• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Construction and validation of a novel prediction system for detection of overall survival in lung cancer patients

    2022-06-27 08:34:44ChengZhongYunLiangQunWangHaoWeiTanYanLiang
    World Journal of Clinical Cases 2022年18期
    關(guān)鍵詞:測(cè)試卷每學(xué)期二氧化硫

    lNTRODUCTlON

    Lung cancer (LC) is one of the most common malignant tumors and one of the leading causes of cancerrelated deaths worldwide. In 2012, the deaths caused by LC were approximately 1.6 million, accounting for 19% of the total global cancer deaths[1,2]. Despite advancement in its treatment, surgery is the primary therapy for patients with non-small-cell lung carcinoma. However, the overall survival rate of LC patients remains low.

    Many factors have an aberrant effect on the overall survival of LC patients. The main reason is that patients who are diagnosed with advanced and metastasis LC cannot undergo radical surgery.Therefore, the development of more advanced diagnosis and predictive biomarkers is a promising direction for cancer diagnosis and treatment[3,4].

    The topological overlap matrix plot (Figure 1G) indicated the correlation between the genes of the eight modules sorted using the clustering tree. The turquoise module showed a positive correlation of about 0.31 with LC patient survival, followed by the green module (0.28) and yellow module (0.23) (Figure 2A and B). The turquoise module contained 1673 genes. We then selected 75 key genes from the turquoise module with MM > 0.8 (Figure 2C). Taken together, the turquoise module was finally selected for further analysis.

    In recent years, remarkable progress has been made in immunotherapy, targeted treatment, and promising biomarkers. However, the available treatments and diagnostic methods are not specific for all patients[5]. A high recurrence rate is observed after such treatment because of the complexity of cancer.Identification of new diagnostic and therapeutic biomarkers for cancer treatment is urgent[6].

    在他的觀念里,做任何事情都分兩個(gè)層次,基礎(chǔ)層和提升層?!耙患虑樽龅侥撤N程度是底線,是必須達(dá)到的60分;而從60分到100分,需要不斷提升,是需要一直思考的事情?!?/p>

    7)是否有政策支持:該指標(biāo)主要考慮國(guó)家政策及發(fā)展的方向,例如船舶岸電、電動(dòng)汽車都有相應(yīng)國(guó)家支持以及指標(biāo)下達(dá),因此要力度更大才行。

    (1)去中心化思想,發(fā)行數(shù)量固定。法幣的發(fā)行受政府與中央銀行約束;但比特幣不同,它采用區(qū)塊鏈技術(shù)和非對(duì)稱密碼技術(shù),發(fā)行不受央行約束,而且比特幣的發(fā)行具有上限,從而避免一些因?yàn)槿藶闆Q策因素而導(dǎo)致的貨幣貶值。

    The identification of differentially expressed genes (DEGs) has garnered considerable scientific attention. However, this method does not consider genes with similar expression patterns. Weighted Gene Co-expression Network Analysis (WGCNA) is a new algorithm that evaluates the correlation between gene modules and clinical features by constructing a scale-free gene coexpression network. In this study, we combined the WGCNA algorithm with DEGs to identify pivotal genes associated with clinicopathological characteristics and to provide insights into targeted therapy of LC.

    MATERlALS AND METHODS

    Data collection

    The clinical and expression data of LC patients were derived from the Gene Expression Omnibus (GEO)and The Cancer Genome Atlas (TCGA) databases (https://portal.gdc.cancer.gov/; http://www.ncbi.nlm.nih.gov/geo/). GEO data contains two cohorts (GSE30129 and GSE50081). The sva package was used to normalize the Meta-GEO data. Next, we used the TCGA data (LogFC > 0.5,

    < 0.05) to identify the DEGs and combined these DEGs with all GEO genes. Finally, 5007 genes were selected for the subsequent analyses.

    Construction of WGCNA

    WGCNA R package was used to analyze the coexpression networks. We determined the threshold of β= 5 to establish the optimal weighted network by Pearson’s correlational analysis. The adjacent matrix was transformed into a topological overlap measure matrix

    topological overlapping dissimilarity to estimate its connectivity property in the network. We set the minimum number of module genes to 100,and the threshold for merging similar modules was set to 0.25.

    < 0.05 was considered to indicate statistical significance. After the modules of interest were selected, the key genes were selected according to the gene signature (GS) and module membership (MM) of each module.

    Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses

    The functional analysis of core genes was performed using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Through the R language clusterProfiler and ggplot2 packages, several important pathways have been discovered so far. The cut-off criteria were defined as count > 2 and

    < 0.05.

    Protein–protein interaction network

    We employed the STRING database to analyze the interaction between the module genes and set the confidence score to ≥ 0.9. The Cytohubba plug-in of Cytoscape software (version 3.7.0) was used to identify the core genes in the network.

    The development of high-throughput technology has made important contributions to the identification of a large number of target genes in various diseases[7]. At the same time, as an emerging crossdiscipline, bioinformatics analysis is widely used in the discovery of disease-related genes, new drug molecular targets, drug design, and functional analysis, which is helpful for the discovery of disease mechanisms[8]. Xie

    [9] performed bioinformatics analysis to analyze tumorigenesis-related genes and their target miRNAs in colon cancer, which facilitated the exploration of the potential targets for diagnosis, prognosis and treatment of colon carcinoma. Using RNA-Seq and bioinformatics methods,several key genes including

    ,

    and

    were identified in esophageal squamous cell carcinoma[10]. Many genes associated with LC progression and invasion have been identified by a combination of bioinformatics analysis and high-throughput sequencing[11-13].

    Construction of predictive model

    All data in this study were analyzed using GraphPad Prism 5 and R software. The data were expressed as mean ± SD. A two-tailed

    test was applied for quantitative real-time polymerase chain reaction (qRTPCR) analysis among different groups. The results were considered to be significant at

    < 0.05.

    Cell culture

    A549 and H1299 LC cells, and human lung fibroblasts were purchased from the Cancer Cell Repository(Shanghai Cell Bank, Shanghai, China). The medium used for cell culture was 10% Dulbecco’s modified eagle’s medium (supplemented with fetal bovine serum and penicillin/streptomycin). The cells were cultured in an incubator under 5% CO

    at 37 ℃.

