摘 要:負(fù)泊松比結(jié)構(gòu)的紡織材料因其獨(dú)特的力學(xué)性能,展現(xiàn)出良好的抗剪切性、能量吸收性和斷裂韌性,因此在防護(hù)、傳感以及醫(yī)療領(lǐng)域具有潛在的應(yīng)用價(jià)值。系統(tǒng)討論了國(guó)內(nèi)外負(fù)泊松比結(jié)構(gòu)紡織材料的研究成果,并闡述了其最新進(jìn)展。首先介紹了幾種常見(jiàn)的負(fù)泊松比結(jié)構(gòu)類(lèi)型,并說(shuō)明了這些結(jié)構(gòu)如何在紡織材料中通過(guò)形變來(lái)產(chǎn)生拉脹效果;其次系統(tǒng)概述了負(fù)泊松比結(jié)構(gòu)分別在一維、二維和三維紡織材料中的應(yīng)用以及紡織品結(jié)構(gòu)參數(shù)對(duì)負(fù)泊松比效果的影響;然后歸納整理了負(fù)泊松比結(jié)構(gòu)紡織材料在不同領(lǐng)域的應(yīng)用;最后針對(duì)負(fù)泊松比結(jié)構(gòu)紡織材料在研究中面臨的問(wèn)題和發(fā)展方向進(jìn)行總結(jié)與展望,為推動(dòng)負(fù)泊松比結(jié)構(gòu)紡織材料的進(jìn)一步發(fā)展提供參考。
關(guān)鍵詞:負(fù)泊松比結(jié)構(gòu);紡織材料;負(fù)泊松比結(jié)構(gòu)材料;拉脹效應(yīng);結(jié)構(gòu)形變
中圖分類(lèi)號(hào):TB34
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1009-265X(2025)04-0001-12
收稿日期:20240612
網(wǎng)絡(luò)出版日期:20240923
基金項(xiàng)目:國(guó)家自然科學(xué)基金項(xiàng)目(52273034)
作者簡(jiǎn)介:楊瑞華(1981—),女,河南漯河人,教授,博士,主要從事新型紡紗方面的研究
泊松比的概念最早在1829年由法國(guó)科學(xué)家Evans[1]提出,是描述材料單向受力時(shí)橫向變形與縱向變形關(guān)系的物理常數(shù)。當(dāng)一般傳統(tǒng)材料被拉伸時(shí),垂直拉伸方向會(huì)產(chǎn)生收縮即正泊松比效應(yīng);而新型負(fù)泊松比結(jié)構(gòu)材料則與之相反,當(dāng)其受到某一方向作用力時(shí),垂直于作用力方向會(huì)產(chǎn)生膨脹,這種材料也稱(chēng)為拉脹材料。負(fù)泊松比結(jié)構(gòu)材料不僅具有獨(dú)特的結(jié)構(gòu)特點(diǎn),而且其抗剪切性能、能量吸收性能、斷裂強(qiáng)度都優(yōu)于傳統(tǒng)材料,受到拉伸載荷時(shí)橫向膨脹(壓縮載荷橫向收縮)能夠有效地減緩?fù)饬_擊,具有良好的抗沖擊能力[2]。
自然界中也存在著天然負(fù)泊松比材料但并不多見(jiàn),例如黃銅礦以及人體關(guān)節(jié)處的皮膚,這些天然材料的負(fù)泊松比效應(yīng)大多是由微觀(guān)結(jié)構(gòu)引起的[3]。20世紀(jì)80年代,Lakes[4]首次提出了人造負(fù)泊松比結(jié)構(gòu)材料——具有內(nèi)凹結(jié)構(gòu)的負(fù)泊松比聚氨酯泡沫。此后,人造負(fù)泊松比結(jié)構(gòu)的材料飛速發(fā)展,廣泛應(yīng)用于傳感器[5]、過(guò)濾器[6]、紡織材料[7]、人工假體[8]等多個(gè)領(lǐng)域。
紡織材料的制作方式靈活多變,通過(guò)合理的紗線(xiàn)和織物設(shè)計(jì)能夠巧妙地與負(fù)泊松比結(jié)構(gòu)相結(jié)合而產(chǎn)生拉脹效應(yīng)。同時(shí),紡織材料觸感柔軟且貼合度高,能夠更好地發(fā)揮出負(fù)泊松比效應(yīng)抵御沖擊的優(yōu)勢(shì)?;谝陨咸攸c(diǎn),市面上生產(chǎn)了大量負(fù)泊松比結(jié)構(gòu)的紡織材料,如運(yùn)動(dòng)鞋底及鞋面[9]、醫(yī)用綁帶[10]、背包肩帶[11]等。為了推動(dòng)拉脹紡織材料的進(jìn)一步發(fā)展,許多學(xué)者致力于探究如何在紡織品中獲得更加顯著、穩(wěn)定的拉脹效應(yīng)。為闡明負(fù)泊松比結(jié)構(gòu)紡織材料的研究進(jìn)展,本文分別從一維、二維和三維紡織材料的角度入手進(jìn)行介紹,從結(jié)構(gòu)的方向來(lái)分析各種拉脹織物的拉脹原理,總結(jié)負(fù)泊松比結(jié)構(gòu)紡織材料現(xiàn)存問(wèn)題以及發(fā)展方向,以期為相關(guān)研究提供參考。
1 負(fù)泊松比結(jié)構(gòu)
大量研究發(fā)現(xiàn),負(fù)泊松比的產(chǎn)生機(jī)理與材料自身的尺度無(wú)關(guān),它既可以是材料表現(xiàn)出的宏觀(guān)效應(yīng)也可以是材料內(nèi)部展現(xiàn)的微觀(guān)性質(zhì)[12]。許多學(xué)者建立了一系列結(jié)構(gòu)模型來(lái)解釋負(fù)泊松比產(chǎn)生的機(jī)理,如內(nèi)凹結(jié)構(gòu)[13]、旋轉(zhuǎn)結(jié)構(gòu)[14]、螺旋結(jié)構(gòu)[7]等。
1.1 內(nèi)凹結(jié)構(gòu)
1982年Gibson等[13]對(duì)二維蜂窩結(jié)構(gòu)進(jìn)行了改造并首次提出了二維內(nèi)凹六邊形蜂窩結(jié)構(gòu),如圖1(a)所示。當(dāng)對(duì)該結(jié)構(gòu)施加橫向拉力時(shí),結(jié)構(gòu)中的斜桿受力后使內(nèi)凹角展開(kāi)從而導(dǎo)致結(jié)構(gòu)的縱向?qū)挾仍黾?。然而,具有?nèi)凹形狀的結(jié)構(gòu)并不一定會(huì)產(chǎn)生負(fù)泊松比效應(yīng),只有當(dāng)結(jié)構(gòu)中的內(nèi)凹角足夠大即折疊程度足夠高時(shí)才會(huì)產(chǎn)生負(fù)泊松比效應(yīng)[15]。此外,通過(guò)對(duì)結(jié)構(gòu)的設(shè)計(jì)還能改變常規(guī)內(nèi)凹蜂窩結(jié)構(gòu)的力學(xué)特性,許多學(xué)者基于內(nèi)凹六邊形的變形原理進(jìn)行了改良,研究出了其他內(nèi)凹結(jié)構(gòu),如星型[16]、雙箭頭型[17]和曲邊內(nèi)凹蜂窩型[18]等,結(jié)構(gòu)示意圖如圖1所示。單元之間通過(guò)不同的連接方式還可以構(gòu)成三維內(nèi)凹結(jié)構(gòu),三維內(nèi)凹結(jié)構(gòu)能夠在多個(gè)應(yīng)力方向展現(xiàn)出拉脹效應(yīng)。Evans等[19]首次提出了三維正交內(nèi)凹負(fù)泊松比結(jié)構(gòu),后續(xù)研究發(fā)現(xiàn)支撐體的彎曲對(duì)負(fù)泊松比效應(yīng)起著決定性作用[20]。
