摘要:
深層白云巖是近年深部勘探的重點(diǎn),其孔隙內(nèi)多見(jiàn)白云石膠結(jié),但白云石膠結(jié)物晶粒賦存組合方式及其對(duì)孔隙的作用研究較少。因此,以四川盆地高磨地區(qū)下寒武統(tǒng)龍王廟組為例,綜合巖心、薄片、陰極發(fā)光、碳氧同位素及包裹體等資料,研究其白云石膠結(jié)物類型、特征、結(jié)構(gòu)、體積分?jǐn)?shù)及其對(duì)孔隙的影響。白云石膠結(jié)物晶體在形態(tài)上主要有半菱形、菱形、環(huán)帶狀和鞍狀等,粒徑包含粉晶—巨晶。膠結(jié)物晶體與孔洞形成內(nèi)襯狀、橋接狀和鑲嵌狀三種結(jié)構(gòu)。使用發(fā)育頻率(發(fā)育某種結(jié)構(gòu)的樣品數(shù)/顆粒白云巖或晶粒白云巖樣品總數(shù))來(lái)表征某種結(jié)構(gòu)的發(fā)育程度,白云巖中鑲嵌狀結(jié)構(gòu)最發(fā)育(發(fā)育頻率為48.3%~89.5%),橋接狀次之(22.4%~73.7%),內(nèi)襯狀最弱(8.6%~55.2%)。內(nèi)襯狀結(jié)構(gòu)和橋接狀結(jié)構(gòu)主要發(fā)育在顆粒白云巖中,體積分?jǐn)?shù)分別為0~15%和25%~50%,且其發(fā)育程度隨細(xì)—粉晶白云石膠結(jié)物體積分?jǐn)?shù)增加而增強(qiáng);鑲嵌狀結(jié)構(gòu)在白云巖中普遍發(fā)育,體積分?jǐn)?shù)主要為50%~100%,且其發(fā)育與中晶巨晶白云石體積分?jǐn)?shù)正相關(guān)。內(nèi)襯狀結(jié)構(gòu)和橋接狀結(jié)構(gòu)主要形成于同生成巖階段中成巖階段,鑲嵌狀結(jié)構(gòu)主要形成于晚成巖階段。內(nèi)襯狀結(jié)構(gòu)及橋接狀結(jié)構(gòu)形成較早可降低成巖進(jìn)程中壓溶壓實(shí)對(duì)孔隙的破壞,而鑲嵌狀結(jié)構(gòu)破壞殘余孔隙。以主要發(fā)育鑲嵌狀結(jié)構(gòu)層段的孔隙度為基準(zhǔn),主要發(fā)育內(nèi)襯狀結(jié)構(gòu)和橋接狀結(jié)構(gòu)層段的孔隙度可提高約50%。
關(guān)鍵詞:四川盆地;深層白云巖;白云石膠結(jié)物;孔隙;龍王廟組
doi:10.13278/j.cnki.jjuese.20230204
中圖分類號(hào):P618.13
文獻(xiàn)標(biāo)志碼:A
Characteristics of Dolomite Cement and Its Effect on the Porosity of Deep Dolomite
Qu Haizhou1, Chen Run1, Xu Wei2, Zhang Yunfeng1, Zhang Ya2, He Puwei2, Tang Song3, Li Wenhao4
1. School of Geosciences & Technology, Southwest Petroleum University, Chengdu 610500, China
2. Exploration and Development Research Institute, PetroChina Southwest Oil and Gas Field Company, Chengdu 610051, China
3. Chuanzhong Oil and Gas Mine, PetroChina Southwest Oil and Gas Field Company, Suining 629000, Sichuan, China
4. Exploration Division, PetroChina Southwest Oil and Gas Field Company, Chengdu 610051, China
Abstract:
Deep dolomite has been a key focus of deep exploration in recent years, with dolomite cementation commonly found in its internal pores. However, there is relatively less research on the combination of dolomite cement grain occurrence and its effect on pores. Therefore, taking the Longwangmiao Formation of the Lower Cambrian in the Gaomo area of the Sichuan basin as an example, comprehensive data such as core samples, thin sections, cathodoluminescence, carbon-oxygen isotopes, and inclusions were used to study the types, characteristics, structures, volume fraction, and their effects on pores of dolomite cement. The crystals of dolomite cement mainly have shapes such as semi rhombus, rhombus, ring shaped, saddle shaped, etc., with particle sizes ranging from powder crystals to giant crystals. Cement crystals and pores form three types of structures: lining, bridging, and embedding. Using the frequency of development (the number of samples that develop a certain structure/the total number of samples of granular dolomite or grain dolomite) to characterize the degree of development of a certain structure, the embedding structure is the most developed in dolomite (48.3%-89.5%), followed by the bridging structure (22.4%-73.7%), and the lining structure is the weakest (8.6%-55.2%). The inner lining structure and bridging structure are mainly developed in granular dolomite, with volume fraction of 0 to 15% and 25% to 50%, respectively, and their development degree increases with the volume fraction of fine-grained dolomite cement. Embedding structures are commonly developed in dolomite, with a volume fraction mainly ranging from 50% to 100%, and their development is positively correlated with the volume fraction of medium crystalline to giant crystalline dolomite. The inner lining structure and bridging structure are mainly formed during the syndiagenetic stage to the middle diagenetic stage, while the embedding structure is mainly formed during the late diagenetic stage. The formation of inner lining and bridging structures earlier can reduce the damage to pores caused by solution compaction during diagenesis, while the embedding structure can damage residual pores. Based on the porosity of the layers with mainly developed embedding structures, the porosity of the layers with mainly developed inner lining and bridging structures can be increased by 50%.