    Quantitative real-time polymerase chain reaction

    We use 1 mL TRIzol (Invitrogen, Grand Island, NY, United States) and 200 μL chloroform to extract the total RNA from 2 × 10

    cells in LC cells. Total RNA was reverse transcribed into cDNA (TaKaRa Bio,Shiga, Japan). The cDNA, primers, and the SYBR Green PCR Master Mix (TOYOBO, Osaka, Japan) were quantitatively detected by PCR. The primer sequences of all genes are depicted in Table 1. The gene expression level was evaluated by the 2

    method. All experiments were repeated three times.

    Statistical analyses

    All patients were assigned to training and validation sets in the ratio of 6:4. The least absolute contraction and selection operator (LASSO) reduced the data dimensionality, and Cox regression analysis was applied to construct a patient prognostic evaluation model. The predictive efficacy of the model was evaluated by the receiver operating characteristic (ROC) curve. A nomogram was used to visualize the scoring system through the rms package in the R software.

    RESULTS

    Identification of intersecting genes between GEO cohort and TCGA dataset

    We screened DEGs based on the TCGA dataset by including 1037

    /108

    samples. A total of 10970 DEGs were selected based on the criteria of

    < 0.05 and |log 2 FC| > 1. The top 30 up- and downregulated genes are shown in Figure 1A. We then intersected DEGs of TCGA with all genes in the GEO dataset and found 5007 common genes for further WGCNA.

    WGCNA

    To determine the roles of common DEGs associated with prognosis and other clinicopathological characteristics of LC patients, WGCNA was performed to construct a coexpression network. As shown in Figure 1B and C, the correlation coefficient was converted to the adjacent coefficient according to the optimal parameter (β = 5). Thereafter, highly correlated samples and delete discrete samples were clustered (Figure 1E). A threshold of 0.25 and a minimum gene number of 150 were considered to merge similar modules. Figure 1D shows eight modules that were finally selected on the basis of the filter criteria. The hierarchical clustering of module hub genes is shown in Figure 1F.

    Identification of highly correlated modules

    本研究工具有四個(gè)。第一,自編調(diào)查問(wèn)卷:分閉合式和開(kāi)放式。閉合式題目采用五級(jí)量表形式,用因子分析、主成分分析法和Cronbach alpha系數(shù)檢驗(yàn)問(wèn)卷的信效度。以此測(cè)量學(xué)生的學(xué)習(xí)策略、學(xué)習(xí)需求、動(dòng)機(jī)、情感策略、對(duì)課程的期望以及自我評(píng)價(jià)。第二,口語(yǔ)測(cè)試卷:每學(xué)期期末口語(yǔ)考試題和CET-SET4,用來(lái)測(cè)評(píng)學(xué)生的口語(yǔ)成績(jī)和水平。第三,聽(tīng)力測(cè)試卷:每學(xué)期期末試卷和CET4聽(tīng)力試卷,用來(lái)測(cè)評(píng)學(xué)生的聽(tīng)力成績(jī)和水平。第四,聽(tīng)說(shuō)實(shí)踐作業(yè)展示:內(nèi)容主要為時(shí)政焦點(diǎn)訪談、文化展示、商務(wù)會(huì)談等切合實(shí)際交際場(chǎng)景的主題,用來(lái)測(cè)評(píng)學(xué)生的語(yǔ)言綜合應(yīng)用能力,尤其是口語(yǔ)表達(dá)能力。

    GO and KEGG analyses in modules

    GO enrichment analysis experiments showed that the turquoise module genes mainly encoded for ATPase, helicase, 3′-5′ DNA helicase, DNA-dependent ATPase, DNA helicase, ATP-dependent DNA helicase, and ATP-dependent helicase and associated with the binding of many molecules including DNA replication origin, single-stranded DNA, and tubulin. KEGG analysis indicated that many signaling pathways involved in Fanconi anemia and the p53 signaling pathway were correlated with turquoise module genes. In addition, other important pathways such as metabolism of carbon,pyrimidine, cysteine, and methionine, cell cycle, and DNA repair were also found in the turquoise module. These results indicated that the mechanism that affects the survival of LC patients may be closely related to the molecular binding mechanism and several important signaling pathways(Figure 2D).

    在給朱榮生、王子剛的復(fù)信中,劉少奇分別對(duì)兩人來(lái)信反映的問(wèn)題進(jìn)行了詳盡分析,著重批評(píng)了他們工作打不開(kāi)局面的主觀原因(如朱榮生的顧此失彼、抓小棄大;王子剛強(qiáng)調(diào)兆征縣工作沒(méi)有基礎(chǔ),卻不開(kāi)展積極的思想斗爭(zhēng)以克服消極情緒,只在干部中打圈子),以及錯(cuò)誤想法(如王子剛試圖用“稍微強(qiáng)迫一下子”的辦法要群眾當(dāng)紅軍)。信中指出:只有改造了那個(gè)不健全的組織,在思想斗爭(zhēng)中團(tuán)結(jié)與提拔了積極的干部,把組織健全起來(lái),才能保證我們動(dòng)員到廣大群眾中去,獲得很大的成績(jī)。

    Establishment of protein–protein interaction networks and selection of module genes

    由于煤燃燒產(chǎn)生的污染物主要是二氧化硫和一氧化碳,所以在此選擇二氧化硫?yàn)橛?jì)算對(duì)象,煤炭中硫可分為兩部分,一部分叫做可燃性硫,它燃燒之后會(huì)釋放出二氧化硫,另一部分是不可燃性硫,顧名思義不可以燃燒直接歸為灰塵。根據(jù)相關(guān)化學(xué)方程式,可以得到以下關(guān)系:

    Construction of the hub-genes-based scoring system

    Subsequently, we performed a LASSO-logistic analysis of real hub genes to establish a prognostic evaluation model. Finally, 11 prognostic genes were selected in the predictive model in the training dataset, namely

    ,

    ,

    ,

    ,

    ,

    ,

    ,

    ,

    ,

    ,

    and

    (Figure 4A). The risk score = 4.43 (Intercept) + CCNB2-expression × 0.552 + CDC20-expression ×0.037 CENPO-expression × 0.287 + FOXM1-expression × 0.106 + HJURP-expression × 0.229 + NEK2-expression × 0.083 OIP5-expression × 0.020 PLK1-expression × 0.520 + PRC1-expression × 0.192 SKA1-expression × 0.110 + UBE2C-expression × 0.263. Subsequently, we evaluated the reliability of the model by the ROC curve. The results showed that the area under the curve of the training set and test set were 0.754 and 0.626, respectively (Figure 4B). Cox regression analysis showed that risk score was an independent risk factor for predicting the poor prognosis of LC patients (Figure 4C). To further evaluate the prognosis of LC, we constructed a nomogram based on risk factors (Figure 4D and E).

