摘要:通過探究吉林省通化地區(qū)南芬組的沉積環(huán)境,為華北地臺(tái)北緣提供新元古代大氧化事件的證據(jù)支撐。以新元古代南芬組泥灰?guī)r和頁巖為研究對(duì)象,應(yīng)用巖石學(xué)、地球化學(xué)和同位素地球化學(xué)研究方法,探討了南芬組物源區(qū)構(gòu)造背景、南芬組沉積時(shí)海水的氧化還原程度及其對(duì)新元古代大氧化事件的響應(yīng)。研究表明:南芬組由紫色和黃綠色頁巖、紫色和黃綠色泥灰?guī)r組成,具有海相沉積特征。對(duì)沉積物氧化還原環(huán)境特征具有指示意義的Ni/Co、V/Cr、V/(V+Ni)值和Mo元素組成及總有機(jī)碳質(zhì)量分?jǐn)?shù)等均顯示南芬組沉積時(shí)水體環(huán)境為氧化環(huán)境;南芬組早期具有氧化程度波動(dòng)變化的特征,晚期氧化程度保持穩(wěn)定并有減弱趨勢(shì)。綜上認(rèn)為,華北地臺(tái)北緣發(fā)生了新元古代大氧化事件,并與華南新元古代大氧化事件有良好的響應(yīng)。
關(guān)鍵詞:通化地區(qū);南芬組;地球化學(xué);新元古代;大氧化事件
doi:10.13278/j.cnki.jjuese.20230218
中圖分類號(hào):P59;P588.2
文獻(xiàn)標(biāo)志碼:A
Response of Geochemical Characteristics to Neoproterozoic Great Oxidation Event from Nanfen Formation in Tonghua Area
Gong Hui, Gao Fuhong, Jia Xiaoyu
College of Earth Science,Jilin University,Changchun 130061,China
Abstract:
In order to provide evidence for the Neoproterozoic great oxidation event on the northern margin of the North China craton, this paper investigates the sedimentary environment of the Nanfen Formation in Tonghua area. Petrology, geochemistry, and isotope geochemistry have been used on marlstones and shales to explore the tectonic setting, the degree of oxidation and reduction, and its response to the Neoproterozoic great oxidation event. The results show that the Nanfen Formation is composed of purple and yellow-green shales and marlstones, with marine sedimentary characteristics. Ni/Co ratio, V/Cr ratio, V/(V+Ni) ratio,
Mo content, and total organic carbon content indicate that the sedimentary environment was oxidized during the forming period of Nanfen Formation. The oxidation degree of the Nanfen Formation fluctuated in the early evolutionary stage, and remained stable in the late stage. This proves that the Neoproterozoic great oxidation event occurred on the northern margin of the North China craton and responded well to the Neoproterozoic great oxidation event in South China.
Key words:
Tonghua area; Nanfen Formation; geochemistry; Neoproterozoic; Great Oxidation Event
0"引言