Key words:
Sichuan basin;deep dolomite;dolomite cement;pore;Longwangmiao Formation
0"引言
深層白云巖是國(guó)內(nèi)外油氣藏的重要儲(chǔ)集巖,其孔隙中常見(jiàn)白云石膠結(jié)物[1-3],石灰?guī)r的白云石化可以增加巖石孔隙度(13%),但當(dāng)沒(méi)有方解石可以被交代的情況下,持續(xù)的富Mg流體的作用將沉淀白云石膠結(jié)物,影響機(jī)制為[4-8]:2CaCO3 + Mg2+→ CaMg(CO3)2"+ Ca2+,CaCO3 + Mg2+"+ CO32-"→ CaMg(CO3)2。膠結(jié)作用會(huì)降低巖石孔隙度,但在一定條件下也可以對(duì)殘余的孔隙進(jìn)行保護(hù)。如同生成巖階段的海底膠結(jié)物[9-10]、早成巖階段的大氣淡水等厚環(huán)邊和粒間膠結(jié)物[9, 11-15]和中成巖階段的白云石膠結(jié)物[16-19]等,可以抑制后期埋藏環(huán)境的壓實(shí)、壓溶作用,進(jìn)而保護(hù)孔隙。有學(xué)者[20]將碳酸鹽巖儲(chǔ)層孔隙得以保持的成巖作用歸為“保持性成巖作用”。但膠結(jié)物形成的類型、結(jié)構(gòu)、體積分?jǐn)?shù)等對(duì)孔隙的定性、定量影響,尚未開(kāi)展深入研究。
高磨地區(qū)安岳氣田為我國(guó)最大的單體海相整裝氣藏,其下寒武統(tǒng)龍王廟組已探明天然氣儲(chǔ)量超過(guò)4 403.8×108 m3[21-26]。龍王廟組經(jīng)歷了濃縮白云石化、回流滲透白云石化、埋藏白云石化等作用[4, 27-28],平均埋深為4 500~4 800 m,厚80~110 m[4, 29]。其中儲(chǔ)集空間包括組構(gòu)選擇性的粒間溶孔、粒內(nèi)溶孔、晶間溶孔以及非組構(gòu)選擇性的溶蝕孔洞、裂縫和縫合線擴(kuò)溶縫等[30]。同時(shí),儲(chǔ)層段廣泛發(fā)育白云石膠結(jié)[31-32],期次多,形態(tài)各異,結(jié)構(gòu)復(fù)雜。本文基于巖心、薄片、陰極發(fā)光、包裹體和碳氧同位素等資料,對(duì)不同白云巖巖性中的膠結(jié)物類型、結(jié)構(gòu)及體積分?jǐn)?shù)等開(kāi)展定性-定量研究,進(jìn)而探討其對(duì)龍王廟組深層白云巖孔隙的影響。
1"地質(zhì)背景
四川盆地寒武系屬于華南地層區(qū)揚(yáng)子地層分區(qū),高磨地區(qū)構(gòu)造上屬川中古隆中斜平緩帶、樂(lè)山—龍女寺古隆起之上[33-35]。依據(jù)盆地內(nèi)部及鄰區(qū)寒武系分布及特征,地層自下而上依次為下寒武統(tǒng)筇竹寺組、滄浪鋪組和龍王廟組,中寒武統(tǒng)高臺(tái)組,中上寒武統(tǒng)洗象池組。其中,下寒武統(tǒng)龍王廟組頂?shù)捉缦耷逦?,與下伏滄浪鋪組及上覆高臺(tái)組均為整合接觸[36-37]。龍王廟組沉積期研究區(qū)處于上揚(yáng)子臺(tái)地西北部邊緣,受西高東低的構(gòu)造格局影響,為局限臺(tái)地沉積,發(fā)育鮞粒白云巖、砂屑白云巖、花斑狀粉晶白云巖等巖性(圖1)[38]。