    After the construction of the scoring system in the GEO dataset, we determined the effect of 11 genes in the TCGA dataset. As shown in Figure 5A, all genes were differentially expressed in LC patients compared with normal samples. Moreover, all genes were significantly correlated with patient prognosis except for

    and

    (Figure 5B).

    To validate the expression of the 11 hub genes, we performed an immunohistochemistry experiment obtained from the Protein Atlas database. Immunohistochemistry indicated that the protein levels of CDC20, FOXM1, HJURP, PRC1, UBE2C and CCNB2 were increased in the LC samples compared with the normal samples, whereas those of OIP5, PLK1 and SKA1 were decreased (Figure 5C). To explore the mRNA expression levels of these genes, we performed qRT-PCR analysis and found that the mRNA levels of

    ,

    ,

    ,

    ,

    ,

    ,

    and

    were increased in the LC cell lines, whereas those of

    ,

    and

    was decreased (Figure 5D).

    To determine which cluster of genes in the turquoise module have a pivotal effect on the prognosis of LC, we constructed protein-protein interaction networks using the STRING database (Figure 3A) and Cytoscape software and found 100 hub genes located in the core area of the network (Figure 3B). We then intersected the 100 hub genes with 75 key genes sorted by MM to identify real hub genes associated with prognosis (Figure 3C).

    DlSCUSSlON

    LC treatments include a combination of radical surgery, radiation therapy, chemotherapy, and precise targeted therapy[14]. Despite advancement in LC treatment and diagnosis, the 5-year overall survival rate remains low[15]. The main reason is that patients who are diagnosed with advanced and metastasis LC cannot undergo radical surgery. Therefore, more specific and sensitive biomarkers are needed to facilitate early diagnosis and prediction of overall survival.

    Recently, several therapeutic targets and prognostic biomarkers have been identified using advanced high-throughput sequencing technology and integrative bioinformatics analysis. Previous studies have reported many prognostic biomarkers in LC by performing a combined analysis using TCGA and GEO datasets and validated by

    experiments. Sun

    [16] reported the role of C-type lectin domain family 3 member B (CLEC3B) in tumor progression, prognosis, and immune responses in LC by performing RNA-Seq and bioinformatics analysis; the expression and methylation of CLEC3B were also validated by qRT-PCR analysis. miRNA-144-3p, an important noncoding RNA, was identified and validated as an independent risk factor for LC prognosis by performing bioinformatics analysis and qRT-PCR[17]. However, because of the insufficient sample size, biological heterogeneity, and different statistical methods, highly effective genes are not found in clinical practice. Moreover, the prediction efficiency in tumor patients could be limited by simply using a single GS instead of a multi-GS.Therefore, more biological markers and more effective prediction models are required for the prevention and treatment of LC.

    In the present study, we initially detected DEGs based on the TCGA dataset and intersected these DEGs with all GEO cohort genes to obtain an expression profile. We used the WGCNA algorithm to identify core genes in GEO expression data and that were highly related to clinical features. WGCNA classified eight modules and subsequently correlated the modules with clinical characteristics. In these modules, the turquoise module contained 1673 genes that showed the highest correlation with LC patient prognosis. We then performed GO enrichment and KEGG pathway analyses of the turquoise module genes and found that the function of these genes was mainly related to activation of enzymes including ATPase, helicase, 3′-5′ DNA helicase, DNA-dependent ATPase, DNA helicase, ATPdependent DNA helicase, and ATP-dependent helicase and binding of many molecules including DNA replication origin, single-stranded DNA, and tubulin and activation of signaling pathways involved in Fanconi anemia and p53 signaling pathway. Subsequently, we performed a protein-protein interaction network analysis of the genes contained in the yellow module and intersected the network hub genes with MM > 0.8. Forty-one genes were selected and subjected to LASSO-logistic regression. We finally identified 11 prognostic genes, namely

    ,

    ,

    ,

    ,

    ,

    ,

    ,

    ,

    ,

    ,

    and

    . Among these genes,

    and

    are the most studied genes in LC. FOXM1, an important family member of the FOX family, plays a pivotal role in a series of biological processes, including facilitating cell proliferation, differentiation, and organ development[18]. FOXM1 level is significantly increased in LC cells and could be regulated by miR-216b, which promotes cancer progression and epithelial-mesenchymal transition in LC cells[19]. Moreover, FOXM1 could directly regulate the radiosensitivity of LC cells

    interacting with KIF20A, suggesting that FOXM1 might be a novel therapeutic target for LC treatment. FOXM1 could also be regulated by other important molecules. The family with sequence similarity 188-member B is a member of the novel putative deubiquitinase family and directly binds to FOXM1, which promotes LC progression[20]. PLK1 is highly correlated with LC progression. PLK1 can target and regulate the transforming growth factor β signaling pathway, and then amplify its metastatic activity by positive feedback[20]. PLK1 is also regulated by long noncoding RNAs. For instance, miR-296-5p decreases the ability of cell invasion and migration by directly targeting PLK1 in LC cells[21]. However, other genes have not been actively researched, especially with regard to the mechanism of progression in LC. Therefore, in-depth knowledge of these genes will help develop new biomarkers for early LC diagnosis and prediction of prognosis.

    After the scoring system was constructed, we further evaluated the performance of the model in LC patients. The ROC curve showed that the model had an excellent predictive performance. In addition,the risk predictor of the model can be considered an independent risk factor for predicting LC prognosis. To conclude, this study showed the potential of prognostic genes in LC patients using WGCNA combined with the established predictive model. However, this study also had some limitations. Firstly, LC patients were from public databases, thus the number of samples was limited. In future studies, we will collect samples from our hospital to expand the sample size to validate the predictive model. Second, the molecular biological mechanism by which the hub gene affects the prognosis of patient needs to be further explored.

    CONCLUSlON

    This study used the WGCNA algorithm to identify functional modules highly correlated with LC prognosis. After construction of the predictive model, we screened and validated 11 prognostic genes,which might be considered new therapeutic targets for the diagnosis and treatment of LC. This study also had some limitations. The mechanisms of the effect of the 11 prognostic genes on cancer progression need to be studied in the future.

    ARTlCLE HlGHLlGHTS

    FOOTNOTES

    The authors have no conflicts of interest to declare.

    This study was approved by the Ethics Committee of the Fenghua District People’s Hospital.

    This study does not involve the clinical trials, so the clinical trial registration is not required.