近年來,多種地球化學(xué)手段被應(yīng)用于揭示元古宙時(shí)期大氣的含氧量以及古海洋化學(xué)狀態(tài)。目前可知,元古宙存在兩次大氧化事件:古元古代大氧化事件和新元古代大氧化事件[1-4],此外還伴隨有全球冰期[5]和超大陸的裂解事件(Kenorland超大陸和Rodinia超大陸)[6]。部分學(xué)者認(rèn)為在地球形成后不久,即4 Ga之前,地球上氧氣的含量已達(dá)到現(xiàn)今大氣的氧含量水平了,并一直維持此狀態(tài)[7]。但大部分學(xué)者認(rèn)為地球上氧含量是經(jīng)過兩次突變后(大氧化事件)達(dá)到現(xiàn)今大氣氧含量水平的[1]。
新元古代在地球演化歷史中是一個(gè)非常重要的時(shí)期。新元古代發(fā)生過大氧化事件,海洋仍以鐵化和硫化環(huán)境為主[8-11],海洋的氧化還原狀態(tài)在空間上呈現(xiàn)分層狀態(tài),表層為氧化水體,深部為富鐵水體,而夾于兩者之間的為硫化水體[11-12]。從總體上來看,海洋的氧化水平是在不斷提升的[13-15]。國(guó)內(nèi)學(xué)者在華南區(qū)域也進(jìn)行了大氣-海洋古環(huán)境重建的研究工作[16-23]。Zhu等[16]通過對(duì)華南燈影組及陡山沱組蓋帽碳酸鹽巖進(jìn)行研究,認(rèn)為此時(shí)期總體呈現(xiàn)海洋溶氧量增加的趨勢(shì),證明了燈影組中段的上部開始出現(xiàn)氧含量增加的情況[17];還有其他學(xué)者認(rèn)為燈影組經(jīng)歷了氧化還原氧化狀態(tài)的轉(zhuǎn)變,在約521 Ma的時(shí)候,深海已處于氧化階段[18]。Zhang等[19]對(duì)位于華北地臺(tái)高于莊組頂部碳酸鹽巖的研究中發(fā)現(xiàn)存在Ce負(fù)異常,指示了當(dāng)時(shí)海水增長(zhǎng)的含氧量;高于莊組碳酸鹽巖地層存在I/(Ca+Mg)值的增加,后又迅速降低到較低水平,因此認(rèn)為該時(shí)期的增氧事件屬于短時(shí)間的“脈沖式”的增氧。
吉林省通化地區(qū)位于華北地臺(tái)北緣東段,發(fā)育新元古代地層。區(qū)域地質(zhì)調(diào)查中,采用K-Ar法分別測(cè)得南芬組底部和釣魚臺(tái)組海綠石同位素年齡值,分別為787和818 Ma[24],確定南芬組歸屬于新元古代,適合開展新元古代大氧化事件研究。通化地區(qū)新元古代是否發(fā)生了大氧化事件,新元古代大氧化事件是否波及華北地臺(tái)北緣東段的通化地區(qū),這是目前需要解決的科學(xué)問題。本文選取了通化地區(qū)新元古代南芬組作為研究對(duì)象,對(duì)南芬組泥灰?guī)r和頁巖進(jìn)行了巖石學(xué)、地球化學(xué)和同位素地球化學(xué)研究,旨在揭示南芬組沉積環(huán)境的氧化還原特征,為華北地臺(tái)北緣新元古代大氧化事件提供科學(xué)依據(jù)。
1"地質(zhì)概況
通化地區(qū)位于吉林省東南部,在大地構(gòu)造位置上位于華北地臺(tái)北緣東段(圖1),經(jīng)歷了太古宙陸核形成、古元古代陸核活化增生[26-27]、中元古代—古生代地臺(tái)穩(wěn)定發(fā)展、中—新生代地臺(tái)活化改造等地質(zhì)歷史發(fā)展階段[25]。
自青白口紀(jì),通化地區(qū)伴隨膠遼隆起出現(xiàn)強(qiáng)烈斷坳,形成龍崗地塊、狼林地塊、老嶺隆起和清河隆起,構(gòu)成了獨(dú)特的障壁式和港灣式復(fù)雜的邊緣海環(huán)境[28]。在新元古代,燕—遼陸表海海水向北東漫入通化一帶,邊緣海沉積明顯,釣魚臺(tái)組時(shí)期在三岔子—三道江一帶形成的石英砂巖構(gòu)成了濱岸相近岸砂壩。受近岸砂壩、古隆起等影響,南芬組形成于相對(duì)封閉的陸表海環(huán)境[28]。南芬組于1928年創(chuàng)名,出露于遼寧省本溪市南芬車站附近,整合覆于釣魚臺(tái)組石英砂巖之上,與下伏橋頭組石英砂巖也呈整合接觸關(guān)系[29]。南芬組由雜色巖層,由紫色、淡青色、黃綠色頁巖、粉砂質(zhì)頁巖、鈣質(zhì)頁巖、泥質(zhì)粉屑灰?guī)r組成,可明顯分為2個(gè)巖性段:下段紫色頁巖、黃綠色-淡青色板巖、紫色-黃綠色泥灰?guī)r夾薄層石膏;上段紫色頁巖夾紫色和黃綠色粉砂巖。南芬組發(fā)育水平紋層,為海相沉積環(huán)境[24,28]。本次研究樣品主要采集南芬組的泥灰?guī)r和頁巖。采樣位置見圖2和圖3。
2"分析方法
2.1"主微量元素地球化學(xué)分析
主量、微量元素地球化學(xué)分析均在中國(guó)科學(xué)院貴州地球化學(xué)研究所完成。主量元素測(cè)定采用熔片X射線熒光光譜法(XRF),測(cè)試精度優(yōu)于±1%。運(yùn)用M61-MS81質(zhì)譜儀完成微量元素分析。微量元素中質(zhì)量分?jǐn)?shù)大于10×10-6的樣品,測(cè)試精度優(yōu)于±5%;小于10×10-6的樣品,測(cè)試精度優(yōu)于±10%。
