中圖分類號(hào):TD42.25 文獻(xiàn)標(biāo)志碼:A
Drill pipe counting for underground drilling rigs based on miner pose recognition
LIU Jiel,YANGCheng,CHENG Zeming,SUNXiaohu’,XUHao1,SHENGGuoyu (.Huaneng CoalTechnologyResearch Co.,Ltd.,Beijing10o70,China;2.ShandongKeyLaboratoryofUbiquitous Intelligent Computing(Preparatory), University ofJinan,Jinan 25oo22,China)
Abstract: In underground coal mine work sites,moving people and objects may appear between the dril pipes and the monitoring camera,resulting in incomplete video footage andcounting omissions of drillppes.At present,studies on drill pipe counting methods based on image processingand machine vision rarely address the problemof occlusion.Most existing models requirecolecting and processing allframes of the target video and performing image preprocessing.To address the above issues,a drill pipecounting algorithm for underground drilling rigs basedonmineroperationposerecognitionnamed the BlazePose-DPCalgorithm,was proposed.This algorithmused the BlazePose network to extract key pose information of miners as the basis for automatic dril pipecounting,transforming thedrillpipe counting task into therecognitionand matching ofkeyoperational poses of miners.Key poses were extracted as skeletal joint coordinates fromkey pose frames viathe BlazePose network.
Key pose coordinate matching used normalized Euclidean distance to represent the similarity between poses. When the similarity exceeded a predefined threshold,the action in the video was considered complete,and the count was incremented by one, thereby enabling automatic drill pipe counting.Experiments on the BlazePoseDPC algorithm were conducted using two datasets.Dataset 1 was recorded by a mobile device at the Qinggangping Coal Mine in Xunyi, Shaanxi Province,where video instability was common. Dataset 2 was recorded by a fixed surveilance device at the Huaneng Qingyang Meidian Hetaoyu Coal Mine, where uneven