1.2 旋轉(zhuǎn)結(jié)構(gòu)
旋轉(zhuǎn)結(jié)構(gòu)的形成采用了剛性和半剛性旋轉(zhuǎn)模型,組成該結(jié)構(gòu)的剛性和半剛性單元通過(guò)鉸鏈、彈簧或兩者的任意組合在頂點(diǎn)處相互連接。當(dāng)結(jié)構(gòu)受到外力作用時(shí),剛體繞頂點(diǎn)進(jìn)行旋轉(zhuǎn),從而導(dǎo)致結(jié)構(gòu)整體的膨脹,圖2為旋轉(zhuǎn)正方形結(jié)構(gòu)在不同旋轉(zhuǎn)角α?xí)r的結(jié)構(gòu)示意圖[14]。該結(jié)構(gòu)模型既可以看作是二維平面結(jié)構(gòu)也可以看作三維結(jié)構(gòu)在某一方向上的投影。最早提出的旋轉(zhuǎn)結(jié)構(gòu)中的剛體為正方形,后來(lái)逐漸將擴(kuò)展為矩形、平行四邊形、三角形等[21]。一般的負(fù)泊松比結(jié)構(gòu)維持拉脹狀態(tài)需要外力的持續(xù)作用,Rafsanjani等[22]受到古代幾何的啟示開(kāi)發(fā)出了一種具有雙穩(wěn)態(tài)負(fù)泊松比結(jié)構(gòu)的力學(xué)超材料,其優(yōu)點(diǎn)在于當(dāng)外力消失后材料仍能維持拉脹狀態(tài)。
1.3 螺旋結(jié)構(gòu)
螺旋結(jié)構(gòu)是由剛性包纏紗和彈性芯紗組成的一種具有負(fù)泊松比效應(yīng)的包纏紗結(jié)構(gòu)[7]。當(dāng)紗線(xiàn)未受外力作用時(shí),芯紗以伸直狀態(tài)被包纏紗均勻螺旋包裹,如圖3(a)所示;而當(dāng)紗線(xiàn)受到拉伸時(shí),由于兩組分之間模量和直徑的差異,隨著力的施加芯紗和包纏紗逐漸產(chǎn)生位置和狀態(tài)的互換,如圖3(b)所示。由于芯紗的直徑大于包纏紗,當(dāng)兩組分轉(zhuǎn)換時(shí)拉脹紗的直徑也隨之增大。受限于變形原理,后續(xù)對(duì)該結(jié)構(gòu)的研究仍然局限于一維紗線(xiàn)的形態(tài)尚未拓展至三維結(jié)構(gòu)。
2 一維負(fù)泊松比紡織材料
通過(guò)設(shè)計(jì)紗線(xiàn)的內(nèi)部結(jié)構(gòu)可以得到負(fù)泊松比紗線(xiàn),最早提出的負(fù)泊松比紗線(xiàn)為包纏紗結(jié)構(gòu)。隨后,學(xué)者們以包纏紗結(jié)構(gòu)為基礎(chǔ)進(jìn)行了改良與優(yōu)化,以期開(kāi)發(fā)出結(jié)構(gòu)穩(wěn)定、負(fù)泊松比效應(yīng)顯著、可規(guī)?;a(chǎn)的負(fù)泊松比紗線(xiàn)。
2009年,Miller等[7]采用高彈纖維為芯紗和高模量纖維為包纏紗首次成功研制了負(fù)泊松比紗線(xiàn),所得紗線(xiàn)的最大負(fù)泊松比值可達(dá)-2.1。然而當(dāng)紗線(xiàn)兩端未被夾持時(shí)包纏組分會(huì)從芯紗退繞導(dǎo)致拉脹結(jié)構(gòu)消失。為了解決這一問(wèn)題,許多學(xué)者從紗線(xiàn)的結(jié)構(gòu)和制備方式上對(duì)紗線(xiàn)進(jìn)行了改進(jìn),如表1所示。Zhang等[23]在兩組分螺旋拉脹紗的基礎(chǔ)上增加了一層橡膠保護(hù)套,以克服紗線(xiàn)失去張力時(shí)包纏組分的滑動(dòng)和纏繞角度變化等問(wèn)題。Liu等[24]開(kāi)發(fā)了一種由一根柔性芯紗和兩根剛性包覆紗組成的交錯(cuò)螺旋拉脹紗,其穩(wěn)定性和拉脹效果均優(yōu)于使用相同材料和初始包纏角的拉脹紗。
此外,改進(jìn)制備方法也能夠優(yōu)化成紗結(jié)構(gòu)。Zhang等[25]開(kāi)發(fā)了一種新型螺旋拉脹紗擠出工藝,該工藝將包纏組分?jǐn)D壓成型并使其螺旋纏繞在芯紗表面,包纏組分保持纏繞形態(tài)冷卻定形從而顯著提高拉脹紗線(xiàn)的結(jié)構(gòu)穩(wěn)定性。Chen等[26]采用空心錠系統(tǒng)來(lái)制備結(jié)構(gòu)穩(wěn)定的螺旋拉脹紗,與環(huán)錠紡制備的拉脹紗相比這種拉脹紗扭應(yīng)力低不易脫散。郭晨宇等[27]在傳統(tǒng)雙長(zhǎng)絲螺旋拉脹紗的基礎(chǔ)上增加了短纖紗組分,在一定程度上限制了拉脹紗的解捻。Ge等[28]開(kāi)發(fā)了編織結(jié)構(gòu)的拉脹紗線(xiàn),編織機(jī)制備的拉脹紗線(xiàn)可以通過(guò)圓盤(pán)轉(zhuǎn)速與卷繞管的轉(zhuǎn)速來(lái)控制紗線(xiàn)扭轉(zhuǎn)速度與程度從而控制拉脹紗線(xiàn)的殘余扭矩。
為了獲得更優(yōu)異的拉脹效應(yīng),Bhattacharya等[29]發(fā)現(xiàn)兩組分紗線(xiàn)之間如果模量差異過(guò)大則會(huì)導(dǎo)致包纏紗嵌入芯紗,從而對(duì)拉脹效應(yīng)產(chǎn)生負(fù)面影響。Du等[30-31]發(fā)現(xiàn)芯絲與包纏絲的直徑比越大、包纏絲的拉伸模量越大、包纏角越小,拉脹效應(yīng)就越明顯。因此,組分間模量和直徑比差異及包纏紗的初始螺旋角是螺旋拉脹紗的重要結(jié)構(gòu)參數(shù)[32]。對(duì)于編織制成的拉脹紗線(xiàn),當(dāng)其具有較低的初始螺旋角、較高的初始編織角和較大的編織紗直徑時(shí),拉脹性能更為優(yōu)越[33]。此外,使用較大模量的包纏紗編織具有較高彈性紗線(xiàn)時(shí)會(huì)產(chǎn)生更強(qiáng)的拉脹效應(yīng),隨著編織紗和編織速度增加,拉脹紗的負(fù)泊松比效果逐漸減弱[34-35]。
基于上述研究可知,學(xué)者們對(duì)負(fù)泊松比紗線(xiàn)的結(jié)構(gòu)和參數(shù)進(jìn)行了優(yōu)化,從而賦予其良好的拉脹性能。然而,負(fù)泊松比紗線(xiàn)在實(shí)際應(yīng)用中仍面臨諸多挑戰(zhàn):1)螺旋纏繞的特殊結(jié)構(gòu)使得拉脹紗的不同組分之間產(chǎn)生殘余扭矩。當(dāng)外界握持力消失時(shí)紗線(xiàn)頭端發(fā)生解捻,進(jìn)而使負(fù)泊松比結(jié)構(gòu)消失,這對(duì)其實(shí)際使用產(chǎn)生了不利影響。目前的改善方法尚未從根源上解決該問(wèn)題。2)拉脹紗的拉脹效應(yīng)依賴(lài)于外界施加的應(yīng)力,因此,如何賦予拉脹紗自驅(qū)動(dòng)特性成為亟待突破的瓶頸。利用濕敏、溫敏等材料制備的拉脹紗有望生成新穎且具有特殊功能的新材料,從而大幅拓寬拉脹紗的應(yīng)用范圍。
3 二維負(fù)泊松比結(jié)構(gòu)紡織材料
