gestational diabetes mellitus (GDM). Understanding the biological mechanisms associated would allow us to identify candidate proteins and genes[3]. The emergence of genome-wide association studies (GWASs) has substantially enhanced our understanding of the genetic basis of disease risk in the past few years. Prior to the introduction of GWASs in 2006, very little information was available about the genes that influence common complicated or multifactorial diseases and quantitative traits.These research findings imply that susceptibility to prevalent diseases is influenced by a variety of genetic topologies, including common genetic variants with minimal effects and uncommon variants with substantial impact sizes[4-6]. Nevertheless, the combination of candidate T2DM genes discovered using GWASs does not fully confirm established features of disease pathogenesis. Several system-level approaches have been used to bridge the gap between genome and phenome correlation[7]. Computational analyses of disease linked genes using interactome and toxicogenomic data help us to connect T2DM candidate genes found in GWAS with disease pathophysiology, including abnormal pancreatic cell formation and function, and insulin sensitivity. On the other hand, computational predictions of potential proteins/genes are less expensive and time-saving than experimental methods[8,9]. In order to unravel the genetic roots of common disorders, it is necessary to understand the complexity of the gene-phenotype connection. Recent research employing the human interactome and phenome has uncovered not just common phenotypic and genetic overlap between diseases but also a modular architecture of the genetic landscape of human diseases, opening up new avenues for reducing the complexity of human diseases[10,11]. Because diseases are rarely caused by the malfunction of a single protein, a more comprehensive and robust interactome is essential for identifying groups of interconnected proteins associated with disease aetiology[12].

    PHENOME lNTERACTlON NETWORKS

    The phenome interaction networks are used to study a wide range of phenotypic traits based on the analysis of the complete genome; it follows a genotypic to phenotypic approach in order to analyse the phenotypic traits[13]. The diseases with overlapping clinical signs can be predicted because of the mutation in different genes which are playing a role in similar functions. More recently, the studies on humans as well as model organisms have revealed that the primary or secondary association between proteins can also be one of the reasons of the same phenotype that means the mutation in particular protein along with its direct or indirect association with a single or multiple proteins can be responsible for overlapping of the clinical manifestations[14]. The opposite scenario can also be analysed using a phenome-interactome network, in case of pleiotropy, the cases in which a single gene is responsible for different phenotypic traits[15]. The protein-protein interaction (PPI) network models are used to analyse the phenomic traits, which in turn is helpful in understanding cell signalling and drug development in the diseased as well as normal cell physiology; basically, it is important to understand almost every process of the cell. PPI networks are the mathematical representation of physical interaction between similar or different proteins for the analysis of phenomes. The mathematical representation of interaction among different proteins in PPIs is based upon graph theory where the proteins are represented as nodes and edges to depict the type of interaction between two different interacting proteins[16]. PPI networks help to find the genes for a particular disease with a huge accuracy and when PPIs are implemented on the large datasets, it could lead to prediction of novel gene candidates[11]. The phenome interaction networks are quite important to understand and mine the genes associated with a particular disease. The genes that are responsible for similar functions have a higher chance of having the same phenotypes; therefore, understanding phenotypic as well as genotypic data is a must in order to understand the origination and development of a disease at the systems biology level for the better treatment[17]. The origin and cause of several complex diseases including cancer, diabetes, and obesity can be understood by PPI network analysis[18].

    GDM

    GDM is categorised as insulin resistance leading to hyperglycemia during pregnancy, which mostly retracts after parturition. According to the World Health Organization, the prevalence rate is 15.8%accounting to about 20.4 million live births, with the majority of cases in pregnant women above the age of 35 years. The International Diabetes Federation in 2019 estimated a prevalence of 28.5% in India with incidence varying in each state due to challenges in screening strategies and paucity of consensus among physicians and healthcare providers in prepartum and postpartum management of GDM[19].The diagnostic criteria may differ worldwide, and understanding the pathophysiology is crucial as it affects both the mother and the fetus during gestation, delivery, and later stages of life making them susceptible to diabetes, obesity, and cardiovascular complications in the long term[20]. Major challenges that have governed this disease are the guidelines for screening and diagnosis. The testing criteria are different with varying forms of oral glucose tolerance test being followed worldwide[21]. Management of GDM is another challenge as both the mother and fetus are at risk in their current milieu. Studies have highlighted the importance of treating GDM, reducing the risk of perinatal morbidity and improving post-delivery outcomes[22]. Glucose intolerance leads to the manifestation of the disease,hence the benchmark of GDM treatment should be glycaemic control which is achieved through lifestyle intervention such as diet and exercise, pharmacological intervention such as insulin, oral drugs,and herbal medicines, and finally postnatal management[23].

    The Goose Girl is finally gaining some autonomy. She is able to cast a simple spell, using her own magic, to save her hair from Curdken s attentions. This spell also brings her to the attention of the old king and helps him to recognize that she must be more than she appears. She is gaining some maturity through her adversity.

    One evening the Lion said to the King: So you think you have got twelve huntsmen, do you? Yes, certainly, said the King, they _are_ twelve huntsmen

    Pregnant women with GDM have an inherent risk of developing T2DM post-delivery or later on in life. The offspring is also susceptible to any form of diabetes postnatally or in the long term. The genetic factors responsible for GDM and future risk of developing T2DM through epidemiological and physiological studies reveal commonality in susceptibility loci, which implies that most of the diabetes genes are involved in causing GDM. The few key genes that share common variants are

    ,

    ,

    ,

    ,

    ,

    ,

    ,

    ,

    ,

    ,

    and

    [24,25]. Genetic similarities between T1DM and GDM is less studied, and a study among Asian Indian women with GDM showed the presence of pancreatic autoantibodies like GAD which is a biomarker for T1DM[26]. Maturity onset diabetes of young (MODY) has different types and each type is characterised by a single gene, and few studies have shown that mutations in

    and

    are MODY genes which predispose to GDM[27].

    This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BYNC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is noncommercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

    PROSTATE CANCER AND DlABETES, LlNCO1128

    “Yes, there is always snow and ice,” said the reindeer; “and it is a glorious place; you can leap and run about freely on the sparkling ice plains. The Snow Queen has her summer tent there, but her strong castle is at the North Pole, on an island called Spitzbergen.”

    LlNC01128

    Soon after this a shepherd happened to pass by with his flock, and while he was slowly following the sheep, who paused here and there by the wayside to browse34 on the tender grass, he heard a pitiful voice wailing35, They insist on my taking her, and I don t want her, for I am too old, and I really can t have her

    CONCLUSlON

    Rout M wrote the first draft; Kour B wrote the sections on diabetes; Suravajhala P proofread the manuscript with sections on phenome-interactome networks; all authors chipped in laterally; Kour B and Rout M are equal contributing first authors.

    ACKNOWLEDGEMENTS

    The authors declare no conflict of interest for this article.