lighting and occlusion were common. Experimental results showed that the BlazePose-DPC algorithm was able to perform accurate counting even under challenging lighting conditions or partial oclusion. It maintained accurate counting during prolonged operation, demonstrating stable performance. The BlazePose-DPC algorithm achieved an accuracy of 95.5% , meeting the requirements for drill pipe counting.
Key words: drill pipe counting; BlazePose network; operation pose estimation; pose matching; singleproducer multi-consumer buffer pool; Euclidean distance of joint points
0 引言
瓦斯儲(chǔ)存在煤層中,隨著煤層開(kāi)采而釋放,為了避免瓦斯爆炸事故的發(fā)生,通常采用鉆孔抽采的方式提前抽排瓦斯,以降低瓦斯積聚濃度。鉆孔深度直接影響瓦斯抽采效果。在實(shí)際鉆孔作業(yè)中,鉆機(jī)打入每根鉆桿的長(zhǎng)度相同,通過(guò)統(tǒng)計(jì)鉆桿數(shù)量即可得到鉆孔深度[1]
傳統(tǒng)的鉆桿計(jì)數(shù)方法以人工計(jì)數(shù)和傳感器計(jì)數(shù)為主,人工計(jì)數(shù)耗時(shí)耗力,容易因疲勞導(dǎo)致漏檢和誤檢;在煤礦井下粉塵和潮濕的環(huán)境里,傳感器極易損壞。隨著信息化和智能化建設(shè)的深入,基于圖像處理和機(jī)器視覺(jué)的鉆桿計(jì)數(shù)方法逐漸受到關(guān)注。王向前等[基于YOLOv5網(wǎng)絡(luò)設(shè)計(jì)了DR-C3模塊,引入全局注意力機(jī)制(GlobalAttentionMechanism,GAM,改進(jìn)了YOLOv5網(wǎng)絡(luò),使鉆桿計(jì)數(shù)的平均精度達(dá)到99.4% 。杜京義等[2]基于時(shí)空?qǐng)D卷積神經(jīng)網(wǎng)絡(luò)(Spatial-Temporal Graph Convolution Neural Network,ST-GCN)模型,設(shè)計(jì)了一種動(dòng)作識(shí)別精度良好的改進(jìn)時(shí)空?qǐng)D卷積神經(jīng)網(wǎng)絡(luò)模型——多空間特征融合時(shí)空?qǐng)D卷積神經(jīng)網(wǎng)絡(luò)(Multi Spatial-Temporal Graph ConvolutionNeuralNetwork,MST-GCN)模型,采用Alphapose算法提取人體的關(guān)鍵點(diǎn)信息,采用遠(yuǎn)空間分區(qū)策略關(guān)注骨架上距離較遠(yuǎn)的關(guān)鍵點(diǎn)運(yùn)動(dòng)信息,通過(guò)注意力機(jī)制網(wǎng)絡(luò)SENet融合原空間特征與遠(yuǎn)空間特征,從而有效識(shí)別骨架序列上的動(dòng)作類別,在自建的數(shù)據(jù)集上,識(shí)別準(zhǔn)確率達(dá)到了 91.1% 。趙偉等[3基于YOLOv5深度學(xué)習(xí)模型,提出了一種結(jié)合時(shí)空信息融合的鉆桿智能計(jì)數(shù)方法。計(jì)數(shù)過(guò)程中,結(jié)合鉆桿面積跳變、交并比(IntersectionoverUnion,IOU)跳變等前置更新條件,進(jìn)一步提高了鉆桿數(shù)量更新的準(zhǔn)確性。ChenTiyao等[4]提出了基于目標(biāo)檢測(cè)的鉆桿計(jì)數(shù)方法,通過(guò)應(yīng)用輕量型網(wǎng)絡(luò)GhostNetV2和自適應(yīng)細(xì)粒度通道注意力(FasternetCoordinateAttention,F(xiàn)CA)改善模型的特征提取和融合能力。LiXiaojun等[5通過(guò)引人可變形卷積神經(jīng)網(wǎng)絡(luò)模塊,使卷積核的采樣點(diǎn)呈不規(guī)則擴(kuò)散,能夠充分提取鉆桿的形狀特征;在主干網(wǎng)絡(luò)中嵌入SimAM無(wú)參數(shù)注意力機(jī)制模塊,增強(qiáng)了模型對(duì)鉆桿特征的關(guān)注;改進(jìn)后的DSD-YOLOv8模型平均精度均值提高了 2.9% 。