南芬組沉積巖主量和微量元素分析結(jié)果見表1和表2。
2.2"Mo同位素地球化學(xué)分析
全巖 Mo 同位素分析是在中國(guó)科學(xué)院地球化學(xué)研究所非傳統(tǒng)同位素實(shí)驗(yàn)室完成的,實(shí)驗(yàn)方法參照文獻(xiàn)[30-31]。Mo同位素分析測(cè)試的儀器為Neptune 多接收電感耦合等離子質(zhì)譜儀(MC-ICP-MS),機(jī)器為Thermo Fisher 公司制造,用全球通用的NIST-SAM 3134國(guó)際鉬標(biāo)準(zhǔn)溶液對(duì)儀器進(jìn)行一系列校正處理。實(shí)驗(yàn)結(jié)果用Zhang等[32]提出的方法進(jìn)行運(yùn)算,經(jīng)過重復(fù)測(cè)量多次雙尖峰算法標(biāo)準(zhǔn)測(cè)得的NIST-SRM 3134 δ98Mo值為0.00‰±0.07‰ (2SD, n=15)[19]。樣品與標(biāo)樣的質(zhì)量分?jǐn)?shù)為300×10-6,質(zhì)量分?jǐn)?shù)匹配誤差在5%以內(nèi)。
3"結(jié)果與討論
3.1"泥灰?guī)r的成巖影響
泥灰?guī)r由方解石、石英和黏土礦物組成。在偏光顯微鏡下,方解石為菱形晶體,呈微細(xì)小的粒狀集合體均勻分布于巖石中,粒徑為0.006~0.015 mm;石英呈微細(xì)粒狀或條帶狀不均勻分布于方解石粒間,粒徑為0.02~0.08 mm;伊利石-蒙脫石混層,還有極少量的綠泥石,呈細(xì)小鱗片狀、微細(xì)粒狀、條帶狀均勻分布于方解石粒間(圖4)。
海相碳酸鹽巖容易在成巖時(shí)遭受蝕變作用,成巖蝕變強(qiáng)烈時(shí),碳酸鹽巖的沉積環(huán)境特征不能通過樣品的地球化學(xué)特征分析獲得有效指示古環(huán)境。海相碳酸鹽巖成巖蝕變程度可以通過Mn/Sr值來指示[33],由于海相碳酸鹽巖在成巖蝕變過程中會(huì)發(fā)生Sr丟失和Mn的獲取,當(dāng)Mn/Sr>10時(shí),表明巖石遭受強(qiáng)烈成巖蝕變,地球化學(xué)特征不能有效指示古環(huán)境;當(dāng)Mn/Sr在10~3之間時(shí),表明巖石遭受弱的成巖蝕變;Mn/Srlt;3時(shí),表明沒有或僅受到較弱成巖作用影響[34-35]。本文所測(cè)南芬組泥灰?guī)r樣品Mn/Sr值為1.15~5.30,平均值為2.64,表明南芬組的泥灰?guī)r沒有或受到弱成巖作用的影響,可用來重建當(dāng)時(shí)的古環(huán)境和古氣候。
3.2"敏感元素對(duì)氧化還原環(huán)境的判別
海水中部分元素對(duì)氧化還原環(huán)境的變化非常敏感, 主要包括Fe、Mn、U、V、Mo、Cr、Re、Cd等元素[32],這一類元素被稱為氧化還原敏感性元素。只要有海水的交流,就可以用微量元素分析氧化還原狀態(tài)的變化。具有相同指示意義的還有Mo元素質(zhì)左圖為單偏光,右圖為正交偏光。
量分?jǐn)?shù)和Mo同位素特征以及其他地球化學(xué)參數(shù)比值(表3)。
3.2.1"V/Cr對(duì)氧化還原環(huán)境的判別
V、Cr在氧化環(huán)境中都呈溶解態(tài)易溶于水,還原環(huán)境中則易在沉積物中發(fā)生富集。Piper[41]提出V的還原出現(xiàn)在反硝化作用界線的下部,Cr的還原出現(xiàn)在界線的上部。因此V/Cr值是傳統(tǒng)的判別古海洋氧化還原環(huán)境的參數(shù)[42-43]。一般認(rèn)為:V/Cr<2.00代表含氧沉積環(huán)境;V/Cr為2.00~4.25代表貧氧沉積環(huán)境;V/Cr>4.25代表缺氧沉積環(huán)境"[44]。研究區(qū)南芬組所有樣品V/Cr值為0.50~1.57,所落區(qū)間在<2范圍內(nèi),說明南芬組此時(shí)沉積環(huán)境整體為氧化環(huán)境(表3, 4)。
3.2.2"Ni/Co對(duì)氧化還原環(huán)境的判別
在氧化海水中,Ni以二價(jià)陽離子吸附存在[40,45-46]。Ni的絡(luò)合物會(huì)使得Ni從水體中消除的效率變得更加迅猛,而在沉積物中Ni得到富集[47-48]。在弱還原環(huán)境中,沒有可以吸附著的硫化物和Mn的氧化物,Ni會(huì)重新進(jìn)入水體中。在強(qiáng)還原環(huán)境,Ni會(huì)固定在沉積物中[49-51]。Ni也會(huì)隨有機(jī)質(zhì)進(jìn)入沉積物,從而保存在處于還原壞境的沉積物中。Co在還原環(huán)境中比Ni優(yōu)先活化,造成沉積物中Ni/Co值的增大[52-53]。