目前,實(shí)現(xiàn)織物產(chǎn)生負(fù)泊松比效應(yīng)有兩種方式:一是選擇具有負(fù)泊松比特性的紗線(xiàn)織成織物;二是使用普通紗線(xiàn)并通過(guò)合理的紗線(xiàn)排列方式織造出具有負(fù)泊松比效應(yīng)的二維織物。二維負(fù)泊松比結(jié)構(gòu)材料是通過(guò)負(fù)泊松比單胞(元)結(jié)構(gòu)在X、Y軸方向周期性重復(fù)排列而成,而無(wú)論是機(jī)織物還是針織物都是由紗線(xiàn)按照周期循環(huán)排列所組成,與二維負(fù)泊松比結(jié)構(gòu)材料具有相似性。
3.1 二維針織負(fù)泊松比結(jié)構(gòu)材料
3.1.1 經(jīng)編結(jié)構(gòu)
受到螺旋拉脹紗的啟發(fā),Ugbolue等[36]使用編鏈和襯緯紗構(gòu)建了經(jīng)編拉脹結(jié)構(gòu),如圖4(a)所示。當(dāng)紗線(xiàn)沿軸向拉伸時(shí),襯墊紗在外力作用下伸直從而導(dǎo)致線(xiàn)圈傾斜整體直徑增大達(dá)到拉脹效果。隨后,Ugbolue等[37]又通過(guò)改造傳統(tǒng)的六角網(wǎng)眼結(jié)構(gòu)設(shè)計(jì)出了一種負(fù)泊松比經(jīng)編結(jié)構(gòu),如圖4(b)所示。紗線(xiàn)種類(lèi)、編鏈橫列數(shù)和應(yīng)變程度對(duì)該織物的拉脹效應(yīng)均有影響,其中紗線(xiàn)種類(lèi)的影響程度最大。
雙箭頭負(fù)泊松比結(jié)構(gòu)是基于內(nèi)凹結(jié)構(gòu)改變而得到的,如圖4(c)所示。Alderson等[38]對(duì)針織結(jié)構(gòu)進(jìn)行重組編織出了雙箭頭結(jié)構(gòu)的拉脹織物,該織物沿經(jīng)向±45°的方向拉伸時(shí)負(fù)泊松比值最大。Ma等[39]開(kāi)發(fā)了基于旋轉(zhuǎn)六邊形結(jié)構(gòu)的經(jīng)編織物,基本結(jié)構(gòu)如圖4(d)所示,當(dāng)橫向或縱向拉伸時(shí),該織物能夠恢復(fù)到原始的對(duì)稱(chēng)六邊形形狀,并且隨著旋轉(zhuǎn)程度增加,該織物結(jié)構(gòu)會(huì)更加緊密并表現(xiàn)出更優(yōu)越的拉脹性能。
3.1.2 緯編結(jié)構(gòu)
與經(jīng)編機(jī)和大圓機(jī)相比,橫機(jī)具有更高的工藝靈活性能夠制造更多樣的織物結(jié)構(gòu)?;谪?fù)泊松比結(jié)構(gòu),Hu等[40]使用橫機(jī)設(shè)計(jì)并織造了幾種緯編拉脹織物,實(shí)物圖如圖5所示。首先,Hu利用橫機(jī)的分編能力,沿橫列方向連續(xù)編織各個(gè)矩形單元,并在頂點(diǎn)處連接將其連接,從而形成旋轉(zhuǎn)結(jié)構(gòu)的拉脹織物。然而,矩形單元在施加應(yīng)力時(shí)會(huì)發(fā)生變形,并且穿過(guò)矩形單元的紗線(xiàn)限制了矩形的自由旋轉(zhuǎn),導(dǎo)致實(shí)際負(fù)泊松比值與理論值之間存在顯著差異。隨后,Hu又基于內(nèi)凹結(jié)構(gòu)設(shè)計(jì)了兩種拉脹織物。第一種是真內(nèi)凹結(jié)構(gòu),利用移床和引塔夏技術(shù)織造而成。然而,由于線(xiàn)圈的限制使得其斜桿的變形有限,拉脹效果不明顯且與計(jì)算值相差較大。第二種是假內(nèi)凹結(jié)構(gòu),與前者不同該織物為緊密結(jié)構(gòu),它是利用織物背面彈性浮線(xiàn)的收縮實(shí)現(xiàn)橫桿的傾斜。
3.2 二維機(jī)織負(fù)泊松比結(jié)構(gòu)材料
與針織物相比,機(jī)織物在受到外力作用時(shí)織物內(nèi)的紗線(xiàn)不易因外力而產(chǎn)生滑移變形,其結(jié)構(gòu)在拉伸形變過(guò)程中表現(xiàn)出更高的穩(wěn)定性。此外,拉脹紗在織物中伸直排列時(shí)能產(chǎn)生即時(shí)的、良好的拉脹效應(yīng)。因此,相較于針織物的線(xiàn)圈結(jié)構(gòu),機(jī)織更能開(kāi)發(fā)出拉脹紗所制織物的理想負(fù)泊松比效應(yīng)。Gao等[41]用具有不同包纏角的拉脹紗作為緯紗,尼龍6,6作為經(jīng)紗織造平紋機(jī)織物。通過(guò)實(shí)驗(yàn)和有限元分析,他們發(fā)現(xiàn)織物在平面內(nèi)的拉脹效果很小,但平面外拉脹效果明顯。當(dāng)織物具有較長(zhǎng)的浮絲長(zhǎng)度、較小的經(jīng)紗直徑以及較低的經(jīng)紗拉伸模量時(shí)會(huì)產(chǎn)生較好的拉脹效果[42]。
普通紗線(xiàn)也可以通過(guò)交織規(guī)律的變化制備機(jī)織拉脹織物。當(dāng)織物下機(jī)時(shí)會(huì)產(chǎn)生一定程度的織縮,織縮的程度取決于織物組織中浮線(xiàn)的長(zhǎng)度和緊密程度。只要合理運(yùn)用織縮的效果就能在機(jī)織物中形成內(nèi)凹結(jié)構(gòu)[43-44]和之字形折疊結(jié)構(gòu)[45],從而產(chǎn)生負(fù)泊松比效應(yīng)如圖6所示。Khan等[46]開(kāi)發(fā)了6種不同的二維拉脹機(jī)織物,并對(duì)其熱舒適性、機(jī)械性能和拉脹性能進(jìn)行了測(cè)試分析。結(jié)果表明,浮線(xiàn)長(zhǎng)度較長(zhǎng)且經(jīng)緯紗交織點(diǎn)少的織物展現(xiàn)出良好的拉脹性能、透氣性能和拉伸性能但其吸濕性較差。
綜上所述影響二維負(fù)泊松比結(jié)構(gòu)織物拉脹效應(yīng)的因素有:1)組織結(jié)構(gòu):浮線(xiàn)的長(zhǎng)度與織物的拉脹效果呈正相關(guān),浮線(xiàn)越長(zhǎng)織物的拉脹效果越顯著;2)紗線(xiàn)特性:當(dāng)使用拉脹紗為緯紗時(shí),拉脹紗的包纏角越小,經(jīng)紗模量越低且直徑越小,織物的拉脹效應(yīng)越明顯。在設(shè)計(jì)和制造二維負(fù)泊松比結(jié)構(gòu)織物時(shí),需要仔細(xì)考慮和評(píng)估紗線(xiàn)特性、織物結(jié)構(gòu)設(shè)計(jì)等因素,以實(shí)現(xiàn)材料拉脹性能的最優(yōu)化。由于二維尺度的限制,這類(lèi)織物產(chǎn)生的負(fù)泊松比效應(yīng)大多產(chǎn)生于平面內(nèi),尤其對(duì)于緯編織物,其負(fù)泊松比效應(yīng)的實(shí)現(xiàn)往往以犧牲強(qiáng)度和剛度為代價(jià),而由此帶來(lái)的負(fù)泊松比效應(yīng)的優(yōu)勢(shì)不足以彌補(bǔ)力學(xué)性能的損失。因此,合理利用二維負(fù)泊松比結(jié)構(gòu)織物的優(yōu)點(diǎn)同時(shí)規(guī)避缺點(diǎn)對(duì)于其發(fā)展至關(guān)重要。
4 三維負(fù)泊松比結(jié)構(gòu)紡織材料
與一維和二維負(fù)泊松比紡織材料不同,當(dāng)沿著某一方向?qū)θS織物施加外力時(shí),負(fù)泊松比效應(yīng)不僅可以在織物的平面內(nèi)或平面外產(chǎn)生并且可以存在于單個(gè)或多個(gè)方向上,這種特殊的拉脹效應(yīng)給三維負(fù)泊松比織物帶來(lái)了廣闊的應(yīng)用前景。