    The data that support the findings of current study are publicly available, so the signed informed consent document is not required.

    Zhong C and Liang Y conceptualized and designed the article; Zhong C and Wang Q analyzed and interpreted the data; Zhong C drafted of the article; Liang Y and Tang HW were responsible for critical revision of the article for important intellectual content.

    由圖11可知,模糊PID調(diào)平控制系統(tǒng)在2 s以內(nèi)就能達(dá)到穩(wěn)定,而且沒(méi)有超調(diào),而常規(guī)PID控制在將近4 s時(shí)才能達(dá)到穩(wěn)定,且超調(diào)量將近40%,仿真結(jié)果表明模糊PID控策略在混合臂高空作業(yè)車工作斗調(diào)平控制系統(tǒng)性能上優(yōu)于常規(guī)PID控制策略,該模糊PID調(diào)平控制系統(tǒng)滿足要求,可用于實(shí)際需求。

    No additional data are available.

    然后進(jìn)入任務(wù)實(shí)施階段。首先老師在線下針對(duì)學(xué)生在導(dǎo)學(xué)中提出的問(wèn)題進(jìn)行解答,然后發(fā)布任務(wù)操作視頻,學(xué)生在完成任務(wù)的過(guò)程中,可以反復(fù)查看,不斷完善任務(wù)。同時(shí),要求學(xué)生提交相關(guān)任務(wù)完稿。為了更好的便于學(xué)生自主學(xué)習(xí),在此過(guò)程中會(huì)開(kāi)放相應(yīng)的疑難討論論壇,供學(xué)生隨時(shí)提問(wèn)討論。

    This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BYNC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is noncommercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

    China

    Cheng Zhong 0000-0002-4077-2676; Yun Liang 0000-0003-3759-2997; Qun Wang 0000-0003-2258-4791;Hao-Wei Tan 0000-0001-6188-9294; Yan Liang 0000-0002-8608-0229.

    紅琴與她那個(gè)見(jiàn)風(fēng)就長(zhǎng)的女兒在一起放風(fēng)箏,與風(fēng)影相比,她更是世俗的,紅塵世界里的平凡瑣事,也沒(méi)有走進(jìn)傳奇故事里的必要與可能,更沒(méi)有佛門(mén)子弟的那種清苦與執(zhí)著。紅琴是善于忘記的,很容易滿足的,風(fēng)影則不同,他烙印在心底里的傷與痛是永遠(yuǎn)不可能抹去的,而紅琴似乎已經(jīng)淡忘了。風(fēng)影站在草地上發(fā)呆,從眼神到心頭,都有一種說(shuō)不清道不明的憂傷。

    “你說(shuō)你沒(méi)事結(jié)什么婚呵?”何西指著照片“我們科的丁主任,看上我了,非把他女兒介紹給我,還是跟我爸說(shuō)的,我爸覺(jué)得我也該有女朋友了,就把我給安排了,明兒就得去見(jiàn)面,接頭暗號(hào)都定了。你說(shuō)他長(zhǎng)這樣,他女兒……”

    Gong ZM

    Kerr C

    Gong ZM

    1 Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012 . CA Cancer J Clin 2015 ;65 : 87 -108 [PMID: 25651787 DOI: 10 .3322 /caac.21262 ]

    2 Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ, He J. Cancer statistics in China, 2015 .

    2016 ; 66 : 115 -132 [PMID: 26808342 DOI: 10 .3322 /caac.21338 ]

    3 Villalobos P, Wistuba II. Lung Cancer Biomarkers. Hematol Oncol Clin North Am 2017 ; 31 : 13 -29 [PMID: 27912828 DOI: 10 .1016 /j.hoc.2016 .08 .006 ]

    4 Di X, Jin X, Li R, Zhao M, Wang K. CircRNAs and lung cancer: Biomarkers and master regulators. Life Sci 2019 ; 220 :177 -185 [PMID: 30711537 DOI: 10 .1016 /j.lfs.2019 .01 .055 ]

    5 Ciliberto D, Staropoli N, Caglioti F, Gualtieri S, Fiorillo L, Chiellino S, De Angelis AM, Mendicino F, Botta C, Caraglia M, Tassone P, Tagliaferri P. A systematic review and meta-analysis of randomized trials on the role of targeted therapy in the management of advanced gastric cancer: Evidence does not translate?

    2015 ; 16 : 1148 -1159 [PMID:26061272 DOI: 10 .1080 /15384047 .2015 .1056415 ]

    6 Tsoukalas N, Kiakou M, Tsapakidis K, Tolia M, Aravantinou-Fatorou E, Baxevanos P, Kyrgias G, Theocharis S. PD-1 and PD-L1 as immunotherapy targets and biomarkers in non-small cell lung cancer. J BUON 2019 ; 24 : 883 -888 [PMID:31424637 ]

    7 Moncho-Amor V, Pintado-Berninches L, Iba?ez de Cáceres I, Martín-Villar E, Quintanilla M, Chakravarty P, Cortes-Sempere M, Fernández-Varas B, Rodriguez-Antolín C, de Castro J, Sastre L, Perona R. Role of Dusp6 Phosphatase as a Tumor Suppressor in Non-Small Cell Lung Cancer.

    2019 ; 20 [PMID: 31027181 DOI: 10 .3390 /ijms20082036 ]

    8 Kulasingam V, Diamandis EP. Strategies for discovering novel cancer biomarkers through utilization of emerging technologies.

    2008 ; 5 : 588 -599 [PMID: 18695711 DOI: 10 .1038 /ncponc1187 ]

    9 Xie B, Zhao R, Bai B, Wu Y, Xu Y, Lu S, Fang Y, Wang Z, Maswikiti EP, Zhou X, Pan H, Han W. Identification of key tumorigenesisrelated genes and their microRNAs in colon cancer.

    2018 ; 40 : 3551 -3560 [PMID: 30272358 DOI:10 .3892 /or.2018 .6726 ]

    10 Zhao Y, Zhu J, Shi B, Wang X, Lu Q, Li C, Chen H. The transcription factor LEF1 promotes tumorigenicity and activates the TGF-β signaling pathway in esophageal squamous cell carcinoma.

    2019 ; 38 : 304 [PMID:31296250 DOI: 10 .1186 /s13046 -019 -1296 -7 ]

    11 Zhao T, Khadka VS, Deng Y. Identification of lncRNA biomarkers for lung cancer through integrative cross-platform data analyses.