Ni/Co<5,代表有氧沉積環(huán)境;Ni/Co值分布在5~7之間,代表貧氧沉積環(huán)境;Ni/Co>7,代表缺氧沉積環(huán)境[42]。研究區(qū)南芬組9個(gè)樣品中,7個(gè)樣品所落區(qū)間范圍<5,2個(gè)樣品落于5~7范圍內(nèi),說明南芬組此時(shí)沉積環(huán)境整體為氧化環(huán)境,但是伴有貧氧環(huán)境存在(表3,4)。
3.2.3"V/(V+Ni)對(duì)氧化還原環(huán)境的判別
V/(V+Ni)<0.45,代表有氧沉積環(huán)境;V/(V+Ni)值為0.45~0.60,代表次氧沉積環(huán)境;V/(V+Ni)值為0.60~0.82,代表缺氧沉積環(huán)境;V/(V+Ni)gt;0.82,代表閉塞的海洋沉積環(huán)境[54]。研究區(qū)南芬組大部分樣品落在V/(V+Ni)值為<0.45的范圍,3個(gè)樣品V/(V+Ni)值為0.60~0.82,說明南芬組在整體為氧化環(huán)境的背景中伴有缺氧環(huán)境的存在(表3,4)。
3.3"Mo同位素對(duì)氧化還原環(huán)境的判別
Mo在自然界中具有獨(dú)特的化學(xué)性質(zhì),存在 7 種穩(wěn)定同位素形態(tài),且具有多價(jià)態(tài)的特點(diǎn),包括了Mo2+至Mo6+,海洋中Mo的循環(huán)受到海水的氧化還原條件和Mo同位素分餾特性的影響[55]。整個(gè)地史時(shí)期海水的Mo同位素組成變化基本與沉積環(huán)境的氧化還原變化有關(guān)[20]。Mo同位素具有如下特點(diǎn):在海水中極其富集,海洋中的Mo的物質(zhì)的量濃度約為105 nmol/kg;在海水中滯留時(shí)間較長(zhǎng),約0.8 Ma;對(duì)氧化還原條件極其敏感[56],由此可以用來判別沉積環(huán)境。在缺氧環(huán)境下,Mo同位素的組成較重,相反在氧化環(huán)境中Mo同位素組成輕[21,57]。據(jù)已有的Mo同位素沉積物儲(chǔ)庫數(shù)據(jù)研究表明[36],當(dāng)大陸邊緣海沉積物中的δ98Mo同位素為-0.800‰~0.00‰時(shí),說明其處于氧化環(huán)境;δ98Mo同位素為1.3‰~1.80‰時(shí),說明其處于缺氧環(huán)境[58-59]。而本次研究的南芬組樣品δ98/95Mo值為-0.82‰~0.00‰,均值為-0.33‰,總體值都小于0.00‰(表5),表明南芬組整體處于氧化環(huán)境,同時(shí)還發(fā)現(xiàn)存在顯著波動(dòng),說明南芬組沉積時(shí)氧化還原程度存在變化。
3.4"南芬組沉積環(huán)境演化
基于前述元素地球化學(xué)和Mo同位素特征,研究區(qū)南芬組多種參數(shù)均位于氧化環(huán)境指標(biāo)范圍內(nèi),為判斷南芬組呈氧化沉積環(huán)境提供了有利的證據(jù)。由此可以說明,華北地臺(tái)北緣東段通化地區(qū)的南芬組形成于海水富氧條件下,并可進(jìn)一步推斷有大氧化事件發(fā)生,而且氧化的程度有波動(dòng)變化。
縱觀氧化還原敏感參數(shù)及Mo同位素在南芬組柱狀圖上的變化可以發(fā)現(xiàn),Ni/Co、V/Cr、V/(V+Ni)、w(TOC)、δCe值的變化特征與 w(Mo)數(shù)據(jù)曲線相關(guān)性良好,說明了數(shù)據(jù)的協(xié)調(diào)一致性。有機(jī)物(w(TOC))豐度也與沉積環(huán)境密切相關(guān),在古海水中豐富的氧氣會(huì)讓有機(jī)質(zhì)的埋藏減少,故而有機(jī)質(zhì)的豐度也是指示其沉積環(huán)境的重要指標(biāo),低有機(jī)質(zhì)豐度也進(jìn)一步佐證了南芬組沉積于氧化環(huán)境[60],這也進(jìn)一步為南芬組沉積于氧化環(huán)境提供了佐證(圖5)。
在研究區(qū)南芬組沉積過程中,沉積環(huán)境并不是一直穩(wěn)定的,而是存在一定的波動(dòng),在氧化環(huán)境和次氧化環(huán)境之間不斷進(jìn)行轉(zhuǎn)化??梢詫⑵淇偨Y(jié)為:研究區(qū)南芬組下部(早期到中期)沉積氧化環(huán)境的氧化強(qiáng)度存在波動(dòng),從氧化環(huán)境到次氧化環(huán)境,又回歸氧化環(huán)境;而南芬組上部(中期到晚期)為穩(wěn)定的氧化環(huán)境,整體來說南芬組基本處于氧化狀態(tài)。Zhu等[22-23]對(duì)華南地區(qū)進(jìn)行研究認(rèn)為新元古代海水和大氣氧化程度是明顯增加的,海洋與大氣正在向著氧化的方向逐漸發(fā)展。這也與本文對(duì)南芬組同時(shí)期氧化環(huán)境的研究判斷不謀而合。