4.1 三維針織負(fù)泊松比結(jié)構(gòu)材料
4.1.1 經(jīng)編結(jié)構(gòu)
三維經(jīng)編拉脹材料是在傳統(tǒng)經(jīng)編間隔織物的基礎(chǔ)上改進(jìn)制備的。傳統(tǒng)的經(jīng)編間隔織物由中間間隔紗連接兩個(gè)織物面構(gòu)成,不具備拉脹特性。為賦予其拉脹特性,通過(guò)使用幾何結(jié)構(gòu)學(xué)者們?cè)O(shè)計(jì)了以V形排列的平行四邊形平面幾何形狀。每個(gè)平行四邊形被相鄰平行四邊形的連接點(diǎn)分為六條邊,如圖7所示[12]。該織物在3個(gè)方向上均表現(xiàn)出拉脹特性,沿緯向拉脹效果最好,沿徑向拉脹效果最差。此外,Wang等[47-48]建立幾何模型和半經(jīng)驗(yàn)方程來(lái)探究幾何參數(shù)對(duì)織物泊松比的影響,當(dāng)沿橫列方向延伸時(shí),泊松比僅受長(zhǎng)邊與垂線(xiàn)的夾角(α)影響,而對(duì)于具有特定長(zhǎng)邊長(zhǎng)度和短邊長(zhǎng)度的織物,當(dāng)沿縱行方向延伸時(shí),泊松比僅受短邊與垂線(xiàn)夾角(β)影響。三維經(jīng)編拉脹織物開(kāi)發(fā)的初衷是作為護(hù)膝或頭盔,所以對(duì)其能量吸收性能進(jìn)行了探究,織物在單軸拉伸下的整體能量吸收由結(jié)構(gòu)變形能力和紗線(xiàn)承載能力決定[49]。
Chang等[50]將內(nèi)凹六邊形和旋轉(zhuǎn)結(jié)構(gòu)引入三維經(jīng)編間隔織物,并對(duì)織物在橫向和縱向的拉脹性能進(jìn)行了測(cè)試與分析,如圖8所示。對(duì)于具有內(nèi)凹六邊形的三維經(jīng)編間隔織物,采用雙鏈?zhǔn)骄€(xiàn)跡可在橫向拉伸時(shí)產(chǎn)生拉脹效應(yīng);采用較高剛性的非彈性嵌體可在縱向拉伸下產(chǎn)生拉脹效應(yīng)。此外,以彈性鏈?zhǔn)骄€(xiàn)跡為基礎(chǔ)的旋轉(zhuǎn)方結(jié)構(gòu)拉脹間隔織物在較小的拉伸應(yīng)變范圍內(nèi)展現(xiàn)出拉脹效應(yīng)。
4.1.2 緯編結(jié)構(gòu)
緯編三維負(fù)泊松比織物的結(jié)構(gòu)設(shè)計(jì)主要基于折疊結(jié)構(gòu),亦稱(chēng)為折紙結(jié)構(gòu)[51]。折疊結(jié)構(gòu)的種類(lèi)繁多,包括平行四邊形折疊結(jié)構(gòu)、矩形折疊結(jié)構(gòu)和條紋折疊結(jié)構(gòu)等,形成結(jié)構(gòu)的線(xiàn)圈排列如圖9所示。其中,平行四邊形折疊結(jié)構(gòu)是最早應(yīng)用于三維緯編拉脹織物的結(jié)構(gòu)。
折疊結(jié)構(gòu)在沿某一方向受到載荷時(shí)可以展開(kāi),通過(guò)組合正面線(xiàn)圈和反面線(xiàn)圈可以構(gòu)建出折疊針織結(jié)構(gòu)[40]。在織造過(guò)程中織物處于平面狀態(tài);然而,在織造完成后,正面線(xiàn)圈和反面線(xiàn)圈之間的結(jié)構(gòu)不平衡會(huì)導(dǎo)致織物發(fā)生折疊[52]。在該結(jié)構(gòu)中織物的初始張角對(duì)拉脹效果的影響最為顯著,折疊更緊密的織物能夠?qū)崿F(xiàn)更小的初始張角,并表現(xiàn)出更高的負(fù)泊松比值[53]。Anas等[54]研究了滌綸、棉、尼龍和腈綸四種材料各制備的3種緯編折疊負(fù)泊松比織物,探討了其機(jī)械性能、熱舒適性能以及負(fù)泊松比效應(yīng),如圖10所示。結(jié)果表明,除了尼龍制備的織物外,其余織物均展現(xiàn)出負(fù)泊松比特性。此外,這些織物的負(fù)泊松比受多種因素的影響,包括線(xiàn)圈排列、材料類(lèi)型、紗線(xiàn)表面摩擦、紗線(xiàn)表面滑移和針織結(jié)構(gòu)幾何形狀。研究還發(fā)現(xiàn),尼龍和滌綸紗線(xiàn)制成的拉脹織物在透氣性方面優(yōu)于腈綸和棉,而腈綸拉脹織物則在耐熱性方面表現(xiàn)出更佳的性能。
基于平行四邊形結(jié)構(gòu)的啟發(fā),研究者們開(kāi)發(fā)出了一種具有相似結(jié)構(gòu)的管狀織物,展現(xiàn)出優(yōu)異的拉脹特性[55]。在對(duì)管狀織物進(jìn)行拉伸時(shí),所需打開(kāi)的褶皺數(shù)量越多,所需施加的應(yīng)力也越大,同時(shí)拉脹效果也顯著提升,最大拉伸載荷主要與原料種類(lèi)有關(guān),而織物結(jié)構(gòu)對(duì)其影響相對(duì)較小[56]。
4.2 三維機(jī)織負(fù)泊松比結(jié)構(gòu)材料
三維機(jī)織物是通過(guò)接結(jié)紗將多層織物緊密結(jié)合而形成的。接結(jié)紗將不同層的織物捆綁在一起使得三維機(jī)織物具備優(yōu)良的抗剪切性、穩(wěn)定性和耐沖擊性。因此,三維機(jī)織物在復(fù)合材料領(lǐng)域中備受青睞,而引入拉脹效應(yīng)可以進(jìn)一步提高其機(jī)械性能和能量吸收性能。
Khan等[57]發(fā)現(xiàn),當(dāng)?shù)亟M織的浮線(xiàn)和接結(jié)紗長(zhǎng)度相等且達(dá)到最大時(shí),三維機(jī)織物表現(xiàn)出更優(yōu)越的拉脹效果。隨著地組織和接結(jié)紗浮線(xiàn)長(zhǎng)度差異的增大材料的拉脹效應(yīng)降低。Ullah等[58]開(kāi)發(fā)了3種類(lèi)型的拉脹三維機(jī)織物,包括經(jīng)紗聯(lián)鎖、緯紗聯(lián)鎖和雙向聯(lián)鎖結(jié)構(gòu)。其中,經(jīng)紗聯(lián)鎖結(jié)構(gòu)拉脹性能最好,而雙向聯(lián)鎖結(jié)構(gòu)的拉脹性能最差,經(jīng)紗聯(lián)鎖結(jié)構(gòu)表現(xiàn)出更高的剛度和撕裂強(qiáng)度,織物的拉脹結(jié)構(gòu)對(duì)三維機(jī)織物的機(jī)械性能具有顯著影響。
當(dāng)加入內(nèi)凹六邊形結(jié)構(gòu)時(shí),三維機(jī)織物的拉脹效果得以進(jìn)一步增強(qiáng)[59]。通過(guò)引入彈性紗線(xiàn)來(lái)代替非彈性緯紗,結(jié)構(gòu)的穩(wěn)定性得以提高,如圖11(a)所示。在拉伸張力下,如圖11(b)所示,經(jīng)紗將嘗試變直,并最終推動(dòng)整列接結(jié)紗,從而實(shí)現(xiàn)沿織物寬度方向的負(fù)泊松比效果。通過(guò)建立模型發(fā)現(xiàn),接結(jié)紗的抗壓剛度對(duì)織物的負(fù)泊松比效果具有影響[60]。