上述研究以鉆桿識(shí)別為主[6-8],檢測(cè)的準(zhǔn)確性較高。但在工作現(xiàn)場(chǎng),遮擋現(xiàn)象經(jīng)常出現(xiàn),即在鉆機(jī)鉆桿與監(jiān)控?cái)z像裝置之間出現(xiàn)移動(dòng)的人和物,導(dǎo)致拍攝的視頻圖像不完整、鉆桿計(jì)數(shù)缺失,現(xiàn)有方法對(duì)遮擋問(wèn)題的研究較少;另外,現(xiàn)有大部分模型需要采集與處理目標(biāo)視頻圖像的全部幀,模型體量大,占用計(jì)算資源多,所以在模型的輕量化方面仍然存在挑戰(zhàn);此外,需要進(jìn)行圖像預(yù)處理操作[9-13]。針對(duì)上述問(wèn)題,本文提出一種基于礦工操作姿態(tài)識(shí)別的井下鉆機(jī)鉆桿計(jì)數(shù)算法。該算法基于BlazePose網(wǎng)絡(luò)提取礦工的關(guān)鍵姿態(tài)信息作為鉆機(jī)鉆桿自動(dòng)計(jì)數(shù)的依據(jù),把鉆桿計(jì)數(shù)問(wèn)題轉(zhuǎn)化為礦工操作關(guān)鍵姿態(tài)的識(shí)別和匹配問(wèn)題。采用單生產(chǎn)者-多消費(fèi)者緩沖池策略實(shí)現(xiàn)視頻數(shù)據(jù)的實(shí)時(shí)采集與處理。應(yīng)用BlazePose網(wǎng)絡(luò)提取礦工的關(guān)鍵姿態(tài),計(jì)算關(guān)鍵幀礦工操作姿態(tài)的所有關(guān)節(jié)點(diǎn)歐氏距離并求和,以實(shí)現(xiàn)姿態(tài)識(shí)別與匹配。在陜西旬邑青崗坪煤礦、華能慶陽(yáng)煤電核桃峪煤礦井下鉆機(jī)采集的視頻數(shù)據(jù)上進(jìn)行驗(yàn)證。
1基于礦工操作姿態(tài)識(shí)別的鉆機(jī)鉆桿計(jì)數(shù)算法
基于BlazePose網(wǎng)絡(luò)的鉆機(jī)鉆桿計(jì)數(shù)算法(DrillPipesCounting,DPC)(BlazePose-DPC算法)采用部分動(dòng)作幀替代完整視頻流,利用人體關(guān)鍵姿態(tài)代替識(shí)別鉆桿等實(shí)體,不需要進(jìn)行過(guò)多的圖像預(yù)處理操作,模型更加簡(jiǎn)化,計(jì)算速度更快。該算法包含視頻數(shù)據(jù)采集與處理模塊、姿態(tài)檢測(cè)與識(shí)別模塊。視頻數(shù)據(jù)采集與處理模塊啟動(dòng)1個(gè)或多個(gè)進(jìn)程,進(jìn)程數(shù)量根據(jù)系統(tǒng)資源自主調(diào)節(jié)。先將捕捉到的視頻流切分為圖像幀,保存在緩沖池中;再將姿態(tài)檢測(cè)與識(shí)別模塊的輸出結(jié)果融合到輸出的視頻流中,上傳至服務(wù)器。
1.1視頻數(shù)據(jù)采集與處理模塊
服務(wù)器端開(kāi)啟接收煤礦井下攝像頭發(fā)送的視頻流地址及相關(guān)命令(開(kāi)始進(jìn)鉆/退鉆命令),接收到啟動(dòng)命令后,自動(dòng)啟動(dòng)視頻數(shù)據(jù)采集與處理模塊。由于視頻流的分析速度與攝像頭視頻傳輸速度存在差異,且攝像頭視頻傳輸速度不穩(wěn)定,因此,采用單生產(chǎn)者-多消費(fèi)者的緩沖池策略來(lái)平衡雙方速度差異。啟動(dòng)單生產(chǎn)者線程,持續(xù)不斷地讀入攝像頭視頻流,將每幀加上時(shí)間戳,存入緩沖池。然后,啟動(dòng)多消費(fèi)者線程,開(kāi)啟2個(gè)或多個(gè)處理線程,并行處理緩沖池中的圖像幀數(shù)據(jù)。最后,輸出緩沖池線程,該線程根據(jù)時(shí)間戳進(jìn)行排序,確保視頻幀的時(shí)間順序正確。緩沖池根據(jù)存儲(chǔ)幀數(shù)調(diào)節(jié)線程的休眠時(shí)間,確保緩沖池中始終有足夠的幀數(shù)存儲(chǔ),以此來(lái)平衡視頻流分析速度與攝像頭視頻傳輸速度之間的差異。