4"結(jié)論
1)南芬組巖石樣品的氧化還原敏感元素指標(biāo)及Mo同位素特征,均指示南芬組整體沉積于氧化環(huán)境中,說明南芬組發(fā)生了大氧化事件。
2)南芬組沉積環(huán)境總體呈現(xiàn)氧化狀態(tài),氧化環(huán)境分為2種類型:下部為波動(dòng)式,在氧化和次氧化之間演化;上部為平穩(wěn)式,與w(Mo)特征具有良好的相關(guān)性。
3)通化地區(qū)南芬組發(fā)生大氧化事件,進(jìn)一步說明新元古代大氧化事件波及了華北地臺(tái)北緣,并與華南新元古代大氧化事件有良好的響應(yīng)。
參考文獻(xiàn)(References):
[1] Holland H D. The Oxygenation of the Atmosphere and Oceans[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361: 903-915.
[2] Poulton S W, Bekker A, Cumming V M, et al. A 200 Million Year Delay in Permanent Atmospheric Oxygenation[J]. Nature, 2021, 592: 232-236.
[3] Och L M, Shields-Zhou G A. The Neoproterozoic Oxygenation Event: Environment Perturbations and Biogeochemical Cycling[J]. Earth-Science Reviews, 2012, 110: 26-58.
[4] Brocks J J, Jarrett A, Sirantoine E, et al. The Rise of Angle in Cryogenian Oceans and the Emergence of Animals[J]. Nature, 2017, 548: 578-581.
[5] Robert E K, Joseph L K, Isasc A H, et al. The Paleoproterozoic Snowball Earth: A Climate Disaster Triggered by the Evolution of Oxygenic Photosynthesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102: 11131-11136.
[6] Eyles N. Glacio-Epochs and the Supercontinent Cycle After ~3.0 Ga: Tectonic Boundary Conditions for Glaciation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 258(1):89-129.
[7] Hoashi M, Bevacqua D C, Otake T, et al. Primary Haematite Formation in an Oxygenated Sea 3.46 Billion Years Ago[J]. Nature Geoscience, 2009, 2: 301-306.
[8] Fike D A, Grotzinger J P, Pratt L M, et al. Oxidation of the Ediacaran Ocean[J]. Nature, 2006, 444: 744-747.
[9] Canfield D E, Poulton S W, Knoll A H, et al. Ferruginous Conditions Dominated Later Neoproterozoic Deep-Water Chemistry[J].Science, 2008, 321: 949-952.
[10] Frei R, Gaucher C, Poulton S W, et al. Fluctuations in Precambrian Atmospheric Oxygenation Recorded by Chromium Isotopes[J]. Nature, 2009, 461: 250-253.
[11] Johnston D T, Poulton S W, Dehler C, et al. An Emerging Picture of Neoproterozoic Ocean Chemistry: Insights from the Chuar Group, Grand Canyon, USA[J]. Earth amp; Planetary Science Letters, 2010, 290: 64-73.