    2020 ; 12 : 14506 -14527 [PMID: 32675385 DOI: 10 .18632 /aging.103496 ]

    12 Xue L, Xie L, Song X. Identification of potential tumor-educated platelets RNA biomarkers in non-small-cell lung cancer by integrated bioinformatical analysis.

    2018 ; 32 : e22450 [PMID: 29665143 DOI: 10 .1002 /jcla.22450 ]

    13 Liu L, Ahmed T, Petty WJ, Grant S, Ruiz J, Lycan TW, Topaloglu U, Chou PC, Miller LD, Hawkins GA, Alexander-Miller MA, O'Neill SS, Powell BL, D'Agostino RB Jr, Munden RF, Pasche B, Zhang W. SMARCA4 mutations in KRASmutant lung adenocarcinoma: a multi-cohort analysis.

    2021 ; 15 : 462 -472 [PMID: 33107184 DOI:10 .1002 /1878 -0261 .12831 ]

    14 Hensing T, Chawla A, Batra R, Salgia R. A personalized treatment for lung cancer: molecular pathways, targeted therapies,and genomic characterization.

    2014 ; 799 : 85 -117 [PMID: 24292963 DOI:10 .1007 /978 -1 -4614 -8778 -4 _5 ]

    15 Li F, He H, Qiu B, Ji Y, Sun K, Xue Q, Guo W, Wang D, Zhao J, Mao Y, Mu J, Gao S. Clinicopathological characteristics and prognosis of lung cancer in young patients aged 30 years and younger. J Thorac Dis 2019 ; 11 : 4282 -4291 [PMID:31737313 DOI: 10 .21037 /jtd.2019 .09 .60 ]

    16 Sun J, Xie T, Jamal M, Tu Z, Li X, Wu Y, Li J, Zhang Q, Huang X. CLEC3 B as a potential diagnostic and prognostic biomarker in lung cancer and association with the immune microenvironment.

    2020 ; 20 : 106 [PMID:32265595 DOI: 10 .1186 /s12935 -020 -01183 -1 ]

    17 Chen YJ, Guo YN, Shi K, Huang HM, Huang SP, Xu WQ, Li ZY, Wei KL, Gan TQ, Chen G. Down-regulation of microRNA-144 -3 p and its clinical value in non-small cell lung cancer: a comprehensive analysis based on microarray,miRNA-sequencing, and quantitative real-time PCR data.

    2019 ; 20 : 48 [PMID: 30832674 DOI:10 .1186 /s12931 -019 -0994 -1 ]

    18 Zhang Y, Qiao WB, Shan L. Expression and functional characterization of FOXM1 in non-small cell lung cancer.

    2018 ; 11 : 3385 -3393 [PMID: 29928129 DOI: 10 .2147 /OTT.S162523 ]

    19 Wang L, Wang Y, Du X, Yao Y, Wang L, Jia Y. MiR-216 b suppresses cell proliferation, migration, invasion, and epithelial-mesenchymal transition by regulating FOXM1 expression in human non-small cell lung cancer.

    2019 ; 12 : 2999 -3009 [PMID: 31114243 DOI: 10 .2147 /OTT.S202523 ]

    20 Choi YE, Madhi H, Kim H, Lee JS, Kim MH, Kim YN, Goh SH. FAM188 B Expression Is Critical for Cell Growth

    FOXM1 Regulation in Lung Cancer. Biomedicines 2020 ; 8 [PMID: 33142744 DOI: 10 .3390 /biomedicines8110465 ]

    21 Xu C, Li S, Chen T, Hu H, Ding C, Xu Z, Chen J, Liu Z, Lei Z, Zhang HT, Li C, Zhao J. miR-296 -5 p suppresses cell viability by directly targeting PLK1 in non-small cell lung cancer. Oncol Rep 2016 ; 35 : 497 -503 [PMID: 26549165 DOI:10 .3892 /or.2015 .4392 ]