1.2姿態(tài)檢測(cè)與識(shí)別模塊
姿態(tài)檢測(cè)與識(shí)別模塊的任務(wù)是檢測(cè)視頻中的礦工姿態(tài),輸出姿態(tài)坐標(biāo)和退鉆計(jì)數(shù)信息。首先,采用BlazePose網(wǎng)絡(luò)從視頻圖像中提取關(guān)鍵姿態(tài)信息。然后,計(jì)算所有關(guān)節(jié)點(diǎn)的歐氏距離,作為判斷搬動(dòng)鉆桿動(dòng)作開(kāi)始與結(jié)束的依據(jù)。最后,對(duì)所有關(guān)節(jié)點(diǎn)的歐氏距離求和,以實(shí)現(xiàn)關(guān)鍵姿態(tài)的匹配。如果距離超過(guò)閾值,則認(rèn)為不是1個(gè)動(dòng)作。
BlazePose網(wǎng)絡(luò)采用檢測(cè)-跟蹤框架、輕量級(jí)的卷積神經(jīng)架構(gòu)并結(jié)合了熱圖與回歸方法,在移動(dòng)設(shè)備上實(shí)現(xiàn)了高效、準(zhǔn)確的人體姿態(tài)估計(jì)[14-16]。推理過(guò)程中,該網(wǎng)絡(luò)為單個(gè)人體生成33個(gè)身體關(guān)鍵點(diǎn),以30幀/s的速度運(yùn)行。
1.2.1 基于BlazePose網(wǎng)絡(luò)的關(guān)鍵姿態(tài)識(shí)別流程
基于BlazePose網(wǎng)絡(luò)的關(guān)鍵姿態(tài)識(shí)別流程如圖1所示。首先,對(duì)于采集的每張圖像,姿態(tài)檢測(cè)與識(shí)別模塊預(yù)測(cè)并輸出人體多個(gè)關(guān)節(jié)點(diǎn)(如肘部、膝蓋、肩膀等)的位置坐標(biāo)。其次,計(jì)算每個(gè)預(yù)測(cè)關(guān)鍵點(diǎn)與對(duì)應(yīng)的真實(shí)關(guān)鍵點(diǎn)之間的歐氏距離。然后,將每個(gè)距離與閾值進(jìn)行比較,如果距離小于或等于閾值,則認(rèn)為該關(guān)鍵點(diǎn)被正確預(yù)測(cè)。最后,計(jì)算正確關(guān)鍵點(diǎn)的百分比(Percentage of Correct Key points,PCK)[11],即正確預(yù)測(cè)的關(guān)鍵點(diǎn)數(shù)量與關(guān)鍵點(diǎn)總數(shù)的比值 P
式中: N 為關(guān)鍵點(diǎn)的總數(shù); δ 為指示函數(shù),當(dāng)條件為真時(shí)等于1,否則等于 0;di 為第 i 個(gè)關(guān)鍵點(diǎn)的預(yù)測(cè)位置與真實(shí)位置之間的歐氏距離; d 為參考長(zhǎng)度; T 為閾值超參數(shù)。
1.2.2 姿態(tài)識(shí)別與歐氏距離坐標(biāo)匹配計(jì)算
通過(guò)BlazePose網(wǎng)絡(luò)從關(guān)鍵姿態(tài)幀中提取骨骼關(guān)節(jié)點(diǎn)坐標(biāo)[17]。關(guān)鍵姿態(tài)坐標(biāo)匹配使用歸一化的歐氏距離表示姿態(tài)之間的相似度。當(dāng)相似度大于設(shè)定的閾值時(shí),表示視頻中的動(dòng)作完成,計(jì)數(shù)加1,實(shí)現(xiàn)鉆桿的自動(dòng)計(jì)數(shù)。
關(guān)鍵姿態(tài)匹配過(guò)程包含選取關(guān)鍵姿態(tài)幀和確定姿態(tài)匹配閾值2個(gè)方面。
1)選取關(guān)鍵姿態(tài)幀。關(guān)鍵姿態(tài)幀是指可以代表1個(gè)完整周期動(dòng)作的一連串圖像中的某幾幀圖像。在模型訓(xùn)練階段,關(guān)鍵姿態(tài)幀是人工選取的。關(guān)鍵姿態(tài)幀的數(shù)量可以根據(jù)實(shí)際動(dòng)作的復(fù)雜程度靈活調(diào)整。例如,在鉆桿卸載過(guò)程,選取礦工站在鉆機(jī)旁準(zhǔn)備卸載鉆桿的動(dòng)作幀、從鉆機(jī)上卸載鉆桿的動(dòng)作幀及手持鉆桿即將離開(kāi)鉆機(jī)的動(dòng)作幀作為模型學(xué)習(xí)卸載鉆桿動(dòng)作的訓(xùn)練數(shù)據(jù),如圖2所示。