[12] Li C, Love G D, Lyons T W, et al. A Stratified Redox Model for the Ediacaran Ocean[J]. Science, 2010, 328: 80-83.
[13] Kimura H, Watanabe Y. Oceanic Anoxia at the Precambrian-Cambrian Boundary[J]. Geology, 2001, 29: 995.
[14] Wille M, Naegler T F, Lehmann B, et al. Hydrogen Sulphide Release to Surface Waters at the Precambrian/Cambrian Boundary[J].Nature, 2008, 453: 767-769.
[15] Sperling E A, Wolock C J, Morgan A S, et al. Statistical Analysis of Iron Geochemical Data Suggests Limited Late Proterozoic Oxygenation[J]. Nature, 2015, 523: 451-454.
[16] Zhu M, Lu M, Zhang J, et al. Carbon Isotope Chemostratigraphy and Sedimentary Facies Evolution of the Ediacaran Doushantuo Formation in Western Hubei, South China[J]. Precambrian Research, 2013, 225: 7-28.
[17] Ling H F, Chen X, Li D, et al. Cerium Anomaly Variations in Ediacaran-Earliest Cambrian Carbonates from the Yangtze Gorges Area, South China: Implications for Oxygenation of Coeval Shallow Seawater[J]. Precambrian Research, 2013, 225: 110-127.
[18] Chen X, Ling H F, Vance D, et al. Rise to Modern Levels of Ocean Oxygenation Coincided with the Cambrian Radiation of Animals[J]. Nature Communications, 2015, 6: 7142.
[19] Zhang L, Li J, Xu Y, et al. The Influence of the Double Spike Proportion Effect on Stable Isotope (Zn, Mo, Cd, and Sn) Measurements by Multicollector-Inductively Coupled Plasma-Mass Spectrometry (MC-ICP-MS) [J]. Journal of Analytical Atomic Spectrometry, 2018, 33: 555-562.
[20] 溫漢捷,張羽旭,樊海峰,等.華南下寒武統(tǒng)地層的Mo同位素組成特征及其古海洋環(huán)境意義[J].科學(xué)通報(bào), 2010, 55(2): 176-181.
Wen Hanjie, Zhang Yuxu, Fan Haifeng, et al. Mo Isotopes in the Lower Cambrian Formation of Southern China and Its Implications on Paleo-Ocean Environment[J]. Chinese Science Bulletin, 2009, 54: 4756-4762.
[21] 周煉,蘇潔,黃俊華,等.判識(shí)缺氧事件的地球化學(xué)新標(biāo)志:鉬同位素[J].中國(guó)科學(xué):地球科學(xué), 2011, 41(3): 309-319.
Zhou Lian, Su Jie, Huang Junhua, et al. A New Paleoenvironmental Index for Anoxic Events:Mo Isotopes in Black Shales from Upper Yangtze Marine Sediments[J]. Science China: Earth Sciences, 2011, 41(3):309-319.
[22] Zhu M, Yang A, Yuan J, et al. Cambrian Integrative Stratigraphy and Timescale of China[J].Science China:Earth Sciences, 2019, 62(1): 25-60.
[23] Yin L, Li J, Tian H, et al. Rhenium-Osmium and Molybdenum Isotope Systematics of Black Shales from the Lower Cambrian Niutitang Formation, SW China: Evidence of a Well Oxygenated Ocean at ca. 520 Ma[J]. Chemical Geology, 2018, 499: 26-42.
[24] 李東津. 吉林省巖石地層[M].武漢: 中國(guó)地質(zhì)大學(xué)出版社, 1997: 1-324.
Li Dongjin. Stratigraphy (Lithostratic) of Jilin Province[M]. Wuhan: Press of China University of Geosciences, 1997: 1-324.
[25] 陳躍軍,彭玉鯨,路孝平,等. 華北板塊北緣活動(dòng)帶元古宙構(gòu)造巖片[J].吉林大學(xué)學(xué)報(bào)(地球科學(xué)版), 2002,32(2):134-139.
Chen Yuejun, Peng Yujing, Lu Xiaoping, et al. Proterozoic Tectonic Slices Along the Northern Margin of North China Plate[J].Journal of Jilin University (Earth Science Edition), 2002,32(2):134-139.
[26] Wu F Y, Zhao G C, Sun D Y, et al. The Hulan Group: Its Role in the Evolution of the Central Asian Orogenic Belt of NE China[J]. Journal of Asian Earth Science, 2007, 30:542-556.
[27] 牟芮霆,裴福萍,時(shí)玉芹,等.吉林省伊通地區(qū)早二疊世火山巖成因:鋯石U-Pb年代學(xué)和巖石地球化學(xué)證據(jù)[J].吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),2023,53(4):1117-1131.