綜上所述,紗線(xiàn)的特性對(duì)三維拉脹織物的能量吸收性能和拉脹性能具有顯著影響。部分長(zhǎng)絲由于其無(wú)捻特性和柔軟的性質(zhì),所制備的折疊結(jié)構(gòu)織物無(wú)法實(shí)現(xiàn)收縮從而無(wú)法展現(xiàn)拉脹效應(yīng)。此外,三維拉脹織物的性能高度依賴(lài)織物結(jié)構(gòu)的設(shè)計(jì)以及紗線(xiàn)的力學(xué)性能,經(jīng)紗聯(lián)鎖結(jié)構(gòu)的三維機(jī)織物更適用于增強(qiáng)復(fù)合材料,而折疊結(jié)構(gòu)的三維針織物具有更好的服用性能但結(jié)構(gòu)穩(wěn)定性較差。三維拉脹針織物通常在沿縱行和橫列方向拉伸時(shí)均具有拉脹效應(yīng)但當(dāng)單元尺寸變化時(shí)負(fù)泊松比值不同。三維緯編拉脹織物紗線(xiàn)材料選擇范圍廣、生產(chǎn)便利、穿著舒適性高,但是其強(qiáng)度、防護(hù)性能以及結(jié)構(gòu)穩(wěn)定性不如經(jīng)編間隔拉脹織物和三維機(jī)織物,將兩者優(yōu)點(diǎn)相結(jié)合開(kāi)發(fā)出新織物將是推動(dòng)三維拉脹織物發(fā)展的有效途徑。
5 應(yīng)用
5.1 傳感領(lǐng)域
電容式應(yīng)變傳感器的靈敏度提升一直受到限制,主要是由于傳感器的電響應(yīng)由電容器的幾何形狀和材料的電響應(yīng)決定[61]。大部分材料在拉伸時(shí)表現(xiàn)出正泊松比,這導(dǎo)致電容器元件的面積增加始終小于施加的應(yīng)變量,而負(fù)泊松比結(jié)構(gòu)的紡織材料很好地彌補(bǔ)了這一缺點(diǎn)。Cuthbert等[61]將螺旋拉脹紗制備成了電容傳感器,成功突破了傳感器靈敏度的極限。Hannigan等[62]不僅利用螺旋拉脹紗的拉脹效應(yīng)實(shí)現(xiàn)了比傳統(tǒng)電容式應(yīng)變傳感器更高的靈敏度,還通過(guò)調(diào)整螺距來(lái)實(shí)現(xiàn)局部傳感。Wu等[63]設(shè)計(jì)和制造了一種雙螺旋拉脹紗線(xiàn)傳感器并將其應(yīng)用于手勢(shì)翻譯手套,該傳感器具有-1.5的泊松比、優(yōu)異的機(jī)械性能和快速的列車(chē)阻力響應(yīng)性。其獨(dú)特的負(fù)泊松比結(jié)構(gòu)增強(qiáng)了與人體的貼合性,并能夠?qū)⑷梭w關(guān)節(jié)處的彎曲和伸展快速轉(zhuǎn)換為電信號(hào)。
5.2 醫(yī)療領(lǐng)域
由于大多數(shù)人體組織都表現(xiàn)出與負(fù)泊松比效應(yīng)相似的特質(zhì),以負(fù)泊松比結(jié)構(gòu)紡織材料為基礎(chǔ)的生物材料在醫(yī)學(xué)工程領(lǐng)域具有廣泛的應(yīng)用[64]。例如,采用負(fù)泊松比結(jié)構(gòu)的智能繃帶能夠有效攜帶促進(jìn)傷口愈合的藥物,隨著傷口的愈合和腫脹的消退,繃帶的孔隙最終會(huì)自行閉合從而停止藥物的釋放[65]。當(dāng)沿縱向拉伸緯編拉脹織物時(shí),織物橫向尺寸會(huì)相應(yīng)增加,這一特性與心臟的收縮機(jī)制相符,同時(shí)織物的橫向剛度高于縱向剛度,進(jìn)一步模擬了天然心臟的生物力學(xué)特性[64]。Deshpande等[66]開(kāi)發(fā)了兩種可吸收且具有負(fù)泊松比效應(yīng)的聚己內(nèi)酯緯編支架。這些支架通過(guò)增加總體積以及縱向拉伸時(shí)不發(fā)生橫向收縮來(lái)展現(xiàn)出其獨(dú)特的力學(xué)性,這種結(jié)構(gòu)特點(diǎn)可以為骨骼肌再生的細(xì)胞生長(zhǎng)提供定向的機(jī)械支撐從而在治療顱面畸形方面顯示出良好的應(yīng)用前景。
5.3 防護(hù)領(lǐng)域
目前大部分的防護(hù)材料不僅堅(jiān)硬而且笨重,而拉脹紡織材料則能夠在提供相同級(jí)別的保護(hù)的同時(shí)體積更小、重量更輕、觸感更柔軟[67]。Szurgott等[68]測(cè)試了拉脹平紋織物在丙烷-空氣混合條件下的爆炸能量吸收性能,結(jié)果表明拉脹織物通過(guò)彈性變形有效吸收了氣體爆炸所產(chǎn)生的壓力脈沖。拉脹紡織品可以實(shí)現(xiàn)同向彎曲曲率,這使得其更加貼合人體解剖學(xué)的曲面(例如護(hù)膝、頭盔)[69]。三維拉脹經(jīng)編織物能夠替代頭盔、護(hù)肩和護(hù)膝等防護(hù)裝備中的泡沫,織物表現(xiàn)出極好的貼合物體形狀的能力,并且在受到?jīng)_擊時(shí)具有更高的能量吸收率[70]。Sun等[71]使用Kevlar紗線(xiàn)制備了基于菱形網(wǎng)格結(jié)構(gòu)的三維緯編拉脹織物,并測(cè)試了其準(zhǔn)靜態(tài)載荷下的抗刺穿性,結(jié)果表明其性能優(yōu)于平紋緯編織物。以上研究結(jié)果表明,負(fù)泊松比結(jié)構(gòu)的紡織材料具有向防護(hù)裝備發(fā)展的潛力。
6 總結(jié)與展望
本文介紹了由不同原材料、結(jié)構(gòu)和生產(chǎn)方法制備的拉脹紗線(xiàn)、拉脹機(jī)織物和拉脹針織物,并總結(jié)了影響拉脹紗、拉脹機(jī)織物和拉脹針織物負(fù)泊松比值的關(guān)鍵因素,主要得出以下結(jié)論:
a)負(fù)泊松比結(jié)構(gòu)紡織材料因其獨(dú)特的力學(xué)性質(zhì),在防護(hù)、醫(yī)療、傳感、體育等領(lǐng)域展現(xiàn)出廣闊的應(yīng)用前景。然而,不同的應(yīng)用場(chǎng)景對(duì)負(fù)泊松比的要求各不相同。對(duì)于拉脹紗線(xiàn),其組分模量、直徑以及初始包纏角均會(huì)影響拉脹效應(yīng);對(duì)于拉脹織物,紗線(xiàn)的機(jī)械性能、排列方式及結(jié)構(gòu)設(shè)計(jì)等因素同樣會(huì)對(duì)拉脹效應(yīng)產(chǎn)生顯著影響。因此,亟需針對(duì)拉脹紡織品的力學(xué)性能進(jìn)行系統(tǒng)的理論計(jì)算以及建立科學(xué)的數(shù)學(xué)模型,以便在制造產(chǎn)品時(shí)更加精準(zhǔn)地滿(mǎn)足特定需求。
b)為了提高拉脹紡織品的性能以及使應(yīng)用領(lǐng)域多元化,可以利用紡織品對(duì)所用材料的包容性,將負(fù)泊松比結(jié)構(gòu)紡織品與具有熱管理、濕敏、自驅(qū)動(dòng)性能等材料結(jié)合創(chuàng)造出更加新穎的材料,從而推動(dòng)拉脹紡織材料向智能化發(fā)展。
c)由于負(fù)泊松比結(jié)構(gòu)和紡織品的特性,負(fù)泊松比結(jié)構(gòu)的紡織材料通常具有較高的孔隙率。這一特點(diǎn)既是優(yōu)點(diǎn)也是缺陷,孔隙的存在使得材料在滲透、過(guò)濾等應(yīng)用中具備優(yōu)勢(shì),但同時(shí)也可能降低其強(qiáng)度。因此,如何做到在保持拉脹效應(yīng)的情況下彌補(bǔ)力學(xué)性能的損失需要進(jìn)一步的探索。