2"測(cè)試方法
本次研究以取心較完整的GS23井為例,委托東方礦產(chǎn)開(kāi)發(fā)技術(shù)研究所使用穩(wěn)定同位素比值質(zhì)譜儀(MAT253plus),測(cè)試及搜集整理了20個(gè)樣品的碳、氧同位素?cái)?shù)據(jù),樣品涵蓋了龍王廟組不同類型的白云巖。在西南石油大學(xué)資源與環(huán)境學(xué)院實(shí)驗(yàn)測(cè)試中心使用THMSG 600地質(zhì)冷熱臺(tái)測(cè)定了粉晶白云巖和顆粒白云巖共2塊樣品中的白云石晶體中的包裹體均一溫度。并于西南石油大學(xué)地球科學(xué)與技術(shù)學(xué)院實(shí)驗(yàn)測(cè)試中心使用CL8200 MK5陰極發(fā)光
顯微鏡分析了5塊白云巖樣品,使用蔡司數(shù)字偏光顯微鏡Axio Scope.A1進(jìn)行了96片鑄體薄片巖石
學(xué)觀察,其中膠結(jié)物定量表征方法見(jiàn)圖2。首先對(duì)磨制好的鑄體薄片進(jìn)行拍攝,選擇最能代表整個(gè)薄片孔隙特征的視域,或者按一定順序拍攝
整張薄片;然后,使用imageJ軟件中的Stitching模塊進(jìn)行圖片拼接;最后對(duì)孔隙進(jìn)行分析,識(shí)別其充填物組構(gòu),并對(duì)每一種組構(gòu)進(jìn)行量化,得到每種組構(gòu)的體積分?jǐn)?shù)。下文主要對(duì)不同粒級(jí)的白云石膠結(jié)物及其組合結(jié)構(gòu)進(jìn)行量化。同時(shí),本文收集了中國(guó)石油西南油氣田分公司勘探開(kāi)發(fā)研究院分析實(shí)驗(yàn)中心巖心常規(guī)分析(孔隙度、滲透率及飽和度)報(bào)告,共315次巖心柱塞樣分析數(shù)據(jù)。
3"結(jié)果與討論
3.1"白云巖類型
研究區(qū)龍王廟組白云巖主要有顆粒白云巖和晶粒白云巖兩類,具體包括砂屑白云巖(可見(jiàn)藻黏結(jié)特征)(圖3a—c)、(含砂屑)晶粒白云巖、(含砂屑)泥晶白云巖、鮞粒白云巖、礫屑白云巖等,常見(jiàn)泥質(zhì)條紋發(fā)育(圖3d),此外偶見(jiàn)藻凝塊石白云巖(圖3e)。
3.1.1"顆粒白云巖顆粒白云巖常形成于水體能量較高的沉積環(huán)境,主要發(fā)育在臺(tái)內(nèi)灘的鮞粒灘、砂(礫)屑灘沉積微相,巖性以砂屑白云巖、鮞粒白云巖為主,局部還可見(jiàn)礫屑、凝塊石、核形石白云巖。鮞粒白云巖主要為灰色—褐色薄層狀,鮞粒粒徑主要為1~2 mm(圖3f);砂屑白云巖主要為淺灰色—深灰色薄—中層狀,砂屑粒徑主要為0.2~1.5 mm(圖3g)??傮w上顆粒分選磨圓較好,呈橢圓、球狀。巖石的溶蝕孔洞及微觀孔隙較發(fā)育,常被亮晶方解石半充填—全充填,有效孔隙多為粒間溶孔以及晶間孔。鏡下可觀察到顆粒內(nèi)部被重結(jié)晶作用改造為晶粒結(jié)構(gòu),但外部顆粒輪廓可清晰辨別,該類巖性也被稱為殘余顆粒白云巖。
3.1.2"晶粒白云巖
晶粒白云巖以泥晶白云巖、粉晶白云巖為主,主要發(fā)育于灘間海、潮坪等低能環(huán)境,其中潮坪環(huán)境的
晶粒白云巖常夾雜陸源碎屑(如粉砂、泥質(zhì)條紋等)。宏觀上呈深灰色、灰黑色中—厚層狀,鏡下觀察到白云石晶粒多小于0.01 mm,局部介于0.01~0.1 mm之間,晶形呈半自形晶(圖3h)。