    In a study, GEO datasets of osteosarcoma (OS) were analysed for LINC01128 expression to clear its oncogenic role. It revealed that increased expression of LINC01128 in OS patients is accompanied with their shorter survival. However, its knockdown turned down the proliferation, migration, and invasion.In OS, LINC01128 is identified to work as a sponge in triggering Wnt/β-Catenin signaling by promoting MMP2 expression through miR-299-3p[49]. In promoting cervical cancer development again, it functions as a sponge for miR-383-5p[50]. In cervical cancer tissues, the expression of LINC01128 is found significantly high and its fall suggests that it might lower the SFN (stratifin) at both the mRNA and protein levels. SFN, a known potential biomarker in cervical cancer, is also majorly expressed in the early stage of lung adenocarcinomas. It clearly explains how LINC01128 could accelerate cell processes like cell proliferation, migration, and invasion and even can inhibit the apoptosis through SFN upregulation and release by binding miR-383-5p and also working as its antagonist[51,52]. miR-383 is under regulation of LINC01128. However, overexpression of miR-383 in T2DM serum reverses the cell apoptosis under high glucose in mouse β cells by

    and

    suppression[53]. Also, high LINC01128 was seen in stage III-IV CRC and mediated PRMT5 function, which is a mediator of methylation of proteins[54]. In pancreatic cancer, it was found as an EMT-LPS (epithelial mesenchymal transition related lncRNA prognostic signature) molecule[55].

    FOOTNOTES

    The phenome-interactome networks have been a powerful approach to understand and characterize networks. There is a greater scope of relevance underlying the pathophysiology mentioned above. To fully comprehend the importance of phenome-interactome networks and diabetes associated metabolism, it is vital to ensure that there is a healthy diet regimen followed which also addresses the clinical implications of its absorption, bioavailability, and human health benefits. Integrated systems approaches can be used to discover the novel genes and pathways with an emphasis on the molecular physiological insights gained through systems/nutrigenomic modules and thereby candidate DEGs could be detected. Furthermore, standard operating procedures, recommendations, and guidelines in consideration of the aforementioned diabetes phenotypes for better dissemination of phenomeinteractome predictions will help avoid the risk of over/under treatment. In addition, post next generation sequencing, a large focus nowadays should be on the development of NGS/genotyping panels which can set a precedent for a global consortium effort bridging the gap between the nutritional deficiency diseases and diabetes.

    As glucose level in the body is regulated by insulin, a hormone (peptide) which increases the glucose uptake and its assimilation. However, insulin resistance is stated when it becomes unable to perform this function in a diabetic patient. On the other hand, the beta cell continuously secretes insulin to make up and maintain balance but it results in hyperinsulinemia[36]. This increased level will trigger the production of IGF-1 from liver cells. IGF-1 will then bind to its tyrosine kinase receptor IGF-1R and stimulate various metabolic and mitogenic signalling pathways to control processes like cancer cell proliferation, differentiation, and apoptosis. Later, some downstream targets like PI3KB and rat sarcoma-mitogen-activated protein kinase/extracellular signal regulated kinase signaling pathways get stimulated. PI3KB signaling has a role in cancer cell survival and migration, while the rat sarcoma mitogen-activated protein kinase/extracellular signal regulated kinase signaling pathway controls cancer cell proliferation and metabolism[37]. Hence, patients who have diabetes show increased levels of IGF-1, bringing in them more susceptibility towards a higher risk of developing different cancers like breast, prostate, and colorectal cancer[38]. However, the growth factor IGF-II which shares locus with lncH19 (IGF-II/H19) forms an imprinted gene. This silencing is found disrupted in different cancers including prostate cancer. The association of adipose tissue and obesity is a known risk factor for both T2DM and prostate cancer by disturbing cellular environments. As a result, hyperglycaemia or inflammatory metabolic situations are hypothesized to be the cause of this loss of imprinting (LOI)[39]. Differentially expressed lncRNA (LINC01128) is already known to increase the rate of cervical cancer progression and is also predicted as a biomarker of gestational hypertension[40,41]. Similarly, Pradeep Tiwari

    [28] in 2019 suggested that LINC01128 could serve as a biomarker for diabetes diagnosis and prognosis (Figure 1). Metformin, an antidiabetic drug from several studies, has been proved to not only effect on glucose metabolism but also show interactions with androgen receptors. It plays a role in stabilizing prostate specific antigen (PSA) levels[42]. In certain therapy, another commonly used method for T2DM, it is reported that glucagon-like peptide-1 receptor expression plays an anti-prostate cancer effect. It is helping in attenuating cell cycle progression. So, its forceful activation to express can be a potential therapeutic approach[43]. Therefore, both metformin and certain therapies help in blocking cell cycle progression by reducing mTOR activity[44]. Hypogonadism (decrease in level of testosterone)is also found associated with both diabetes and prostate cancer (PCa). A fall in its serum level is capable of causing high graded PCa. Hence, T2DM is suggested to be a crucial predictor of high graded PCa especially with benign prostatic hyperplasia[45]. For early possible detection, PSA levels are broadly used, but its concentration shows variation due to several other comorbidities, age, and lifestyle, which makes it to demand more precise analysis of test results. Based on a linear aggression analysis, there is a fall in PSA in patients who are taking antidiabetics and obese people on hemodilution. This establishes an inverse relationship between diabetes obesity and PSA level. Such study suggests to deliberately check the PSA level, especially in diabetic and obese patients[46]. Both PCa and DM incidence is rising parallel with age. Despite the fact diabetes mellitus reduces the risk of PCa, DM can also increase its mortality[47]. The understanding of association between DM and PCa is still insufficient. Moreover,obesity makes its pathophysiology a more complex situation[48].

    The authors gratefully acknowledge Arvinpreet Kaur, Mehak Chopra, Berenice, Kiran Telukunta,Anshu Bharadwaj, Harpreet Singh, and Purnima Sharma for subtle scientific deliberations.

    Integrating phenotypic data with genotypic data through a computationally created high-confidence interaction network to analyse human diseases concurrently defines a phenome-interactome network[14]. An organized study on genes expressed in thigh subcutaneous adipose tissue of Asian Indian Type 2 Diabetes Mellitus revealed evidence of “sick thigh fat” as a causative disease. The phenomeinteractome network had a significant correlation of differentially expressed genes (DEGs) and hub proteins with its phenotypic traits obtained at the clinical, biochemical, and radiological, cellular, and molecular levels, thus enumerating their role in T2DM, T1DM, and obesity[28]. RNA-seq analysis enables identification of differentially expressed genes and their role in a disease. The depth of the literature available on RNA-seq analysis performed on pregnant ladies with GDM is negligible. The GDM is a condition in which the intrauterine milieu, especially the placenta, plays a central role in altering the course of the fetus. Hence, having an understanding of the key genes regulated in the placenta is paramount for the disease diagnosis. Most of the literature available on RNA-seq analysis is centred on identifying DEGs in the placenta, umbilical cord, and amniocytes[29-32]. Studies have identified that non-coding RNAs such as long non-coding (lnc)RNAs, microRNAs, and circular RNAs play a central role in GDM pathogenesis. MicroRNAs have been identified as non-invasive early diagnostic biomarkers for GDM[33]. LncRNA-associated feed-forward loops network had a strong correlation between dysregulated glucose metabolism and hormone regulation in GDM cases[34]. The mechanism governing the pathophysiology of the disease is still not clear and the studies available are limited. Hence, the current problem is to understand the genetic background that affects both the mother and fetus with changes in the intrauterine environment and thus identify early diagnostic biomarkers. GDM is associated with a number of comorbidities due to the multifactorial nature of the disease. A study to identify key genes involved in GDM maternal and placental milieu revealed associations with T2DM, T1DM, obesity, hyperglycaemia, preeclampsia, neonatal diabetes, MODY,neurological disorders, cardiovascular disease, preeclampsia, hepatitis C, rheumatoid arthritis, and neoplasms[35]. Hence, the need to identify genes governing this disease and the variations that might affect the phenotype needs to be understood.

