名師原創(chuàng)
已知,如圖1,⊙O是直角三角形ABC的外接圓,直徑AB = 13,弦BC = 12,∠CAB = ∠CBD,點D在圓周上且與點C在直徑AB的兩側(cè).
(1)填空:△BCD是 三角形.
(2)連接DA,M是DA延長線上一動點,連接CM,當CM是⊙O的切線時,回答下列問題:
①求證:AC平分∠MAB;
②判斷CM與BD的關系,并說明理由;
③求線段AM的長.
思路點撥
解:(1)∵[BC=BC],
∴∠CAB = ∠CDB.
∵∠CAB = ∠CBD,∴∠CBD = ∠CDB,
∴CD = BC,
∴△BCD是等腰三角形.
(2)①證明:∵四邊形ADBC為圓內(nèi)接四邊形,
∴∠CAD + ∠CBD = 180°.
∵∠MAC + ∠CAD = 180°,
∴∠MAC = ∠CBD.
∵∠CAB = ∠CBD,
∴∠MAC = ∠CAB,
∴AC平分∠MAB.
②CM [?] BD,BD = 2CM.
理由如下:
如圖2,連接OC,OD.
∵OC = OA,
∴∠OCA = ∠OAC.
∵由①可知,∠MAC = ∠CAB,
∴∠MAC = ∠OCA.
∵在△ACO中,∠OCA + ∠OAC + ∠COA = 180°,
∴∠MAC + ∠OAC + ∠COA = 180°,
∴∠MAO + ∠AOC = 180°,
∴AM [?] OC.
∵CM是⊙O的切線,
∴∠OCM = 90°.
∵AM [?] OC,
∴∠OCM + ∠M = 180°,
∴∠M = 90°.
∵AB為直徑,
∴∠ADB = 90°,
∴∠M + ∠ADB = 180°,
∴MC [?] BD.
延長CO交BD于點E.
∵∠OCM = 90°,∠M = 90°,∠ADB = 90°,
∴四邊形MCED為矩形,
∴CM = DE.
由①得CD = CB,
又∵OD = OB,∴CO垂直平分BD,
∴DE = EB,
∴BD = 2DE,
∴BD = 2CM.
③解:在Rt△ABC中,BC = 12,AB = 13,
∴AC = [AB2-BC2=132-122=5].
∵∠MAC = ∠BAC,∠MAC + ∠MCA = 90°,∠BAC + ∠ABC = 90°,
∴∠MCA = ∠ABC,
∴sin ∠MCA = sin ∠ABC,
∴[AMAC=ACAB] ,
∴[AM5=513] ,
∴AM = [2513] .