綜上所述,關(guān)于負(fù)泊松比結(jié)構(gòu)的紡織材料研究已相對(duì)豐富,并展現(xiàn)出廣闊的應(yīng)用前景,但目前仍處于理論與實(shí)驗(yàn)研究階段,能夠?qū)嶋H應(yīng)用的產(chǎn)品仍十分稀少。所以,如何把負(fù)泊松比結(jié)構(gòu)紡織材料的優(yōu)勢(shì)和實(shí)際應(yīng)用的需求有機(jī)結(jié)合,成為當(dāng)前發(fā)展的關(guān)鍵問(wèn)題。
參考文獻(xiàn):
[1]EVANS K E, NKANSAH M A, HUTCHINSON I J, et al. Molecular network design[J]. Nature, 1991, 353(6340): 124.
[2]李思明, 胡雨潔, 方鎂淇, 等. 具有形狀記憶功能的負(fù)泊松比結(jié)構(gòu)材料的研究進(jìn)展[J]. 服裝學(xué)報(bào), 2020, 5(4): 290-299.
LI Siming, HU Yujie, FANG Meiqi, et al. Research progress of negative Poisson's ratio structures and materials with memory function[J]. Journal of Clothing Research, 2020, 5(4): 290-299.
[3]LOVE A E H. A Treatise on the Mathematical Theory of Elasticity [M]. United Kingdom: Cambridge university press, 2013.
[4]LAKES R. Foam structures with a negative Poisson's ratio[J]. Science, 1987, 235(4792): 1038-1040.
[5]CUTHBERT T J, HANNIGAN B C, ROBERJOT P, et al. HACS: helical auxetic yarn capacitive strain sensors with sensitivity beyond the theoretical limit[J]. Advanced Materials, 2023, 35(10): 2209321.
[6]ALDERSON A, RASBURN J, AMEER-BEG S, et al. An auxetic filter: A tuneable filter displaying enhanced size selectivity or defouling properties[J]. Industrial amp; Engineering Chemistry Research, 2000, 39(3): 654-665.
[7]劉賽,陳浩宇,田偉,等.導(dǎo)電負(fù)泊松比紗的制備和性能[J].浙江理工大學(xué)學(xué)報(bào)(自然科學(xué)),2023,49(4):415-419.
LIU Sai ,CHEN Haoyu ,TIAN Wei,et al. Preparation and property of conductive yarns with negative Poisson's ratio[J]. Journal of Zhejiang Sci-Tech University(Natural Sciences),2023,49(4):415-419.
[8]SCARPA F. Auxetic materials for bioprostheses[J]. IEEE Signal Processing Magazine, 2008, 25(5): 128-126.
[9]伊麗莎白·蘭格文. 具有拉脹結(jié)構(gòu)的雙層鞋底系統(tǒng): CN108778021B [P]. 2021-04-06.
ELIZABETH L. Double layer sole system with auxetic structure: CN108778021B [P]. 2021-04-06.
[10]鄧雄李, 莫漢庫(kù)馬·克里希南·瓦利婭姆博特, 羅賓·耀, 等. 由織物結(jié)構(gòu)形成并包括加硬部分以提供定制的患者接口: CN115175719A[P]. 2022-10-11.
DENG X L, MOHANKUMA K V, ROBIN Y, et al. Formed from a fabric structure and including reinforced parts to provide customized patient interfaces: CN115175719A[P]. 2022-10-11.
[11]顏茹玉. 新型具有拉脹材料內(nèi)襯的雙肩背包肩帶: CN107713294A[P]. 2018-02-23.
YAN Ruyu. A new type of backpack shoulder strap with auxetic material lining: CN107713294A[P]. 2018-02-23.
[12]WANG Z, HU H. 3D auxetic warp-knitted spacer fabrics[J]. Physica Status Solidi (b), 2014, 251(2): 281-288.
[13]GIBSON M F A, SCHAJER G S, ROBERTSON C I. The mechanics of two-dimensional cellular materials[J]. Royal Society, 1982, 382: 35-42.
[14]DOBNIK DUBROVSKI P, NOVAK N, BOROVINó?EK M, et al. In-plane behavior of auxetic non-woven fabric based on rotating square unit geometry under tensile load[J]. Polymers, 2019, 11(6): 1040.
[15]WANG Y C, SHEN M W, LIAO S M. Microstructural effects on the Poisson's ratio of star-shaped two-dimen-sional systems (phys. status solidi B12/2017)[J]. Physica Status Solidi (b), 2017, 254(12): 1770264.
[16]THEOCARIS P S, STAVROULAKIS G E, PANAGIOTOPOULOS P D. Negative Poisson's ratios in composites with star-shaped inclusions: A numerical homogenization approach[J]. Archive of Applied Mecha-nics, 1997, 67(4): 274-286.