    India

    Madhusmita Rout 0000-0001-6011-5887; Bhumandeep Kour 0000-0003-2961-9272; Sugunakar Vuree 0000-0002-3262-434X; Sajitha S Lulu 0000-0002-3392-4168; Krishna Mohan Medicherla 0000-0001-7099-7721; Prashanth Suravajhala 0000-0002-8535-278X.

    Liu JH

    Why are you in college at such a young, innocent age? I asked. She jokingly replied, I m here to meet a rich husband, get married, have a couple of children, and then retire and travel. No, seriously? I asked. I was curious what may have motivated her to be taking on this challenge at her age.

    Wang TQ

    Liu JH

    1 Stumvoll M, Goldstein BJ, van Haeften TW. Type 2 diabetes: principles of pathogenesis and therapy. Lancet 2005 ; 365 :1333 -1346 [PMID: 15823385 DOI: 10 .1016 /S0140 -6736 (05 )61032 -X]

    2 Brunetti A, Chiefari E, Foti D. Recent advances in the molecular genetics of type 2 diabetes mellitus.

    2014 ; 5 : 128 -140 [PMID: 24748926 DOI: 10 .4239 /wjd.v5 .i2 .128 ]

    3 Tang X, Hu X, Yang X, Fan Y, Li Y, Hu W, Liao Y, Zheng MC, Peng W, Gao L. Predicting diabetes mellitus genes

    protein-protein interaction and protein subcellular localization information.

    2016 ; 17 Suppl 4 : 433 [PMID:27535125 DOI: 10 .1186 /s12864 -016 -2795 -y]

    4 Gibson G. Rare and common variants: twenty arguments. Nat Rev Genet 2012 ; 13 : 135 -145 [PMID: 22251874 DOI:10 .1038 /nrg3118 ]

    5 Visscher PM, Brown MA, McCarthy MI, Yang J. Five years of GWAS discovery. Am J Hum Genet 2012 ; 90 : 7 -24[PMID: 22243964 DOI: 10 .1016 /j.ajhg.2011 .11 .029 ]

    6 Hirschhorn JN, Gajdos ZK. Genome-wide association studies: results from the first few years and potential implications for clinical medicine.

    2011 ; 62 : 11 -24 [PMID: 21226609 DOI: 10 .1146 /annurev.med.091708 .162036 ]

    7 Jain P, Vig S, Datta M, Jindel D, Mathur AK, Mathur SK, Sharma A. Systems biology approach reveals genome to phenome correlation in type 2 diabetes. PLoS One 2013 ; 8 : e53522 [PMID: 23308243 DOI: 10 .1371 /journal.pone.0053522 ]

    8 Prokopenko I, McCarthy MI, Lindgren CM. Type 2 diabetes: new genes, new understanding. Trends Genet 2008 ; 24 : 613 -621 [PMID: 18952314 DOI: 10 .1016 /j.tig.2008 .09 .004 ]

    9 Florez JC. Newly identified loci highlight beta cell dysfunction as a key cause of type 2 diabetes: where are the insulin resistance genes?

    2008 ; 51 : 1100 -1110 [PMID: 18504548 DOI: 10 .1007 /s00125 -008 -1025 -9 ]

    10 Wu X, Liu Q, Jiang R. Align human interactome with phenome to identify causative genes and networks underlying disease families.

    2009 ; 25 : 98 -104 [PMID: 19010805 DOI: 10 .1093 /bioinformatics/btn593 ]

    11 Oti M, Snel B, Huynen MA, Brunner HG. Predicting disease genes using protein-protein interactions. J Med Genet 2006 ;43 : 691 -698 [PMID: 16611749 DOI: 10 .1136 /jmg.2006 .041376 ]

    12 Alanis-Lobato G. Mining protein interactomes to improve their reliability and support the advancement of network medicine.

    2015 ; 6 : 296 [PMID: 26442112 DOI: 10 .3389 /fgene.2015 .00296 ]

    13 Hebbring SJ. The challenges, advantages and future of phenome-wide association studies. Immunology 2014 ; 141 : 157 -165 [PMID: 24147732 DOI: 10 .1111 /imm.12195 ]

    14 Lage K, Karlberg EO, St?rling ZM, Olason PI, Pedersen AG, Rigina O, Hinsby AM, Tümer Z, Pociot F, Tommerup N,Moreau Y, Brunak S. A human phenome-interactome network of protein complexes implicated in genetic disorders.

    2007 ; 25 : 309 -316 [PMID: 17344885 DOI: 10 .1038 /nbt1295 ]

    15 Cronin RM, Field JR, Bradford Y, Shaffer CM, Carroll RJ, Mosley JD, Bastarache L, Edwards TL, Hebbring SJ, Lin S,Hindorff LA, Crane PK, Pendergrass SA, Ritchie MD, Crawford DC, Pathak J, Bielinski SJ, Carrell DS, Crosslin DR,Ledbetter DH, Carey DJ, Tromp G, Williams MS, Larson EB, Jarvik GP, Peissig PL, Brilliant MH, McCarty CA, Chute CG, Kullo IJ, Bottinger E, Chisholm R, Smith ME, Roden DM, Denny JC. Phenome-wide association studies demonstrating pleiotropy of genetic variants within FTO with and without adjustment for body mass index.

    2014 ; 5 : 250 [PMID: 25177340 DOI: 10 .3389 /fgene.2014 .00250 ]

    16 Agapito G, Guzzi PH, Cannataro M. Visualization of protein interaction networks: problems and solutions.

    2013 ; 14 Suppl 1 : S1 [PMID: 23368786 DOI: 10 .1186 /1471 -2105 -14 -S1 -S1 ]

    17 Li Y, Patra JC. Genome-wide inferring gene-phenotype relationship by walking on the heterogeneous network.

    2010 ; 26 : 1219 -1224 [PMID: 20215462 DOI: 10 .1093 /bioinformatics/btq108 ]

    18 Sun J, Zhao Z. A comparative study of cancer proteins in the human protein-protein interaction network.

    2010 ; 11 Suppl 3 : S5 [PMID: 21143787 DOI: 10 .1186 /1471 -2164 -11 -S3 -S5 ]

    19 Morampudi S, Balasubramanian G, Gowda A, Zomorodi B, Patil AS. The Challenges and Recommendations for Gestational Diabetes Mellitus Care in India: A Review.