Mu Ruiting,Pei Fuping,Shi Yuqin, et al. Genesis of Early Permian Volcanic Rocks in Yitong Area, Central Jilin Province: Constraints from Zircon U-Pb Geochronology and Whole-Rock Geochemistry[J]. Journal of Jilin University(Earth Science Edition), 2023,53(4):1117-1131.
[28] 吉林省地質(zhì)礦產(chǎn)局.吉林省區(qū)域地質(zhì)志[M].北京: 地質(zhì)出版社, 1988: 1-623.
Jilin Bureau of Geology and Mineral Resources. Regional Geology of Jilin Province[M]. Beijing: Geological Publishing House, 1988: 1-623.
[29] Aoji O. A Contribution to the Pre-Cambrian Stratigraphy of South Manchuria[J]. Proceedings of the Imperial Academy, 1929, 4(10): 603-606.
[30] Li J, Liang X, Zhong L, et al. Measurement of the Isotopic Composition of Molybdenum in Geological Samples by MC-ICP-MS Using a Novel Chromatographic Extraction Technique[J]. Geostandards amp; Geoanalytical Research, 2014, 38: 345-354.
[31] Zhao P, Li J, Zhang L, et al. Molybdenum Mass Fractions and Isotopic Compositions of International Geological Reference Materials[J]. Geostandards amp; Geoanalytical Research, 2016, 40: 217-226.
[32] Zhang L, Ren Z, Xia X, et al. Isotope Maker: A Matlab Program for Isotopic Data Reduction[J]. International Journal of Mass Spectrometry, 2015, 392: 118-124.
[33] Kaufman A J, Knoll A H. Neoproterozoic Variations in the Carbon Isotopic Composition of Seawater: Stratigraphic and Biogeochemical Implications[J]. Precambrian Research, 1995, 73: 27-49.
[34] Dehler C M, Elrick M, Bloch J D, et al.High-Resolution δ13C Stratigraphy of the Chuar Group (ca, 770-742 Ma) Grand Canyon: Implications for Mid-Neoproterozoic Climate Change[J]. Geological Society of America Bulletin, 2005, 117: 32-45.
[35] Guerroué E L, Allen P A, Cozzi A. Chemo Stratigraphic and Sedimentological Framework of the Largest Negative Carbon Isotopic Excursion in Earth History: The Neoproterozoic Shuram Formation (Nafun Group, Oman)[J]. Precambrain Research,2006, 146 (1/2): 68-92.
[36] Valdes J, Vargas G, Sifeddine A, et al. Distribution and Enrichment Evaluation of Heavy Metals in Mejillones Bay (23°S), Northern Chile: Geochemical and Statistical Approach[J]. Marine Pollution Bulletin, 2005, 50(12): 1558-1568.
[37] Wignall B P, Myers J K. Interpreting Benthic Oxygen Levels in Mudrocks: A New Approach[J]. Geology,1988,16(5):452-455.
[38] 吳朝東,楊承運(yùn),陳其英.湘西黑色巖系地球化學(xué)特征和成因意義[J].巖石礦物學(xué)雜志,1999, 18(1):26-39.
Wu Chaodong, Yang Chengyun, Chen Qiying. The Origin and Geochemical Characteristics of Upper Sinain Lower Cambrian Black Shales in Western Hunan[J]. Acta Petrologica et Mineralogica, 1999, 18(1): 26-39.
[39] Wright J, Schrader H, Holser W T. Paleoredox Variations in Ancient Oceans Recorded By Rare Earth Elements in Fossil Apatite[J]. Geochimica et Cosmochimica Acta,1987,51(3):631-644.
[40] Algeo J T, Morford J, Cruse A. Reprint of: New Applications of Trace Metals as Proxies in Marine Paleoenvironments[J]. Chemical Geology, 2012, 299(3):324-325.
[41] Piper D Z. Seawater as the Source of Minor Elements in Black Shales, Phosphorites and Other Sedimentary Rocks[J]. Chemical Geology, 1994, 114(1/2): 95-114.
[42] 王峰,劉玄春,鄧秀芹,等. 鄂爾多斯盆地紙坊組微量元素地球化學(xué)特征及沉積環(huán)境指示意義[J]. 沉積學(xué)報(bào), 2017, 35(6): 1265-1273.
Wang Feng, Liu Xuanchun, Deng Xiuqin, et al. Geochemical Characteristics and Environmental Implications of Trace Elements of Zhifang Formation in Ordos Basin[J]. Acta Sedimentologica Sinca, 2017, 35(6): 1265-1273.