    猜你喜歡
    測(cè)試卷每學(xué)期二氧化硫
    高效學(xué)習(xí)
    寧夏超七成檢察院領(lǐng)導(dǎo)兼任學(xué)?!胺ㄖ胃毙iL(zhǎng)”
    黨參中二氧化硫殘留量的測(cè)定
    中成藥(2018年1期)2018-02-02 07:20:31
    顯色法快速檢測(cè)10種中藥材中二氧化硫殘留
    中成藥(2017年8期)2017-11-22 03:19:01
    “二氧化硫與二氧化碳”知識(shí)歸納
    讓人忍俊不禁的課堂
    燒結(jié)煙氣中二氧化硫的測(cè)試方法
    一年級(jí)期末測(cè)試卷
    湖北農(nóng)村初中、小學(xué)收費(fèi)的政策
    国产久久久一区二区三区| 色老头精品视频在线观看| 精品一区二区三区四区五区乱码| 亚洲成人久久爱视频| 亚洲国产精品久久男人天堂| 国产欧美日韩精品一区二区| 可以在线观看毛片的网站| 国产精品久久电影中文字幕| 久久精品综合一区二区三区| 成年女人永久免费观看视频| 亚洲精品中文字幕一二三四区| 1024手机看黄色片| 午夜激情欧美在线| 亚洲人成伊人成综合网2020| 欧美国产日韩亚洲一区| 淫妇啪啪啪对白视频| 久久久久精品国产欧美久久久| 国产精品久久电影中文字幕| 九色国产91popny在线| 真人做人爱边吃奶动态| 亚洲午夜理论影院| 国产免费男女视频| 国产精品久久久久久久电影 | 亚洲无线观看免费| 国产精品一区二区精品视频观看| av在线蜜桃| 最好的美女福利视频网| av欧美777| 88av欧美| 日韩欧美免费精品| 欧美在线一区亚洲| 欧美日韩一级在线毛片| 色av中文字幕| 99久久99久久久精品蜜桃| 欧美乱码精品一区二区三区| 无限看片的www在线观看| 中文在线观看免费www的网站| 日韩大尺度精品在线看网址| 99久久精品一区二区三区| 欧美绝顶高潮抽搐喷水| 小说图片视频综合网站| 亚洲精品在线美女| 男人舔奶头视频| 午夜福利欧美成人| 免费高清视频大片| 最近视频中文字幕2019在线8| 亚洲色图 男人天堂 中文字幕| 精品日产1卡2卡| 国产伦在线观看视频一区| 最好的美女福利视频网| 91久久精品国产一区二区成人 | 午夜福利成人在线免费观看| 变态另类成人亚洲欧美熟女| 久久精品aⅴ一区二区三区四区| 久久久久久久精品吃奶| 丰满人妻熟妇乱又伦精品不卡| 日韩精品中文字幕看吧| 久久精品aⅴ一区二区三区四区| cao死你这个sao货| 九色国产91popny在线| 亚洲 欧美 日韩 在线 免费| 19禁男女啪啪无遮挡网站| www.www免费av| www.熟女人妻精品国产| 亚洲一区二区三区色噜噜| 五月玫瑰六月丁香| x7x7x7水蜜桃| 国产伦在线观看视频一区| 无遮挡黄片免费观看| 我要搜黄色片| 丰满人妻熟妇乱又伦精品不卡| 久久国产精品影院| 国产黄a三级三级三级人| av女优亚洲男人天堂 | 亚洲九九香蕉| 国产精品久久电影中文字幕| 黄色成人免费大全| 老汉色av国产亚洲站长工具| av女优亚洲男人天堂 | 欧美zozozo另类| 熟女少妇亚洲综合色aaa.| 久久久久国产精品人妻aⅴ院| 国产一区二区在线观看日韩 | 真人一进一出gif抽搐免费| 亚洲av成人精品一区久久| 国产午夜福利久久久久久| 久久精品影院6| 国产精品美女特级片免费视频播放器 | 黄色 视频免费看| 亚洲熟妇熟女久久| 美女高潮的动态| 亚洲无线观看免费| 少妇丰满av| 色精品久久人妻99蜜桃| 成人一区二区视频在线观看| 精品久久久久久,| 51午夜福利影视在线观看| 欧美极品一区二区三区四区| 亚洲国产高清在线一区二区三| 天堂动漫精品| 欧美3d第一页| 九九在线视频观看精品| 久久久久久久午夜电影| 精品日产1卡2卡| 黄色成人免费大全| 久久久久久久午夜电影| 亚洲国产精品成人综合色| 午夜精品在线福利| 最新在线观看一区二区三区| 制服人妻中文乱码| 亚洲无线观看免费| 国产爱豆传媒在线观看| 色综合亚洲欧美另类图片| av在线天堂中文字幕| 18禁黄网站禁片午夜丰满| 窝窝影院91人妻| 精品不卡国产一区二区三区| 色吧在线观看| e午夜精品久久久久久久| 在线十欧美十亚洲十日本专区| 一a级毛片在线观看| 欧美成人一区二区免费高清观看 | 久久久国产精品麻豆| 国产69精品久久久久777片 | 久久午夜亚洲精品久久| 在线观看舔阴道视频| 美女免费视频网站| 在线观看美女被高潮喷水网站 | 91麻豆av在线| 一本精品99久久精品77| 亚洲精品乱码久久久v下载方式 | 黄色片一级片一级黄色片| 亚洲精品456在线播放app | 三级男女做爰猛烈吃奶摸视频| 亚洲精品一区av在线观看| 国产精品免费一区二区三区在线| 岛国在线免费视频观看| 国产精品美女特级片免费视频播放器 | 老熟妇乱子伦视频在线观看| 亚洲 国产 在线| 麻豆国产97在线/欧美| 亚洲五月婷婷丁香| 特级一级黄色大片| 日本精品一区二区三区蜜桃| 国产单亲对白刺激| 国内精品美女久久久久久| 90打野战视频偷拍视频| 特大巨黑吊av在线直播| 午夜福利在线观看免费完整高清在 | 欧美3d第一页| 国产精品1区2区在线观看.| 国产成年人精品一区二区| 99久久国产精品久久久| 国产毛片a区久久久久| 1024香蕉在线观看| 欧美中文日本在线观看视频| 国产99白浆流出| 成在线人永久免费视频| 一本精品99久久精品77| 亚洲自拍偷在线| 色精品久久人妻99蜜桃| 国产亚洲精品av在线| 99re在线观看精品视频| 欧美日韩福利视频一区二区| 白带黄色成豆腐渣| 淫秽高清视频在线观看| 精品99又大又爽又粗少妇毛片 | 午夜激情福利司机影院| 99视频精品全部免费 在线 | 网址你懂的国产日韩在线| 国产成年人精品一区二区| 免费在线观看亚洲国产| 亚洲中文字幕日韩| 男女之事视频高清在线观看| 成人欧美大片| 丰满的人妻完整版| xxxwww97欧美| 国产午夜福利久久久久久| 国产一区二区三区在线臀色熟女| www.