    2017 ; 8 : 56 [PMID: 28392778 DOI:10 .3389 /fendo.2017 .00056 ]

    20 McIntyre HD, Catalano P, Zhang C, Desoye G, Mathiesen ER, Damm P. Gestational diabetes mellitus.

    2019 ; 5 : 1 -9 [PMID: 31296866 DOI: 10 .1038 /s41572 -019 -0098 -8 ]

    21 Mpondo BC, Ernest A, Dee HE. Gestational diabetes mellitus: challenges in diagnosis and management.

    2015 ; 14 : 42 [PMID: 25977899 DOI: 10 .1186 /s40200 -015 -0169 -7 ]

    22 Crowther CA, Hiller JE, Moss JR, McPhee AJ, Jeffries WS, Robinson JS; Australian Carbohydrate Intolerance Study in Pregnant Women (ACHOIS) Trial Group. Effect of treatment of gestational diabetes mellitus on pregnancy outcomes.

    2005 ; 352 : 2477 -2486 [PMID: 15951574 DOI: 10 .1056 /NEJMoa042973 ]

    23 Langer O. A spectrum of glucose thresholds may effectively prevent complications in the pregnant diabetic patient.

    2002 ; 26 : 196 -205 [PMID: 12099309 DOI: 10 .1053 /sper.2002 .33962 ]

    24 Huerta-Chagoya A, Vázquez-Cárdenas P, Moreno-Macías H, Tapia-Maruri L, Rodríguez-Guillén R, López-Vite E,García-Escalante G, Escobedo-Aguirre F, Parra-Covarrubias A, Cordero-Brie?o R, Manzo-Carrillo L, Zacarías-Castillo R,Vargas-García C, Aguilar-Salinas C, Tusié-Luna T. Genetic determinants for gestational diabetes mellitus and related metabolic traits in Mexican women.

    2015 ; 10 : e0126408 [PMID: 25973943 DOI:10 .1371 /journal.pone.0126408 ]

    25 Watanabe RM. Inherited destiny? Genome Med 2011 ; 3 : 18 [PMID: 21457499 DOI: 10 .1186 /gm232 ]

    26 Unnikrishnan R, Shanthi Rani CS, Anjana RM, Uthra SC, Vidya J, Sankari GU, Venkatesan U, Rani SJ, Mohan V.Postpartum development of type 1 diabetes in Asian Indian women with gestational diabetes.

    2016 ; 20 : 702 -706 [PMID: 27730084 DOI: 10 .4103 /2230 -8210 .190562 ]

    27 Weng J, Ekelund M, Lehto M, Li H, Ekberg G, Frid A, Aberg A, Groop LC, Berntorp K. Screening for MODY mutations,GAD antibodies, and type 1 diabetes--associated HLA genotypes in women with gestational diabetes mellitus.

    2002 ; 25 : 68 -71 [PMID: 11772903 DOI: 10 .2337 /diacare.25 .1 .68 ]

    28 Tiwari P, Saxena A, Gupta N, Medicherla KM, Suravajhala P, Mathur SK. Systems Genomics of Thigh Adipose Tissue From Asian Indian Type-2 Diabetics Revealed Distinct Protein Interaction Hubs. Front Genet 2018 ; 9 : 679 [PMID:30671081 DOI: 10 .3389 /fgene.2018 .00679 ]

    29 Cao M, Zhang L, Lin Y, Li Z, Xu J, Shi Z, Chen Z, Ma J, Wen J. Circular RNA expression profiles in umbilical cord blood exosomes from normal and gestational diabetes mellitus patients.

    2020 ; 40 [PMID: 33146699 DOI:10 .1042 /BSR20201946 ]

    30 Magee TR, Ross MG, Wedekind L, Desai M, Kjos S, Belkacemi L. Gestational diabetes mellitus alters apoptotic and inflammatory gene expression of trophobasts from human term placenta.

    2014 [PMID: 2476820 DOI: 10 .1016 /j.jdiacomp.2014 .03 .010 ]

    31 Pinney SE, Joshi A, Yin V, Min SW, Rashid C, Condon DE, Wang PZ. Exposure to Gestational Diabetes Enriches Immune-Related Pathways in the Transcriptome and Methylome of Human Amniocytes.

    2020 ;105 [PMID: 32687192 DOI: 10 .1210 /clinem/dgaa466 ]

    32 Wang H, She G, Zhou W, Liu K, Miao J, Yu B. Expression profile of circular RNAs in placentas of women with gestational diabetes mellitus.

    2019 ; 66 : 431 -441 [PMID: 30814439 DOI: 10 .1507 /endocrj.EJ18 -0291 ]

    33 Zhu Y, Tian F, Li H, Zhou Y, Lu J, Ge Q. Profiling maternal plasma microRNA expression in early pregnancy to predict gestational diabetes mellitus.

    2015 ; 130 : 49 -53 [PMID: 25887942 DOI: 10 .1016 /j.ijgo.2015 .01 .010 ]

    34 Fu X, Cong H, Zhao S, Li Y, Liu T, Sun Y, Lv N. Construction of Glycometabolism- and Hormone-Related lncRNAMediated Feedforward Loop Networks Reveals Global Patterns of lncRNAs and Drug Repurposing in Gestational Diabetes.

    2020 ; 11 : 93 [PMID: 32210913 DOI: 10 .3389 /fendo.2020 .00093 ]

    35 Rout M, Lulu S S. Molecular and disease association of gestational diabetes mellitus affected mother and placental datasets reveal a strong link between insulin growth factor (IGF) genes in amino acid transport pathway: A network biology approach.