2)確定姿態(tài)匹配閾值。關(guān)鍵姿態(tài)匹配閾值由實(shí)驗(yàn)來(lái)確定,例如將開(kāi)始幀映射到數(shù)值1,結(jié)束幀映射到0,迫使模型學(xué)習(xí)到不同幀之間的區(qū)別。在模型驗(yàn)證階段,BlazePose網(wǎng)絡(luò)對(duì)不同的輸入幀輸出礦工關(guān)節(jié)點(diǎn)坐標(biāo),求取關(guān)節(jié)點(diǎn)之間的歐氏距離并求和,以此歐氏距離的和作為確定關(guān)鍵幀(如開(kāi)始幀、結(jié)束幀)的依據(jù)。
2實(shí)驗(yàn)驗(yàn)證及分析
2.1實(shí)驗(yàn)數(shù)據(jù)集的構(gòu)建
以陜西旬邑青崗坪煤礦與華能慶陽(yáng)煤電核桃峪煤礦井下的監(jiān)控視頻為基礎(chǔ),構(gòu)建了實(shí)驗(yàn)數(shù)據(jù)集。從約100個(gè)井下卸載鉆桿視頻中,隨機(jī)剪輯了40個(gè)視頻片段(存在燈光昏暗、強(qiáng)光干擾、物體模糊、遮擋等井下鉆場(chǎng)常見(jiàn)現(xiàn)象),總時(shí)長(zhǎng)約 200min ,數(shù)據(jù)量約60GBit,分辨率為 1280×720 ,幀率為25幀/s。每個(gè)片段約 4min ,包含 3~12 個(gè)卸鉆桿動(dòng)作。數(shù)據(jù)集構(gòu)建過(guò)程中對(duì)視頻幀進(jìn)行編號(hào),其中1000張圖像作為訓(xùn)練集,手動(dòng)提取并標(biāo)注3個(gè)代表完整卸鉆桿動(dòng)作周期的關(guān)鍵幀:開(kāi)始幀、執(zhí)行幀和結(jié)束幀。每個(gè)完整卸鉆桿動(dòng)作可使用1個(gè)或幾個(gè)執(zhí)行幀,幀數(shù)可根據(jù)動(dòng)作復(fù)雜性靈活調(diào)整。
2.2參數(shù)設(shè)定
在視頻數(shù)據(jù)采集和處理模塊中,視頻流輸入和輸出的緩沖池設(shè)置為200張圖像。如果緩沖池存儲(chǔ)的圖像達(dá)到150張,則開(kāi)啟3個(gè)進(jìn)程進(jìn)行處理。如果緩沖池內(nèi)少于50張圖像,則降為2個(gè)進(jìn)程。
完整版BlazePose-DPC(F)網(wǎng)絡(luò)和簡(jiǎn)潔版BlazePose-DPC(L)網(wǎng)絡(luò)的學(xué)習(xí)率分別為 1.0978×10-5 1.4728×10-5 。開(kāi)始幀的閾值為0.75,執(zhí)行幀的閾值為(0.46,0.75),結(jié)束幀的閾值為0.4。BlazePose網(wǎng)絡(luò)使用Adam優(yōu)化器進(jìn)行梯度下降訓(xùn)練,超參數(shù)通過(guò)實(shí)驗(yàn)確定。在模型訓(xùn)練階段,數(shù)據(jù)集按7:2:1的比例劃分為訓(xùn)練集、驗(yàn)證集和測(cè)試集。訓(xùn)練過(guò)程中,數(shù)據(jù)以批量大小為10輸入,訓(xùn)練結(jié)束獲取每個(gè)礦工的
33個(gè)關(guān)節(jié)點(diǎn)。
2.3 實(shí)驗(yàn)結(jié)果
BlazePose-DPC算法在數(shù)據(jù)集1和數(shù)據(jù)集2上進(jìn)行實(shí)驗(yàn),數(shù)據(jù)集1來(lái)自陜西旬邑青崗坪煤礦,由移動(dòng)設(shè)備錄制,極易出現(xiàn)不穩(wěn)定的狀況。數(shù)據(jù)集2來(lái)自華能慶陽(yáng)煤電核桃峪煤礦,通過(guò)固定監(jiān)控設(shè)備錄制,拍攝時(shí)間較長(zhǎng)、過(guò)程更為完整,容易出現(xiàn)光照不均、遮擋等狀況。