[17]LARSEN U D, SIGNUND O, BOUWSTA S. Design and fabrication of compliant micromechanisms and structures with negative Poisson's ratio[J]. Journal of Microelectro-mechanical Systems, 1997, 6(2): 99-106.
[18]蔣偉, 馬華, 王軍, 等. 基于環(huán)形蜂窩芯結(jié)構(gòu)的負(fù)泊松比機(jī)械超材料[J]. 科學(xué)通報(bào), 2016, 61(13): 1421-1427.
JIANG Wei, MA Hua, WANG Jun, et al. Mechanical metamaterial with negative Poisson's ratio based on circu-lar honeycomb core[J]. Chinese Science Bulletin, 2016, 61(13): 1421-1427.
[19]EVANS K E, NKANSAH M A, HUTCHINSON I J. Auxetic foams: Modelling negative Poisson's ratios[J]. Acta Metallurgica et Materialia, 1994, 42(4): 1289-1294.
[20]WANG X T, WANG B, LI X W, et al. Mechanical properties of 3D re-entrant auxetic cellular structures[J]. International Journal of Mechanical Sciences, 2017, 131: 396-407.
[21]GRIMA J N, EVANS K E. Auxetic behavior from rotating squares[J]. Journal of Materials Science Letters, 2000, 19(17): 1563-1565.
[22]RAFSANJANI A, PASINI D. Bistable auxetic mechanical metamaterials inspired by ancient geometric motifs[J]. Extreme Mechanics Letters, 2016, 9: 291-296.
[23]ZHANG G H, GHITA O, EVANS K E. The fabrication and mechanical properties of a novel 3-component auxetic structure for composites[J]. Composites Science and Technology, 2015, 117: 257-267.
[24]LIU S, DU Z, XIE K, et al. A novel interlaced-helical wrapping yarn with negative Poisson's ratio[J]. Fibers and Polymers, 2018, 19(11): 2411-2417.
[25]ZHANG G, GHITA O R, LIN C, et al. Large-scale manufacturing of helical auxetic yarns using a novel semi-coextrusion process[J]. Textile Research Journal, 2018, 88(22): 2590-2601.
[26]CHEN J, DU Z. Structural design and performance characterization of stable helical auxetic yarns based on the hollow-spindle covering system[J]. Textile Research Journal, 2020, 90(3/4): 271-281.
[27]郭晨宇. 三組分環(huán)錠紡負(fù)泊松比紗的制備及性能研究[D]. 無(wú)錫:江南大學(xué),2023.
GUO Chenyu. Preparation and Performance Study of Yarn Properties of Negative Poisson's Ratio with Three Compo-nents Based on Ring Spinning[D].Wuxi: Jiangnan University, 2023.
[28]GE Z, HU H, LIU S. A novel plied yarn structure with negative Poisson's ratio[J]. The Journal of the Textile Institute, 2016, 107(5): 578-588.
[29]BHATTACHARYA S, ZHANG G H, GHITA O, et al. The variation in Poisson's ratio caused by interactions between core and wrap in helical composite auxetic yarns[J]. Composites Science and Technology, 2014, 102: 87-93.
[30]DU Z, ZHOU M, HE L, et al. Study on negative Poisson's ratio of auxetic yarn under tension: Part 2: Experimental verification[J]. Textile Research Journal, 2015, 85(7): 768-774.
[31]DU Z, ZHOU M, LIU H, et al. Study on negative Poisson's ratio of auxetic yarn under tension: Part 1-Theoretical analysis[J]. Textile Research Journal, 2015, 85(5): 487-498.
[32]劉賽. 負(fù)泊松比紗線(xiàn)的結(jié)構(gòu)成形與拉脹機(jī)理建模研究[D]. 上海: 東華大學(xué), 2019.
LIU Sai. Study on Structure Forming and Bulging Mechanism Modeling of Negative Poisson's Ratio Yarn[D]. Shanghai: Donghua University, 2019.
[33]JIANG N, HU H. A study of tubular braided structure with negative Poisson's ratio behavior[J]. Textile Research Journal, 2018, 88(24): 2810-2824.
[34]SHAH A, SHAHID M, HARDY J, et al. Effects of braid angle and material modulus on the negative Poisson's ratio of braided auxetic yarns[J]. Crystals, 2022, 12(6): 781.
[35]DU Z, HE L, LIU Z. Design, preparation and characterization of braiding auxetic yarns with a high negative Poisson's ratio[J]. Textile Research Journal, 2024, 94(1/2): 82-89.
[36]UGBOLUE S C, KIM Y K, WARNER S B, et al. The formation and performance of auxetic textiles. Part I: Theoretical and technical considerations[J]. Journal of the Textile Institute, 2010, 101(7): 660-667.
[37]UGBOLUE S C, KIM Y K, WARNER S B, et al. The formation and performance of auxetic textiles. Part II: Geometry and structural properties[J]. Journal of the Textile Institute, 2011, 102(5): 424-433.
[38]ALDERSON K, ALDERSON A, ANAND S, et al. Auxetic warp knit textile structures[J]. Physica Status Solidi (b), 2012, 249(7): 1322-1329.
[39]MA P, CHANG Y, JIANG G. Design and fabrication of auxetic warp-knitted structures with a rotational hexagonal loop[J]. Textile Research Journal, 2016, 86(20): 2151-2157.
[40]HU H, WANG Z, LIU S. Development of auxetic fabrics using flat knitting technology[J]. Textile Research Journal, 2011, 81(14): 1493-1502.
[41]GAO Y, CHEN X. A study of woven fabrics made of helical auxetic yarns[J]. Applied Composite Materials, 2022, 29(1): 109-119.
[42]GAO Y, CHEN X. Finite element analysis study of parameters influencing the Poisson's ratio of auxetic woven fabrics[J]. Textile Research Journal, 2024, 94(7/8): 886-905.
[43]KAMRUL H, ZULIFQAR A, HU H. Deformation behavior of auxetic woven fabric based on re-entrant hexagonal geometry in different tensile directions[J]. Textile Research Journal, 2020, 90(3/4): 410-421.
[44]ALI M, ZEESHAN M, QADIR M B, et al. Development and mechanical characterization of weave design based 2D woven auxetic fabrics for protective textiles[J]. Fibers and Polymers, 2018, 19(11): 2431-2438.
[45]ZULIFQAR A, HUA T, HU H. Single-and double-layered bistretch auxetic woven fabrics made of nonauxetic yarns based on foldable geometries[J]. Physica Status Solidi (b), 2020, 257(10): 1900156.
[46]KHAN R M, HUSSAIN M, NAWAB Y, et al. Influence of tetrahedral architectures on fluid transmission and heat retention behaviors of auxetic weaves[J]. Thermal Science and Engineering Progress, 2023, 42: 101946.
[47]WANG Z, HU H, XIAO X. Deformation behaviors of three-dimensional auxetic spacer fabrics[J]. Textile Research Journal, 2014, 84(13): 1361-1372.
[48]WANG Z, HU H. Tensile and forming properties of auxetic warp-knitted spacer fabrics[J]. Textile Research Journal, 2017, 87(16): 1925-1937.
[49]CHANG Y, MA P. Energy absorption and Poisson's ratio of warp-knitted spacer fabrics under uniaxial tension[J]. Textile Research Journal, 2019, 89(6): 903-913.
[50]CHANG Y, LIU Y, ZHAO S, et al. Design and manufacture of three-dimensional auxetic warp-knitted spacer fabrics based on re-entrant and rotating geometries[J]. Textile Research Journal, 2022, 92(3/4): 467-478.