    2018 [PMID: 30335885 DOI: 10 .1002 /jcb.27418 ]

    36 Godsland IF. Insulin resistance and hyperinsulinaemia in the development and progression of cancer.

    2009 ; 118 : 315 -332 [PMID: 19922415 DOI: 10 .1042 /CS20090399 ]

    37 Poloz Y, Stambolic V. Obesity and cancer, a case for insulin signaling. Cell Death Dis 2015 ; 6 : e2037 [PMID: 26720346 DOI: 10 .1038 /cddis.2015 .381 ]

    38 Adekola K, Rosen ST, Shanmugam M. Glucose transporters in cancer metabolism. Curr Opin Oncol 2012 ; 24 : 650 -654[PMID: 22913968 DOI: 10 .1097 /CCO.0 b013 e328356 da72 ]

    39 Kingshott G, Biernacka K, Sewell A, Gwiti P, Barker R, Zielinska H, Gilkes A, McCarthy K, Martin RM, Lane JA,McGeagh L, Koupparis A, Rowe E, Oxley J, Holly JMP, Perks CM. Alteration of Metabolic Conditions Impacts the Regulation of IGF-II/H19 Imprinting Status in Prostate Cancer. Cancers (Basel) 2021 ; 13 [PMID: 33669311 DOI:10 .3390 /cancers13040825 ]

    40 Xue F, Song X, Zhang S, Niu M, Cui Y, Wang Y, Zhao T. Long non-coding RNA TMPO-AS1 serves as a tumor promoter in pancreatic carcinoma by regulating miR-383 -5 p/SOX11 . Oncol Lett 2021 ; 21 : 255 [PMID: 33664819 DOI:10 .3892 /ol.2021 .12517 ]

    41 Xu J, Fan L, Qi F, Xiu X. Screening of Biomarkers for Hypertension Susceptibility in Pregnancy Proc Anticancer Res.2020 ; 4

    42 Taussky D, Delouya G. Impact of diabetes and metformin use on prostate cancer. Scand J Urol 2020 ; 54 : 508 -509 [PMID:32787660 DOI: 10 .1080 /21681805 .2020 .1806355 ]

    43 Shigeoka T, Nomiyama T, Kawanami T, Hamaguchi Y, Horikawa T, Tanaka T, Irie S, Motonaga R, Hamanoue N, Tanabe M, Nabeshima K, Tanaka M, Yanase T, Kawanami D. Activation of overexpressed glucagon-like peptide-1 receptor attenuates prostate cancer growth by inhibiting cell cycle progression.

    2020 ; 11 : 1137 -1149 [PMID:32146725 DOI: 10 .1111 /jdi.13247 ]

    44 Lin E, Garmo H, Van Hemelrijck M, Adolfsson J, Stattin P, Zethelius B, Crawley D. Association of type 2 diabetes mellitus and antidiabetic medication with risk of prostate cancer: a population-based case-control study.

    2020 ;20 : 551 [PMID: 32539807 DOI: 10 .1186 /s12885 -020 -07036 -4 ]

    45 Ohwaki K, Endo F, Shimbo M, Fujisaki A, Hattori K. Comorbidities as predictors of incidental prostate cancer after Holmium laser enucleation of the prostate: diabetes and high-risk cancer.

    2017 ; 20 : 257 -260 [PMID: 28332895 DOI: 10 .1080 /13685538 .2017 .1301417 ]

    46 Kobayashi M, Mizuno T, Yuki H, Kambara T, Betsunoh H, Nukui A, Abe H, Fukabori Y, Yashi M, Kamai T. Association between serum prostate-specific antigen level and diabetes, obesity, hypertension, and the laboratory parameters related to glucose tolerance, hepatic function, and lipid profile: implications for modification of prostate-specific antigen threshold.

    2020 ; 25 : 472 -478 [PMID: 31440861 DOI: 10 .1007 /s10147 -019 -01527 -6 ]

    47 Knura M, Garczorz W, Borek A, Drzyma?a F, Rachwa? K, George K, Francuz T. The Influence of Anti-Diabetic Drugs on Prostate Cancer.

    2021 ; 13 [PMID: 33921222 DOI: 10 .3390 /cancers13081827 ]

    48 Kelkar S, Oyekunle T, Eisenberg A, Howard L, Aronson WJ, Kane CJ, Amling CL, Cooperberg MR, Klaassen Z, Terris MK, Freedland SJ, Csizmadi I. Diabetes and Prostate Cancer Outcomes in Obese and Nonobese Men After Radical Prostatectomy.

    2021 ; 5 [PMID: 34169227 DOI: 10 .1093 /jncics/pkab023 ]

    49 Yao Q, Chen T. LINC01128 regulates the development of osteosarcoma by sponging miR-299 -3 p to mediate MMP2 expression and activating Wnt/β-catenin signalling pathway.

    2020 ; 24 : 14293 -14305 [PMID: 33108067 DOI: 10 .1111 /jcmm.16046 ]

    50 He J, Ling L, Liu Z, Ren X, Wan L, Tu C, Li Z. Functional interplay between long non-coding RNAs and the Wnt signaling cascade in osteosarcoma.

    2021 ; 21 : 1 -7 [PMID: 34130697 DOI:10 .1186 /s12935 -021 -02013 -8 ]

    51 Hu Y, Ma Y, Liu J, Cai Y, Zhang M, Fang X. LINC01128 expedites cervical cancer progression by regulating miR-383 -5 p/SFN axis. BMC Cancer 2019 ; 19 : 1157 [PMID: 31779593 DOI: 10 .1186 /s12885 -019 -6326 -5 ]

    52 Li X, Yuan J, Cao Q, Xie A, Chen J. MicroRNA-383 -5 p inhibits the proliferation and promotes the apoptosis of gastric cancer cells by targeting cancerous inhibitor of PP2 A. Int J Mol Med 2020 ; 46 : 397 -405 [PMID: 32626915 DOI:10 .3892 /ijmm.2020 .4603 ]

    53 Cheng X, Huang Y, Yang P, Bu L. miR-383 ameliorates high glucose-induced β-cells apoptosis and hyperglycemia in high-fat induced diabetic mice.

    2020 ; 263 : 118571 [PMID: 33058915 DOI: 10 .1016 /j.lfs.2020 .118571 ]

    54 Zhao Z, Yang YB, Li XY, Li XG, Chu XD, Lin ZB, Zhang YR, Guo YG, Ding H, Pan YL, Wang L, Pan JH.Comprehensive Analysis of N6-Methyladenosine-Related lncRNA Signature for Predicting Prognosis and Immune Cell Infiltration in Patients with Colorectal Cancer.

    2021 ; 2021 : 8686307 [PMID: 34745388 DOI:10 .1155 /2021 /8686307 ]

    55 Deng Y, Hu H, Xiao L, Cai T, Gao W, Zhu H, Wang S, Liu J. Identification of EMT-Related lncRNAs as a Potential Prognostic Biomarker and Therapeutic Targets for Pancreatic Adenocarcinoma. 2021