BlazePose-DPC算法在數(shù)據(jù)集1上識(shí)別開(kāi)始幀、執(zhí)行幀、結(jié)束幀,運(yùn)行結(jié)果如圖3所示。可看出當(dāng)?shù)V工準(zhǔn)備卸載鉆桿時(shí),開(kāi)始幀的閾值開(kāi)關(guān)被激活,在卸載鉆桿的過(guò)程中閾值保持不變。當(dāng)鉆桿完全卸載時(shí),激活結(jié)束幀的閾值。這樣就完成了鉆桿卸載的完整周期,模型計(jì)數(shù)加1。
BlazePose-DPC算法在數(shù)據(jù)集2上的運(yùn)行結(jié)果如圖4所示??煽闯鲈谟泄庹沼绊懟蛉宋镲@示不全的場(chǎng)景中,BlazePose-DPC算法依然可以準(zhǔn)確地計(jì)數(shù),在較長(zhǎng)時(shí)間運(yùn)行過(guò)程中,BlazePose-DPC算法依然可以正確計(jì)數(shù),表現(xiàn)出穩(wěn)定的性能。
2.4與其他算法的對(duì)比
為驗(yàn)證BlazePose-DPC算法的性能,與MSTGCN[2] ,Alphapose-LSTM[12],新的時(shí)空?qǐng)D卷積神經(jīng)網(wǎng) 絡(luò)(New Spatial Temporal Graph Convolutional Networks, NST-GCN)[18],Tan[13], Drill-Rep(Repetition Counting for Automatic Short Hole Depth Recognition based on Combined Deep Learning-based Model)[19],Trans RAC(EncodingMulti-Scalee Temporal Correlation with Transformers for Repetitive Action Counting)[20] 等算法 進(jìn)行對(duì)比,結(jié)果見(jiàn)表1??煽闯鯞lazePose-DPC算法 的準(zhǔn)確率較 MST-GCN,Alphapose-LSTM,NST-GCN, Tan,Drill-Rep,TransRAC算法分別提高了 4.4%
為驗(yàn)證BlazePose-DPC模型的輕量化性能,將BlazePose-DPC模型與YOLO系列模型部署在PC端(處理器為Intel(R)Core(TM)i7-10700 CPU @ 2.90 GHz, 2.90GHz ,內(nèi)存為 16.0GiB) ,計(jì)算量和參數(shù)量見(jiàn)表2。可看出模型運(yùn)行的計(jì)算量為 2.7×106~ 6.9×106 ,參數(shù)量為 1.3×106~3.5×106 個(gè),完全可以部署在煤礦井下移動(dòng)終端上,實(shí)現(xiàn)了模型輕量化設(shè)計(jì)。
3結(jié)論
1)BlazePose-DPC算法應(yīng)用礦工更換鉆桿的關(guān)鍵姿態(tài)替代識(shí)別更換鉆桿的整個(gè)過(guò)程,實(shí)現(xiàn)了鉆桿數(shù)量間接估計(jì),避開(kāi)了遮擋、光照干擾,簡(jiǎn)化了模型,保證了鉆機(jī)鉆桿計(jì)數(shù)的準(zhǔn)確率;靈活調(diào)整關(guān)鍵姿態(tài)幀的數(shù)量,算法能夠識(shí)別不同復(fù)雜度的動(dòng)作。模型的體量小,可以方便地部署在煤礦井下移動(dòng)終端設(shè)備上。
2)實(shí)驗(yàn)結(jié)果表明,BlazePose-DPC算法在來(lái)自真實(shí)場(chǎng)景的數(shù)據(jù)集上的準(zhǔn)確率達(dá) 95.5% ,滿足鉆桿計(jì)數(shù)的要求。
3)未來(lái)的工作計(jì)劃將提出的模型與YOLOv8模型進(jìn)行策略融合,用于煤礦井下鉆場(chǎng)里礦工違章行為的檢測(cè)。
參考文獻(xiàn)(References):
[1] 王向前,史策.基于DeepSORT和改進(jìn)YOLOv5的 煤礦井下鉆桿計(jì)數(shù)方法[J].煤炭技術(shù),2024,43(2): 200-204. WANG Xiangqian,SHI Ce.Drill pipe countingmethod based on deepSORT and improved YOLOv5in coal mine underground[J].Coal Technology,2024,43(2): 200-204.