[51]CHANG Y, HU H. 3D fabrics with negative Poisson's ratio: A review[J]. Applied Composite Materials, 2022, 29(1): 95-108.
[52]LIU Y, HU H, LAM J K C, et al. Negative Poisson's ratio weft-knitted fabrics[J]. Textile Research Journal, 2010, 80(9): 856-863.
[53]宋曉霞, 陳秀玲. 基于折疊結(jié)構(gòu)的負(fù)泊松比緯編針織物設(shè)計(jì)[J]. 服裝學(xué)報(bào), 2023, 8(1): 37-41.
SONG Xiaoxia, CHEN Xiuling. Design of weft knitted fabric with negative Poisson's ratio based on folded structure[J]. Journal of Clothing Research, 2023, 8(1): 37-41.
[54]ANAS M S, AWAIS H, ALI HAMDANI S T, et al. Investigating the thermo-physiological comfort properties of weft-knitted smart structures having a negative Poisson's ratio[J]. Advances in Materials Science and Engineering, 2022, 1: 1896634.
[55]BOAKYE A, CHANG Y, RAFIU K R, et al. Design and manufacture of knitted tubular fabric with auxetic effect[J]. The Journal of the Textile Institute, 2018, 109(5): 596-602.
[56]YANG T, MA Y, LIU S, et al. Characterization of negative Poisson's ratio of two/three dimensional auxetic knitted fabric with PET/PA/cotton from folded structures[J]. The Journal of the Textile Institute, 2023,3: 1-9.
[57]KHAN M I, AKRAM J, UMAIR M, et al. Development of composites, reinforced by novel 3D woven orthogonal fabrics with enhanced auxeticity[J]. Journal of Industrial Textiles, 2019, 49(5): 676-690.
[58]ULLAH T, HUSSAIN M, ALI M, et al. Auxetic behavior of 3D woven warp, weft, and bidirectional interlock structures[J]. Journal of Natural Fibers, 2023, 20(1):1322.
[59]ZEESHAN M, HU H, ZULIFQAR A. Three-dimensional narrow woven fabric with in-plane auxetic behavior[J]. Textile Research Journal, 2022, 92(23/24): 4695-4708.
[60]ZEESHAN M, HU H, ETEMADI E. Geometric analysis of three-dimensional woven fabric with in-plane auxetic behavior[J]. Polymers, 2023, 15(5): 1326.
[61]CUTHBERT T J, HANNIGAN B C, ROBERJOT P, et al. HACS: helical auxetic yarn capacitive strain sensors with sensitivity beyond the theoretical limit[J]. Advanced Materials, 2023, 35(10): 2209321.
[62]HANNIGAN B C, CUTHBERT T J, AHMADIZADEH C, et al. Distributed sensing along fibers for smart clothing[J]. Science Advances, 2024, 10(12): 9708.
[63]WU R, SEO S, MA L, et al. Full-fiber auxetic-interlaced yarn sensor for sign-language translation glove assisted by artificial neural network[J]. Nano-Micro Letters, 2022, 14(1): 139.
[64]JIAO Y, LI C, LIU L, et al. Construction and application of textile-based tissue engineering scaffolds: A review[J]. Biomaterials Science, 2020, 8(13): 3574-3600.
[65]ALDERSON K L, WEBBER R S, KETTLE A P, et al. Novel fabrication route for auxetic polyethylene. Part 1. Processing and microstructure[J]. Polymer Engineering amp; Science, 2005, 45(4): 568-578.
[66]DESHPANDE M V, WEST A J, BERNACKI S H, et al. Poly(ε-caprolactone) resorbable auxetic designed knitted scaffolds for craniofacial skeletal muscle regeneration[J]. Bioengineering, 2020, 7(4): 134.
[67]SHUKLA S, SHARMA J, SINGH O, et al. Auxetic textiles, composites and applications[J]. Textile Progress, 2024, 56(3): 323-414.
[68]SZURGOTT P, KLASZTORNY M, NIEZGODA T, et al. Dynamic tests for energy absorption by selected auxetic fabrics[J]. Journal of Engineered Fibers and Fabrics, 2017, 12(4): 155892501701200.
[69]WANG Z, HU H. 3D auxetic warp-knitted spacer fabrics[J]. Physica Status Solidi (b), 2014, 251(2): 281-288.
[70]CHANG Y, MA P, JIANG G. Energy absorption property of warp-knitted spacer fabrics with negative Possion's ratio under low velocity impact[J]. Composite Structures, 2017, 182: 471-477.
[71]SUN Y, XU W, WEI W, et al. Stab-resistance of auxetic weft-knitted fabric with Kevlar fibers at quasi-static loading[J]. Journal of Industrial Textiles, 2021, 50(9): 1384-1396.
Research progress of textile materials with negative Poisson's ratio
YANG Ruihua, HUA Yuzhu
(College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China)
Abstract: Textile materials with negative Poisson's ratio structures have excellent shear resistance, energy absorption, and fracture resistance, and they are cost-effective compared to other materials with negative Poisson's ratio structures. Therefore, the auxetic textile materials have aroused the interest of many scholars. To further promote the research and application of textile materials with negative Poisson's ratio, this article systematically introduces the different auxetic principles of one-dimensional, two-dimensional, and three-dimensional auxetic textile materials and summarizes their existing problems.
The research on auxetic yarns with a negative Poisson's ratio is based on the helical structure core-spun yarn, and the auxetic effect is achieved by the position exchange between components in the yarn. Its production equipment mainly includes ring spinning machines, weaving machines, hollow spindle, or simple wrapping mechanisms. Due to the influence of the helical structure, the end of the auxetic yarns is prone to untwisting and deformation, resulting in the loss of the auxetic effect. To solving this problem, it is necessary to develop more novel structures and preparation methods. There are two main ways for two-dimensional fabrics to produce auxetic effects: one is to weave fabrics with yarns with a negative Poisson's ratio; the other is to use ordinary yarns and choose appropriate yarn arrangement to weave two-dimensional fabrics with negative Poisson's ratio effect. As the yarn with a negative Poisson's ratio needs to be arranged straight in the fabric to produce a good auxetic effect, it is only applied in auxetic woven fabrics. In addition, knitted fabrics can achieve different negative Poisson's ratio structures through flexible yarn arrangement. The negative Poisson's ratio structures formed are mostly concave and rotating structures. Therefore, when designing and manufacturing two-dimensional fabrics with a negative Poisson's ratio, it is necessary to carefully consider and evaluate factors such as yarn properties and fabric structure design in order to develop optimal auxetic performance for the textile materials. Three-dimensional fabrics are very popular in composite materials, and the addition of auxetic effect further improves the mechanical properties and energy absorption performance of 3D fabrics. Different from the previous two textile materials, three-dimensional auxetic fabrics can produce auxetic effects both inside and outside the plane. Warp knitted three-dimensional auxetic fabrics typically use concave and rotating structures; the three-dimensional auxetic knitted fabric is mainly characterized by the folding structure; the three-dimensional woven auxetic fabric utilizes binder yarns to form a negative Poisson's ratio structure.
In recent years, despite the numerous studies on negative Poisson's ratio textile materials and their extensive potential applications, the exploration of these materials has remained focused on the basic protective properties. Few studies have successfully combined their advantages with other fields and put them into practical use. In addition, integrating the advantages of negative Poisson's ratio textiles into practical production for rational product design is also a bottleneck that needs to be overcome. For example, if special properties such as self-driving, sensing, and thermal management can be endowed to auxetic textiles, it will greatly broaden their development path. In summary, the development of auxetic textiles should focus on exploring new application areas and practical applications.
Keywords: negative Poisson's ratio structure; textile materials; negative Poisson's ratio structure materials; auxetic effect; structure deformation