    精品欧美一区二区三区在线| 国产精品乱码一区二三区的特点| 亚洲免费av在线视频| 国产精品av久久久久免费| 国产一区二区在线观看日韩 | 欧美三级亚洲精品| 99国产精品99久久久久| 亚洲第一欧美日韩一区二区三区| 搡老妇女老女人老熟妇| 国产免费av片在线观看野外av| 麻豆久久精品国产亚洲av| 国产成人精品久久二区二区免费| 非洲黑人性xxxx精品又粗又长| 欧美性猛交╳xxx乱大交人| 少妇被粗大的猛进出69影院| 真人做人爱边吃奶动态| 欧美另类亚洲清纯唯美| 亚洲人成伊人成综合网2020| 欧美日韩福利视频一区二区| 99国产精品一区二区蜜桃av| 国产又色又爽无遮挡免费看| 日韩成人在线观看一区二区三区| 亚洲 欧美 日韩 在线 免费| 黑人操中国人逼视频| 成人三级做爰电影| 午夜福利在线观看吧| 久久精品综合一区二区三区| 亚洲国产精品999在线| 久久香蕉精品热| 一级毛片高清免费大全| 可以免费在线观看a视频的电影网站| 香蕉丝袜av| 国产91精品成人一区二区三区| 国产精品影院久久| 又紧又爽又黄一区二区| 成人精品一区二区免费| 国产精品久久电影中文字幕| 欧美人与性动交α欧美精品济南到| 91av网站免费观看| 岛国视频午夜一区免费看| 最好的美女福利视频网| 三级男女做爰猛烈吃奶摸视频| 黄色毛片三级朝国网站| 久久伊人香网站| 美女扒开内裤让男人捅视频| 成人av在线播放网站| 大型av网站在线播放| 成在线人永久免费视频| 欧美日韩亚洲综合一区二区三区_| 国产在线观看jvid| 不卡一级毛片| 欧美日韩瑟瑟在线播放| 久久久久久久久中文| 午夜久久久久精精品| 国产成人欧美在线观看| 操出白浆在线播放| 亚洲色图 男人天堂 中文字幕| 这个男人来自地球电影免费观看| 欧美日韩亚洲综合一区二区三区_| 亚洲av日韩精品久久久久久密| 男女床上黄色一级片免费看| 精品国产美女av久久久久小说| 天天躁狠狠躁夜夜躁狠狠躁| 国产一区二区三区视频了| 国产99白浆流出| 中文亚洲av片在线观看爽| 午夜两性在线视频| 不卡av一区二区三区| 一级毛片女人18水好多| 欧美极品一区二区三区四区| 亚洲人成电影免费在线| 最近最新免费中文字幕在线| 天天添夜夜摸| 男女床上黄色一级片免费看| 日韩精品免费视频一区二区三区| 男人舔女人的私密视频| 国产精品亚洲一级av第二区| 国产成+人综合+亚洲专区| 精品一区二区三区av网在线观看| 狂野欧美激情性xxxx| 精品熟女少妇八av免费久了| 久久香蕉激情| 午夜免费观看网址| 亚洲成人中文字幕在线播放| 日韩免费av在线播放| 久热爱精品视频在线9| 真人做人爱边吃奶动态| 午夜精品一区二区三区免费看| 中文字幕最新亚洲高清| 天堂影院成人在线观看| 狂野欧美激情性xxxx| 无人区码免费观看不卡| 亚洲色图 男人天堂 中文字幕| 99久久无色码亚洲精品果冻| 国产精品日韩av在线免费观看| 亚洲av美国av| 91麻豆精品激情在线观看国产| 日韩 欧美 亚洲 中文字幕| 久久人人精品亚洲av| 国产爱豆传媒在线观看 | 国产精品一区二区三区四区久久| 欧美一区二区国产精品久久精品 | 久久精品成人免费网站| 国产欧美日韩一区二区精品| 97碰自拍视频| 国产一区在线观看成人免费| 在线免费观看的www视频| 国产欧美日韩精品亚洲av| 变态另类丝袜制服| 亚洲激情在线av| 亚洲国产看品久久| 亚洲国产欧美人成| 久久人妻福利社区极品人妻图片| a在线观看视频网站| 中亚洲国语对白在线视频| 黄色视频,在线免费观看| 国产精品九九99| 88av欧美| 18禁国产床啪视频网站| av欧美777| 国产在线观看jvid| 免费看a级黄色片| 波多野结衣高清无吗| 免费在线观看影片大全网站| 精品少妇一区二区三区视频日本电影| 又黄又爽又免费观看的视频| 亚洲午夜理论影院| 麻豆一二三区av精品| 啦啦啦观看免费观看视频高清| 日韩欧美国产在线观看| 午夜成年电影在线免费观看| 特大巨黑吊av在线直播| 人妻久久中文字幕网| 国产高清videossex| 亚洲人成网站高清观看| 99热这里只有是精品50| 成人欧美大片| 免费在线观看视频国产中文字幕亚洲| 欧美精品啪啪一区二区三区| 亚洲色图av天堂| 日本黄大片高清| av天堂在线播放| 啦啦啦免费观看视频1| 好男人电影高清在线观看| 欧美一区二区精品小视频在线| 老司机靠b影院| 在线观看www视频免费| 夜夜看夜夜爽夜夜摸| 中文亚洲av片在线观看爽| 国产视频一区二区在线看| 在线观看66精品国产| 在线a可以看的网站| 成人特级黄色片久久久久久久| 精品一区二区三区视频在线观看免费| 成人av一区二区三区在线看| 亚洲av成人不卡在线观看播放网| 国产精品久久久av美女十八| 亚洲欧美日韩无卡精品| 深夜精品福利| 嫩草影院精品99| 狂野欧美白嫩少妇大欣赏| 亚洲欧美精品综合久久99| 精品午夜福利视频在线观看一区| 久久草成人影院| 在线看三级毛片| 欧美黄色淫秽网站| 精品欧美一区二区三区在线| www.熟女人妻精品国产| 黑人欧美特级aaaaaa片| 国产99久久九九免费精品| 亚洲成av人片在线播放无| 国产精品国产高清国产av| 欧美成人午夜精品| 亚洲全国av大片| 中文字幕人成人乱码亚洲影| 一进一出好大好爽视频| 一二三四社区在线视频社区8| or卡值多少钱| 大型av网站在线播放| 午夜福利视频1000在线观看| 久久香蕉激情| 成年女人毛片免费观看观看9| 午夜久久久久精精品| 男女那种视频在线观看| 国产在线精品亚洲第一网站| 午夜精品一区二区三区免费看| 日日夜夜操网爽| 日韩欧美在线乱码| 特级一级黄色大片| 亚洲av五月六月丁香网| 小说图片视频综合网站| 日韩中文字幕欧美一区二区| 免费在线观看影片大全网站| 伊人久久大香线蕉亚洲五| av天堂在线播放| 中文字幕人成人乱码亚洲影| 亚洲国产看品久久| 床上黄色一级片| 国产精品久久久久久人妻精品电影| 久久久精品国产亚洲av高清涩受| 欧美国产日韩亚洲一区| 