[43] Scheffler A K, Buehmann D B, Schwark C S. Analysis of Late Palaeozoic Glacial to Postglacial Sedimentary Successions in South Africaby Geochemical Proxies-Response Toclimate Evolution and Sedimentary Environment[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 240(1/2): 184-203.
[44] Jones B, Manning D A C. Comparison of Geochemical Indices Used for the Interpretation of Palaeoredox Conditions in Ancient Mudstones[J]. Chemical Geology, 1994, 111(1/2/3/4): 111-129.
[45] Calvert S E, Pedersen T F, Thunell R C. Geochemistry of the Surface Sediments of the Sulu and South China Seas[J]. Marine Geology, 1993, 114(3/4): 207-211.
[46] Cannon A J, Whitfield P H. Downscaling Recent Stream Flow Conditions in British Columbia, Canada Using Ensemble Neural Network Models[J]. Journal of Hydrology, 2002, 259:136-151.
[47] Piper D Z, Perkins R B. A Modern vs. Permian Black Shale:The Hydrography, Primary Productivity, and Water-Column Chemistry of Deposition[J]. Chemical Geology, 2004, 206(3/4): 177-197.
[48] Nameroff T J, Calvert S E, Murray J W. Glacial-Interglacial Variability in the Eastern Tropical North Pacific Oxygen Minimum Zone Recorded by Redox-Sensitive Trace Metals[J]. Paleoceanography, 2004, 19(PA1010):1-19.
[49] Huerta-Diaz M A, Morse J W. A Quantitative Method for Determination of Trace Metal Concentrations in Sedimentary Pyrite[J]. Marine Chemistry, 1990, 29: 119-144.
[50] Huerta-Diaz M A, Morse J W. Pyritization of Tracementals in Anoxic Marine Sediments[J]. Geochimica et Cosmochimica Acta, 1992, 56(7): 2581-2702.
[51] Morse J W, Luther G W I. Chemical Influences on Trace Metal-Sulfide Interactions in Anoxic Sediments[J]. Geochimica et Cosmochimica Acta, 1999, 63(19): 3373-3378.
[52] Lewan M D, Maynard J B. Factors Controlling Enrichment of Vanadium and Nickel in the Bitumen of Organic Sedimentary Rocks[J]. Geochimica et Cosmochimica Acta, 1982, 46(12): 2547-2560.
[53] Grosjean E, Adam P, Connan J, et al. Effects of Weathering on Nickel and Vanadyl Porphyrins of a Lower Toarcian Shale of the Paris Basin[J]. Geochimica et Cosmochimica Acta, 2004, 68(4): 789-804.
[54] Hatch J R, Leventhal J S. Relationship Between Inferred Redox Potential of the Depositional Environment and Geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, USA[J]. Chemical Geology, 1992, 99:65-82.
[55] Anbar A D. Molybdenum Stable Isotopes: Observations, Interpretations and Directions[J]. Reviews in Mineralogy and Geochemistry, 2004, 55: 429-454.
[56] Kendall B, Komiya T, Lyons T W, et al. Uranium and Molybdenum Isotope Evidence for an Episode of Widespread Ocean Oxygenation During the Late Ediacaran Period[J]. Geochimica et Cosmochimica Acta, 2015, 156: 173-193.
[57] 張明亮,郭偉, 沈俊, 等. 古海洋氧化還原地球化學(xué)指標(biāo)研究新進(jìn)展[J]. 地質(zhì)科技情報(bào),2017, 36(4): 95-106.
Zhang Mingliang, Guo Wei, Shen Jun, et al. New Progress on Geochemical Indicators of Ancient Oceanic Redox Condition[J]. Geological Science and Technology Information, 2017, 36(4): 95-106.
[58] Siebert C, McManus J, Bice A, et al. Molybdenum Isotope Signatures in Continental Margin Marine Sediments[J]. Earth and Planetary Science Letters, 2006,11:10-11.
[59] 朱建明,朱祥坤,黃方.鉬的穩(wěn)定同位素體系及其地質(zhì)應(yīng)用[J].巖石礦物學(xué)雜志, 2008,27(4):353-360.
Zhu Jianming, Zhu Xiangkun, Huang Fang. The Systematics of Molybdenum Stable Isotope and Its Application to Earth Science[J]. Acta Pertrologica et Mineralgica, 2008,27 (4): 353-360.
[60] Tyler G. Vertical Distribution of Major, Minor, and Rare Elements in a Haplic Podzol[J]. Geoderma, 2004, 119(3/4): 277-290.