[2] 杜京義,黨夢(mèng)珂,喬磊,等.基于改進(jìn)時(shí)空?qǐng)D卷積神經(jīng) 網(wǎng)絡(luò)的鉆桿計(jì)數(shù)方法[J].工礦自動(dòng)化,2023,49(1): 90-98. DUJingyi,DANG Mengke,QIAO Lei,et al.Drill pipe counting method based on improved spatial-temporal graphconvolution neural network[J].Journal ofMine Automation,2023,49(1):90-98.
[3] 趙偉,張文康,劉德成,等.基于YOLOv5的瓦斯抽采 鉆桿智能計(jì)數(shù)研究[J].河南理工大學(xué)學(xué)報(bào)(自然科學(xué) 版),2025,44(3):81-88. ZHAO Wei,ZHANG Wenkang,LIU Decheng,et al. Research on intelligent counting of gas extraction drill rodsbased on YOLOv5[J]. Journal of Henan Polytechnic University(Natural Science),2025,44(3): 81-88.
[4] CHEN Tiyao, DONG Lihong, SHE Xiangyang. Research on automatic counting of drill pipes for underground gas drainage in coal mines based on YOLOv7-GFCA model[J]. Applied Sciences,2023, 13(18). DOI: 10.3390/app131810240.
[5]LI Xiaojun,LI Miao, ZHAO Mingyang. Object detection algorithm based on improved YOLOv8 for drill pipe on coal mines[J]. Scientific Reports, 2025,15. DOI: 10.1038/S41598-025-89019-8.
[6]董立紅,王杰,厙向陽(yáng).基于改進(jìn)Camshift算法的鉆桿 計(jì)數(shù)方法[J].工礦自動(dòng)化,2015,41(1):71-76.. DONG Lihong,WANG Jie, SHE Xiangyang. Drill countingmethodbasedonimprovedCamshift algorithm[J]. Industry and Mine Automation,2015, 41(1): 71-76.
[7]史策.基于計(jì)算機(jī)視覺(jué)的煤礦井下鉆桿計(jì)數(shù)方法研究 [D].淮南:安徽理工大學(xué),2024.. SHI Ce. Research on the counting method of coal mineunderground drillpipebased oncomputer vision[D]. Huainan: Anhui University of Science and Technology, 2024.
[8]姚超修,胡亞磊.基于視頻識(shí)別的煤礦井下鉆桿計(jì)數(shù) 算法[J].煤炭技術(shù),2023,42(8):203-206. YAO Chaoxiu,HU Yalei. Drilling pipe counting algorithm based on video analysis in coal mine[J].Coal Technology,2023,42(8): 203-206.