极品教师在线免费播放| 精品免费久久久久久久清纯| 99久久无色码亚洲精品果冻| 午夜免费激情av| 狂野欧美白嫩少妇大欣赏| 国产欧美日韩一区二区三| 99热只有精品国产| 国产精品爽爽va在线观看网站| 日日干狠狠操夜夜爽| 在线观看免费午夜福利视频| 成年女人毛片免费观看观看9| 50天的宝宝边吃奶边哭怎么回事| 曰老女人黄片| 国产在线观看jvid| 黄片小视频在线播放| 亚洲成人国产一区在线观看| 亚洲熟妇熟女久久| 国产精品自产拍在线观看55亚洲| 国产成人精品无人区| 91国产中文字幕| 国产成人av教育| 色av中文字幕| 夜夜躁狠狠躁天天躁| 99久久99久久久精品蜜桃| 成人国产综合亚洲| 妹子高潮喷水视频| 波多野结衣高清无吗| 亚洲片人在线观看| 长腿黑丝高跟| 黄频高清免费视频| 高清毛片免费观看视频网站| 日本一区二区免费在线视频| 欧美日韩亚洲国产一区二区在线观看| 精品第一国产精品| 欧美日本视频| 亚洲精品一卡2卡三卡4卡5卡| 日韩欧美 国产精品| 一级a爱片免费观看的视频| 国产精品一及| 舔av片在线| cao死你这个sao货| 国产av又大| 国内久久婷婷六月综合欲色啪| 国产探花在线观看一区二区| 亚洲欧美日韩东京热| 男人舔女人的私密视频| 亚洲男人天堂网一区| 国产精品 国内视频| 在线看三级毛片| 国产精品永久免费网站| 国产成人精品久久二区二区免费| 精品少妇一区二区三区视频日本电影| 久久久久久免费高清国产稀缺| 最好的美女福利视频网| 国产91精品成人一区二区三区| 亚洲人成77777在线视频| 99久久无色码亚洲精品果冻| 亚洲人成电影免费在线| 99热这里只有精品一区 | 精品久久久久久久毛片微露脸| 亚洲五月天丁香| bbb黄色大片| 久久热在线av| 又黄又爽又免费观看的视频| 婷婷精品国产亚洲av在线| 波多野结衣高清作品| 亚洲精品久久国产高清桃花| 欧美日韩亚洲国产一区二区在线观看| 男男h啪啪无遮挡| 麻豆成人av在线观看| 欧美又色又爽又黄视频| 国产精品久久久人人做人人爽| 91成年电影在线观看| 中亚洲国语对白在线视频| 久久久精品国产亚洲av高清涩受| 成人18禁高潮啪啪吃奶动态图| 亚洲成av人片在线播放无| 国内精品一区二区在线观看| 国产精品影院久久| 久久99热这里只有精品18| 黄色视频,在线免费观看| 操出白浆在线播放| 脱女人内裤的视频| 亚洲国产高清在线一区二区三| 久久中文看片网| 岛国在线免费视频观看| 午夜老司机福利片| 黄色毛片三级朝国网站| 悠悠久久av| 精品国产美女av久久久久小说| 制服丝袜大香蕉在线| 免费在线观看成人毛片| 亚洲午夜理论影院| 婷婷精品国产亚洲av在线| 麻豆国产97在线/欧美 | 亚洲色图 男人天堂 中文字幕| 成人亚洲精品av一区二区| 看黄色毛片网站| 日韩中文字幕欧美一区二区| 亚洲成人中文字幕在线播放| 久久精品综合一区二区三区| 日韩大码丰满熟妇| 欧美一级毛片孕妇| 国产激情偷乱视频一区二区| 变态另类成人亚洲欧美熟女| 午夜免费成人在线视频| 精品国产美女av久久久久小说| 黄频高清免费视频| 三级毛片av免费| 久久久精品大字幕| 国产精品1区2区在线观看.| av中文乱码字幕在线| 19禁男女啪啪无遮挡网站| 丝袜人妻中文字幕| 成人三级做爰电影| 又黄又爽又免费观看的视频| 18禁观看日本| 日韩欧美三级三区| 首页视频小说图片口味搜索| 男男h啪啪无遮挡| 精品人妻1区二区| 18禁美女被吸乳视频| 97超级碰碰碰精品色视频在线观看| 成人欧美大片| 国产午夜福利久久久久久| 亚洲美女视频黄频| 久久久国产成人免费| 欧美日本视频| 久久欧美精品欧美久久欧美| 亚洲18禁久久av| 一本久久中文字幕| 亚洲天堂国产精品一区在线| 亚洲欧美精品综合一区二区三区| av国产免费在线观看| 两性夫妻黄色片| 不卡av一区二区三区| 美女高潮喷水抽搐中文字幕| 免费在线观看成人毛片| 亚洲天堂国产精品一区在线| 亚洲精品在线观看二区| 视频区欧美日本亚洲| 亚洲成人久久爱视频| 亚洲av中文字字幕乱码综合| www.自偷自拍.com| 国产精品自产拍在线观看55亚洲| 99久久精品国产亚洲精品| 99久久99久久久精品蜜桃| 999久久久国产精品视频| 长腿黑丝高跟| tocl精华| 欧美久久黑人一区二区| 欧美成人午夜精品| 久久99热这里只有精品18| 母亲3免费完整高清在线观看| 亚洲av电影不卡..在线观看| 亚洲欧美日韩东京热| 国产成人系列免费观看| 在线观看美女被高潮喷水网站 | 99精品欧美一区二区三区四区| 亚洲精华国产精华精| 精品久久久久久成人av| 婷婷亚洲欧美| 午夜a级毛片| 99久久无色码亚洲精品果冻| 成人亚洲精品av一区二区| 成人高潮视频无遮挡免费网站| 亚洲国产精品sss在线观看| 国产精品av久久久久免费| 首页视频小说图片口味搜索| 又黄又爽又免费观看的视频| 婷婷六月久久综合丁香| 色播亚洲综合网| 成年女人毛片免费观看观看9| 亚洲一区中文字幕在线| 91麻豆精品激情在线观看国产| 在线观看免费日韩欧美大片| 成人18禁在线播放| 欧美日韩黄片免| 国产av不卡久久| 首页视频小说图片口味搜索| 女人爽到高潮嗷嗷叫在线视频| 亚洲自拍偷在线| 欧美日韩乱码在线| 欧美成人免费av一区二区三区| 又黄又粗又硬又大视频| 18禁黄网站禁片免费观看直播| 狠狠狠狠99中文字幕| 熟女少妇亚洲综合色aaa.| 亚洲欧美精品综合一区二区三区| 国产精品久久久人人做人人爽| 亚洲精品久久国产高清桃花| 国产人伦9x9x在线观看| 麻豆久久精品国产亚洲av| 久久久久久大精品| 可以免费在线观看a视频的电影网站| 变态另类成人亚洲欧美熟女| 亚洲精品国产精品久久久不卡| 亚洲欧美激情综合另类| 国产亚洲精品一区二区www| 一级a爱片免费观看的视频| 免费人成视频x8x8入口观看| 高清在线国产一区| 老汉色∧v一级毛片| 最近视频中文字幕2019在线8| 精品午夜福利视频在线观看一区| 精品少妇一区二区三区视频日本电影| 免费高清视频大片| av片东京热男人的天堂| 国产精品一区二区三区四区免费观看 | 亚洲av成人不卡在线观看播放网| 叶爱在线成人免费视频播放| 国内久久婷婷六月综合欲色啪| 夜夜看夜夜爽夜夜摸| 亚洲无线在线观看| 校园春色视频在线观看| 妹子高潮喷水视频| 99国产综合亚洲精品| 久久国产精品人妻蜜桃| www.