熟女人妻精品国产| 国产野战对白在线观看| 亚洲色图 男人天堂 中文字幕| 欧美日韩国产亚洲二区| 十八禁网站免费在线| 两人在一起打扑克的视频| 亚洲欧美精品综合一区二区三区| 国产精品精品国产色婷婷| 欧美国产日韩亚洲一区| 亚洲美女黄片视频| av女优亚洲男人天堂 | 国产亚洲av嫩草精品影院| 欧美乱码精品一区二区三区| www.999成人在线观看| 两人在一起打扑克的视频| 在线观看66精品国产| 欧美日韩中文字幕国产精品一区二区三区| 国产av一区在线观看免费| 99久久久亚洲精品蜜臀av| 精品免费久久久久久久清纯| 亚洲av中文字字幕乱码综合| 日韩欧美一区二区三区在线观看| 又爽又黄无遮挡网站| 亚洲精品在线美女| 国产精品 国内视频| 窝窝影院91人妻| 日韩 欧美 亚洲 中文字幕| 欧美乱妇无乱码| 又黄又粗又硬又大视频| 国产午夜精品久久久久久| 精品午夜福利视频在线观看一区| 好男人电影高清在线观看| 国产精品 国内视频| 亚洲中文日韩欧美视频| 欧美黄色片欧美黄色片| 国产激情久久老熟女| 精品电影一区二区在线| www.www免费av| 香蕉久久夜色| 国产精品日韩av在线免费观看| 亚洲avbb在线观看| 国产av在哪里看| 18禁裸乳无遮挡免费网站照片| 亚洲午夜理论影院| 九色成人免费人妻av| 成人亚洲精品av一区二区| 悠悠久久av| 91久久精品国产一区二区成人 | 岛国在线观看网站| 99国产综合亚洲精品| 制服人妻中文乱码| 国内揄拍国产精品人妻在线| 首页视频小说图片口味搜索| 成人国产一区最新在线观看| 18禁裸乳无遮挡免费网站照片| 91九色精品人成在线观看| 久久中文看片网| 欧美丝袜亚洲另类 | 非洲黑人性xxxx精品又粗又长| h日本视频在线播放| 欧美日韩中文字幕国产精品一区二区三区| 久久久久精品国产欧美久久久| 日本五十路高清| 久久久久九九精品影院| 国语自产精品视频在线第100页| 一个人免费在线观看的高清视频| 国产探花在线观看一区二区| 91麻豆精品激情在线观看国产| 夜夜夜夜夜久久久久| 精品国产超薄肉色丝袜足j| 91在线精品国自产拍蜜月 | 男人舔女人的私密视频| 亚洲色图 男人天堂 中文字幕| 色老头精品视频在线观看| 久久精品综合一区二区三区| 怎么达到女性高潮| 18禁国产床啪视频网站| 成人亚洲精品av一区二区| 国产三级中文精品| 后天国语完整版免费观看| 亚洲国产精品合色在线| 欧美日韩中文字幕国产精品一区二区三区| 精品国产乱子伦一区二区三区| 99re在线观看精品视频| 很黄的视频免费| 婷婷精品国产亚洲av| 国产欧美日韩精品亚洲av| 亚洲一区高清亚洲精品| 亚洲最大成人中文| 三级国产精品欧美在线观看 | 亚洲人成网站高清观看| 999精品在线视频| www.999成人在线观看| 最近在线观看免费完整版| 国产av麻豆久久久久久久| 神马国产精品三级电影在线观看| 午夜福利免费观看在线| 国产麻豆成人av免费视频| 亚洲无线观看免费| 成人三级黄色视频| 亚洲精品久久国产高清桃花| 免费观看精品视频网站| 99久久久亚洲精品蜜臀av| 淫秽高清视频在线观看| 国产视频内射| 757午夜福利合集在线观看| 欧美黄色片欧美黄色片| 午夜福利成人在线免费观看| 在线观看免费视频日本深夜| 久久精品综合一区二区三区| 99久久综合精品五月天人人| 老司机在亚洲福利影院| 国产高清视频在线观看网站| 日本撒尿小便嘘嘘汇集6| 变态另类成人亚洲欧美熟女| 夜夜爽天天搞| 激情在线观看视频在线高清| 国产成人精品久久二区二区91| av女优亚洲男人天堂 | 亚洲人与动物交配视频| 国产爱豆传媒在线观看| 一级作爱视频免费观看| 两个人的视频大全免费| 麻豆国产av国片精品| 日本成人三级电影网站| 老鸭窝网址在线观看| 久久久久免费精品人妻一区二区| 精品久久久久久久毛片微露脸| 欧美一级a爱片免费观看看| 久久这里只有精品中国| 校园春色视频在线观看| www日本黄色视频网| 夜夜夜夜夜久久久久| 又粗又爽又猛毛片免费看| 一本一本综合久久| 亚洲精品在线美女| 午夜精品在线福利| 身体一侧抽搐| 麻豆成人午夜福利视频| 欧美日韩黄片免| 十八禁人妻一区二区| 免费无遮挡裸体视频| 午夜亚洲福利在线播放| 超碰成人久久| av视频在线观看入口| 亚洲一区二区三区不卡视频| 久久中文字幕一级| 特级一级黄色大片| 91av网站免费观看| 99国产精品一区二区三区| av在线天堂中文字幕| 真人做人爱边吃奶动态| 亚洲无线在线观看| 欧美高清成人免费视频www| 国产一区二区在线av高清观看| 亚洲人成网站高清观看| 亚洲国产欧洲综合997久久,| 免费观看精品视频网站| 亚洲精品国产精品久久久不卡| 天堂网av新在线| 91麻豆精品激情在线观看国产| 日韩欧美在线二视频| 最好的美女福利视频网| 久久精品国产99精品国产亚洲性色| 精品人妻1区二区| 熟女人妻精品中文字幕| 男人舔奶头视频| bbb黄色大片| 久久久久久人人人人人| 亚洲人成电影免费在线| 97碰自拍视频| 精品一区二区三区四区五区乱码| 人人妻人人澡欧美一区二区| 又爽又黄无遮挡网站| 久久久国产欧美日韩av| 国产69精品久久久久777片 | 国产在线精品亚洲第一网站| 久久久久久久久久黄片| 天堂网av新在线| 男女床上黄色一级片免费看| 脱女人内裤的视频| 国产av不卡久久| 欧美一级a爱片免费观看看| 亚洲av美国av| 中文字幕久久专区| 国产亚洲欧美在线一区二区| 中文字幕高清在线视频| 俄罗斯特黄特色一大片| 国产精品乱码一区二三区的特点| 日韩av在线大香蕉| 一级黄色大片毛片| 桃红色精品国产亚洲av| 999精品在线视频| 久9热在线精品视频| 我的老师免费观看完整版| 99在线视频只有这里精品首页| 三级国产精品欧美在线观看 | 久久国产乱子伦精品免费另类| e午夜精品久久久久久久| 亚洲精品一区av在线观看| 国产97色在线日韩免费| 成人三级黄色视频| 欧美中文综合在线视频| 18禁国产床啪视频网站| 看免费av毛片| 国产精品爽爽va在线观看网站| 人人妻人人看人人澡| 久久久久久大精品| 欧美日韩国产亚洲二区| 欧美zozozo另类| 成年版毛片免费区| 嫁个100分男人电影在线观看| 亚洲中文字幕日韩| 别揉我奶头~嗯~啊~动态视频| 老汉色∧v一级毛片| 别揉我奶头~嗯~啊~动态视频| 国产精品综合久久久久久久免费| x7x7x7水蜜桃| 国产成人系列免费观看| www.