[9]李強(qiáng).鉆機(jī)視頻對(duì)講及鉆桿計(jì)數(shù)實(shí)時(shí)監(jiān)控系統(tǒng)的研發(fā) 與應(yīng)用[J].機(jī)械管理開(kāi)發(fā),2017,32(8):123-124. LI Qiang. Research and application of video intercom and drill rig count of the real-time monitoring system[J]. Mechanical Management and Development, 2017, 32(8): 123-124.
[10]鄭付亮.智能化打鉆視頻管理系統(tǒng)在白坪煤礦瓦斯治 理中的應(yīng)用[J].煤礦機(jī)械,2023,44(6):144-147. ZHENG Fuliang.Application of intelligent drilling video management system in gas control of Baiping Coal Mine[J]. Coal Mine Machinery,2023,44(6): 144-147.
[11]張富凱,孫一冉,武旭峰,等.基于深度學(xué)習(xí)的煤礦鉆 桿實(shí)時(shí)計(jì)數(shù)方法[J/OL].煤炭科學(xué)技術(shù):1-12[2024- 06-20].http://kns.cnki.net/kcms/detail/11.2402.TD.2024 0617.1542.006.html. ZHAGN Fukai, SUN Yiran,WU Xufeng,et al. Real time counting method for coal mine drill pipes based on deep learning[J/OL]. Coal Science and Technology: 1- 12[2024-06-20]. http://ns.cnki.net/kcms/detail/11.2402. TD.20240617.1542.006.html.
[12]SHENG Guoyu,YANG Cheng,YANG Bo,et al. A lightweightmodelforhuman-objectinteraction recognition in underground coal mines based on instance segmentation[C」.International Conierence on New Trends in Computational Intelligence,Qingdao,2024: 27-31.
[13]方杰,李振璧,夏亮.基于ECO-HC 的鉆桿計(jì)數(shù)方法 [J].煤炭技術(shù),2021,40(11):186-189. FANG Jie,LI Zhenbi, XIA Liang.Drill pipe counting method based on ECO-HC[J]. Coal Technology,2021, 40(11): 186-189.
[14]WU Jialing,LI Wanyi, CHEN Yimin, et al. A human pose estimation method based on the BlazePose model[J]. Journal of Modern Educational Research, 2024, 3: 21. DOl: 10.53694/jmer.2024021.
[15]MAJI D, NAGORI S,MATHEW M, et al. YOLOpose: enhancing YOLO for multi person pose estimation using object keypoint similarity loss[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops,New Orleans, 2022: 2636-2645.
[16] 衛(wèi)少潔,周永霞.一種結(jié)合 Alphapose 和 LSTM的人 體摔倒檢測(cè)模型[J].小型微型計(jì)算機(jī)系統(tǒng),2019, 40(9):1886-1890. WEI Shaojie, ZHOU Yongxia. Human bodyfall detection model combining alphapose and LSTM[J]. Journal of Chinese Computer Systems, 2019,40(9): 1886-1890.
[17]TAN Tingjiang,GUO Changfang, ZHANG Guohua,et al.Research and application of downhole drilling depth based on computer vision technique[J].Process Safety and Environmental Protection, 2023,174: 531-547.
[18]楊世強(qiáng),李卓,王金華,等.基于新分區(qū)策略的 ST-GCN人體動(dòng)作識(shí)別[J].計(jì)算機(jī)集成制造系統(tǒng), 2023,29(12): 4040-4050. YANG Shiqiang,LI Zhuo,WANG Jinhua,et al. STGCN human action recognition based on new partition strategy[J].ComputerIntegratedManufacturing Systems,2023,29(12):4040-4050.
[19]YU Yongcan, ZHAO Jianhu, YI Changhua, et al. DrilRep: repetition counting for automatic shot hole depth recognition based on combined deep learning-based model[J]. EngineeringApplicationsofArtificial Intelligence,2023,123.DO1: 10.1016/j.engappai.2023. 106302.
[20]HU Huazhang,DONG Sixun,ZHAO Yiqun,et al. TransRAC: encoding multi-scale temporal correlation with transformers for repetitive action counting[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,New Orleans, 2022: 18991-19000.