自偷自拍.com| 久久中文字幕人妻熟女| 亚洲精品国产一区二区精华液| 国产视频一区二区在线看| 国产av不卡久久| 日本撒尿小便嘘嘘汇集6| www日本在线高清视频| 日韩欧美一区二区三区在线观看| 亚洲黑人精品在线| 99热6这里只有精品| 欧美精品啪啪一区二区三区| 国产精品一及| 黄色片一级片一级黄色片| 国产精品乱码一区二三区的特点| 97碰自拍视频| 午夜精品在线福利| 香蕉久久夜色| 久久精品国产清高在天天线| 久99久视频精品免费| 日韩精品中文字幕看吧| 亚洲精品色激情综合| 成人亚洲精品av一区二区| 一区二区三区高清视频在线| 男女视频在线观看网站免费 | 久久久久亚洲av毛片大全| 免费看十八禁软件| 国产99久久九九免费精品| 啦啦啦免费观看视频1| 男人的好看免费观看在线视频 | 日韩欧美一区二区三区在线观看| 欧美色视频一区免费| 欧美日韩国产亚洲二区| 久久精品国产亚洲av香蕉五月| 久9热在线精品视频| 亚洲自偷自拍图片 自拍| 1024香蕉在线观看| 狂野欧美白嫩少妇大欣赏| 757午夜福利合集在线观看| 丰满人妻一区二区三区视频av | 可以在线观看毛片的网站| 成人三级黄色视频| 一本久久中文字幕| 在线观看舔阴道视频| 18禁国产床啪视频网站| 久久久久性生活片| 在线a可以看的网站| 中文字幕熟女人妻在线| 在线播放国产精品三级| 精品人妻1区二区| 两性夫妻黄色片| 手机成人av网站| 变态另类丝袜制服| 亚洲第一欧美日韩一区二区三区| 久久国产精品影院| 亚洲性夜色夜夜综合| 久久久久精品国产欧美久久久| 嫩草影视91久久| 麻豆av在线久日| 欧美高清成人免费视频www| 久久婷婷人人爽人人干人人爱| 成人av在线播放网站| 曰老女人黄片| 色综合站精品国产| 国产精品 欧美亚洲| 波多野结衣高清无吗| 又大又爽又粗| 欧美乱码精品一区二区三区| 免费电影在线观看免费观看| 桃色一区二区三区在线观看| 亚洲国产高清在线一区二区三| 日韩欧美免费精品| 亚洲人成网站高清观看| 一级a爱片免费观看的视频| 国产欧美日韩一区二区精品| 色老头精品视频在线观看| 国产精品九九99| 日本在线视频免费播放| 午夜免费成人在线视频| a在线观看视频网站| 超碰成人久久| 哪里可以看免费的av片| 欧美极品一区二区三区四区| ponron亚洲| 一边摸一边抽搐一进一小说| 国产午夜精品论理片| 亚洲av成人av| √禁漫天堂资源中文www| av天堂在线播放| 久久午夜亚洲精品久久| 曰老女人黄片| 黄色视频,在线免费观看| 淫妇啪啪啪对白视频| 一a级毛片在线观看| 老司机午夜十八禁免费视频| 一区二区三区激情视频| 亚洲精品中文字幕一二三四区| 一区二区三区国产精品乱码| 美女高潮喷水抽搐中文字幕| 蜜桃久久精品国产亚洲av| 亚洲美女黄片视频| 女警被强在线播放| 999精品在线视频| 国产精品久久视频播放| 又黄又粗又硬又大视频| 视频区欧美日本亚洲| 午夜精品一区二区三区免费看| av欧美777| 欧美3d第一页| 国产三级中文精品| 久久香蕉激情| 欧美三级亚洲精品| 精品久久久久久久末码| 又黄又爽又免费观看的视频| 丝袜美腿诱惑在线| 看黄色毛片网站| 黄色视频不卡| 国产成人av激情在线播放| 他把我摸到了高潮在线观看| 亚洲av电影不卡..在线观看| 免费看a级黄色片| 18禁黄网站禁片午夜丰满| 精品一区二区三区视频在线观看免费| 色播亚洲综合网| 欧美 亚洲 国产 日韩一| 国产精品爽爽va在线观看网站| 免费在线观看日本一区| 精品国产美女av久久久久小说| 成熟少妇高潮喷水视频| 久久久久亚洲av毛片大全| 麻豆国产av国片精品| 国产精品亚洲一级av第二区| 母亲3免费完整高清在线观看| 国内精品一区二区在线观看| 黄色视频,在线免费观看| 精品久久久久久久人妻蜜臀av| 亚洲熟妇中文字幕五十中出| 黄色丝袜av网址大全| 一a级毛片在线观看| 久久久国产成人精品二区| 亚洲av成人不卡在线观看播放网| 亚洲欧美日韩高清专用| 国产精品久久久久久久电影 | 精品高清国产在线一区| 99在线人妻在线中文字幕| 观看免费一级毛片| 丰满的人妻完整版| √禁漫天堂资源中文www| 午夜福利欧美成人| 成年女人毛片免费观看观看9| 午夜免费成人在线视频| 非洲黑人性xxxx精品又粗又长| 久久久久久九九精品二区国产 | 在线观看免费视频日本深夜| 久久天躁狠狠躁夜夜2o2o| 成年版毛片免费区| 丝袜人妻中文字幕| 亚洲成人免费电影在线观看| 又大又爽又粗| 熟女电影av网| 黄片大片在线免费观看| 变态另类成人亚洲欧美熟女| 中国美女看黄片| 日本成人三级电影网站| 母亲3免费完整高清在线观看| 亚洲av五月六月丁香网| 亚洲黑人精品在线| 免费无遮挡裸体视频| 母亲3免费完整高清在线观看| 亚洲av五月六月丁香网| 国产精品 国内视频| 三级男女做爰猛烈吃奶摸视频| 精品久久久久久久末码| 又紧又爽又黄一区二区| 国产成人影院久久av| 动漫黄色视频在线观看| 欧美乱妇无乱码| 老汉色av国产亚洲站长工具| 亚洲 欧美一区二区三区| 欧美一区二区国产精品久久精品 | 女同久久另类99精品国产91| 亚洲精品久久国产高清桃花| 久久国产精品影院| 亚洲精品久久国产高清桃花| 国产精品亚洲一级av第二区| 18禁裸乳无遮挡免费网站照片| 欧美成人午夜精品| 欧美成狂野欧美在线观看| 大型黄色视频在线免费观看| 精品欧美国产一区二区三| 国产精品综合久久久久久久免费| 好男人在线观看高清免费视频| 人妻夜夜爽99麻豆av| 欧美日韩一级在线毛片| 亚洲 国产 在线| 国产日本99.免费观看| 色在线成人网|