精华液| 婷婷六月久久综合丁香| 国产aⅴ精品一区二区三区波| 88av欧美| 一区二区三区国产精品乱码| 偷拍熟女少妇极品色| 国产午夜精品论理片| 精品免费久久久久久久清纯| 黄色日韩在线| 国产亚洲av嫩草精品影院| av在线蜜桃| 国产美女午夜福利| 村上凉子中文字幕在线| 成人亚洲精品av一区二区| 国产主播在线观看一区二区| 国产 一区 欧美 日韩| 久久久久久久久久黄片| 精品久久久久久久人妻蜜臀av| 亚洲狠狠婷婷综合久久图片| 亚洲欧美日韩东京热| 狠狠狠狠99中文字幕| 手机成人av网站| 男女视频在线观看网站免费| 熟女电影av网| 国产淫片久久久久久久久 | 国产伦精品一区二区三区四那| 女生性感内裤真人,穿戴方法视频| 小蜜桃在线观看免费完整版高清| 国产黄色小视频在线观看| 亚洲午夜精品一区,二区,三区| 18美女黄网站色大片免费观看| 深夜精品福利| 国产探花在线观看一区二区| 成在线人永久免费视频| 亚洲午夜精品一区,二区,三区| 中国美女看黄片| 999久久久精品免费观看国产| 欧美日韩一级在线毛片| 久久国产乱子伦精品免费另类| 亚洲av电影不卡..在线观看| 在线免费观看的www视频| 国内精品久久久久精免费| 国产精品日韩av在线免费观看| 国产熟女xx| 久久中文字幕人妻熟女| 国产av麻豆久久久久久久| 日韩欧美三级三区| 国内久久婷婷六月综合欲色啪| 精品久久久久久,| av女优亚洲男人天堂 | 日本a在线网址| 欧美乱码精品一区二区三区| 日本精品一区二区三区蜜桃| 欧美中文综合在线视频| 美女大奶头视频| 亚洲人成伊人成综合网2020| 欧美一区二区精品小视频在线| 男人的好看免费观看在线视频| 老司机在亚洲福利影院| 国产伦人伦偷精品视频| 少妇的逼水好多| 一二三四社区在线视频社区8| 国产 一区 欧美 日韩| 国产蜜桃级精品一区二区三区| 91麻豆av在线| 国产三级在线视频| 99热6这里只有精品| 亚洲一区二区三区色噜噜| 男插女下体视频免费在线播放| av天堂中文字幕网| 69av精品久久久久久| 少妇熟女aⅴ在线视频| 少妇裸体淫交视频免费看高清| 亚洲无线观看免费| 99国产综合亚洲精品| 9191精品国产免费久久| 亚洲中文av在线| 韩国av一区二区三区四区| 日韩av在线大香蕉| 国内精品美女久久久久久| aaaaa片日本免费| 国内揄拍国产精品人妻在线| 免费在线观看日本一区| 制服丝袜大香蕉在线| 免费av不卡在线播放| 麻豆成人午夜福利视频| 美女大奶头视频| 中文在线观看免费www的网站| 久久久久久国产a免费观看| www国产在线视频色| 国产高清激情床上av| 怎么达到女性高潮| 性色av乱码一区二区三区2| 麻豆成人av在线观看| 在线观看免费午夜福利视频| 搡老岳熟女国产| xxx96com| 极品教师在线免费播放| 在线a可以看的网站| 可以在线观看的亚洲视频| 97人妻精品一区二区三区麻豆| 最新美女视频免费是黄的| 久久久久久国产a免费观看| 欧美精品啪啪一区二区三区| 欧美成狂野欧美在线观看| 男女午夜视频在线观看| 久久久久精品国产欧美久久久| 成年女人永久免费观看视频| 色老头精品视频在线观看| 男人和女人高潮做爰伦理| 亚洲乱码一区二区免费版| av黄色大香蕉| 国产精品爽爽va在线观看网站| 免费无遮挡裸体视频| 99精品久久久久人妻精品| 亚洲国产精品sss在线观看| av黄色大香蕉| 亚洲性夜色夜夜综合| 久久国产精品影院| 99热6这里只有精品| 国产精品av视频在线免费观看| 成人一区二区视频在线观看| 欧美激情在线99| 三级国产精品欧美在线观看 | 精品国产美女av久久久久小说| 波多野结衣巨乳人妻| 啪啪无遮挡十八禁网站| 欧美一区二区精品小视频在线| 色av中文字幕| 国产成人福利小说| 婷婷亚洲欧美| 国产真实乱freesex| 国产一区在线观看成人免费| 怎么达到女性高潮| 两个人视频免费观看高清| 老汉色∧v一级毛片| 亚洲第一欧美日韩一区二区三区| 十八禁网站免费在线| 一本综合久久免费| 久久性视频一级片| 亚洲国产精品999在线| 国产成人av激情在线播放| 国产黄色小视频在线观看| 欧美日韩黄片免| 精品久久蜜臀av无| 99在线人妻在线中文字幕| 国产毛片a区久久久久| 在线观看日韩欧美| 国产主播在线观看一区二区| 亚洲中文日韩欧美视频| 一边摸一边抽搐一进一小说| 国产男靠女视频免费网站| 亚洲天堂国产精品一区在线| 叶爱在线成人免费视频播放| 国产午夜福利久久久久久| 老司机午夜福利在线观看视频| 88av欧美| 成人高潮视频无遮挡免费网站| 亚洲色图 男人天堂 中文字幕| 巨乳人妻的诱惑在线观看| 99热精品在线国产| 夜夜爽天天搞| 午夜福利在线在线| 国产综合懂色| 观看美女的网站| 1000部很黄的大片| 欧美中文综合在线视频| 中文字幕熟女人妻在线| 夜夜看夜夜爽夜夜摸| 狂野欧美激情性xxxx| 亚洲精品美女久久av网站| 白带黄色成豆腐渣| 很黄的视频免费| 日韩欧美三级三区| 亚洲va日本ⅴa欧美va伊人久久| 麻豆成人午夜福利视频| 日本 av在线| 99久久99久久久精品蜜桃| 亚洲五月婷婷丁香| av国产免费在线观看| 国产伦精品一区二区三区四那| 午夜福利在线观看吧| av中文乱码字幕在线| 国产高清三级在线| 观看美女的网站| 午夜视频精品福利| 高清在线国产一区| 日韩欧美免费精品| 日韩欧美 国产精品| 欧美国产日韩亚洲一区| 久久中文字幕一级| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品乱码久久久v下载方式 | 两人在一起打扑克的视频| 国产精品一区二区三区四区久久| 成人国产综合亚洲| 很黄的视频免费| 亚洲18禁久久av| 亚洲色图av天堂| 两人在一起打扑克的视频| 亚洲av成人av| 国产精品1区2区在线观看.| 国产亚洲欧美98| 九色成人免费人妻av| 又紧又爽又黄一区二区| 狂野欧美激情性xxxx| 成年女人永久免费观看视频| 九九在线视频观看精品| 精品午夜福利视频在线观看一区| 成人特级av手机在线观看| 九九在线视频观看精品| 欧美一级毛片孕妇| a级毛片a级免费在线| 成年女人看的毛片在线观看| 99热这里只有精品一区 | 欧美最黄视频在线播放免费| 国产精品久久视频播放|