3.2"白云石膠結(jié)物類型
白云石膠結(jié)物的粒徑、自形程度-陰極發(fā)光特征、晶體生長(zhǎng)世代和次序可對(duì)應(yīng)不同的成巖階段,如與不發(fā)光或昏暗發(fā)光的基質(zhì)直接接觸的環(huán)邊膠結(jié)物往往具有與基質(zhì)相同的發(fā)光性,粒徑多為細(xì)—粉晶,自形程度差,指示其形成于同生成巖階段。此外,淺
a. 藻砂屑白云巖,見(jiàn)粒內(nèi)、粒間溶孔及鑄???,部分充填,面孔率約為5%,GS7井,4 634.52 m,(-);b. 具黏結(jié)特征的砂屑白云巖,見(jiàn)溶蝕孔洞,MX56井,第3筒第39塊巖心;c. 具黏結(jié)特征的砂屑白云巖,見(jiàn)核形石、溶蝕孔洞,孔洞被白云石及瀝青部分充填,面孔率約為10%,MX56井,4 959.08 m,(-);d. 砂屑白云巖,泥質(zhì)條紋發(fā)育,MX208井,第1筒第13塊巖心;e. 藻凝塊石白云巖,見(jiàn)溶蝕孔洞,GS001-X24井,第2筒第59塊巖心;f. 鮞粒白云巖,GS6井,4 545.49~4 545.59 m,(-);g. 亮晶砂屑白云巖,砂屑體積分?jǐn)?shù)約為80%,粒間膠結(jié)物體積分?jǐn)?shù)約為15%,GS17井,4 505.20 m,(-);h. 粉晶白云巖,GS23井,4 689.75 m,(-)。
埋藏時(shí)期流體還原性較弱,鐵離子多以+3價(jià)形式出現(xiàn),陰極發(fā)光明亮,白云石自形程度增加,粒徑較之前增大。隨著埋藏深度的變深,地層流體性質(zhì)更偏還原,鐵離子多呈+2價(jià),猝滅發(fā)光,致使陰極發(fā)光昏暗,白云石更趨向自形,粒徑更大。
同生成巖階段:經(jīng)過(guò)對(duì)20個(gè)樣品的碳氧同位素值測(cè)定,龍王廟組白云巖δ13C在-1.43‰~2.16‰之間,平均值為-0.18‰。δ18O在-9.13‰~-3.2‰之間,平均值為-7.28‰(圖4)。與早寒武
世海水(δ13C值為-2.00‰~0‰,δ18O值為-9.00‰~-7.00‰)[39]相比,碳同位素值相似,反映白云石化流體主要來(lái)自海水。濃縮的海水經(jīng)過(guò)回流滲透白云石化作用,交代早期環(huán)邊膠結(jié)物形成第一期膠結(jié)物,環(huán)繞顆粒,具有陰極發(fā)光昏暗、他形、粉晶級(jí)的特征(圖5a—c);并在溶蝕孔洞或粒間殘余孔隙中沉淀出細(xì)晶白云石,直接生長(zhǎng)在圍巖上或先期膠結(jié)物之上,自形—半自形,陰極發(fā)光昏暗(圖5d—f),這一階段形成的白云石膠結(jié)物
體積分?jǐn)?shù)為5%~90%,造成如此分布的原因與巖性、原始粒間孔隙大小、流體供應(yīng)是否充足等形成條件有關(guān)。比如,當(dāng)原始孔隙空間均較小時(shí),該階段的白云石可完全充填孔隙,致使該類白云石膠結(jié)物體積分?jǐn)?shù)大;
當(dāng)原始孔隙空間足夠大,或巖體遭受溶蝕時(shí),該階段形成的白云石膠結(jié)物呈薄環(huán)帶分布在洞壁,體積分?jǐn)?shù)小。
早成巖階段:在淺埋藏環(huán)境中,回流滲透帶來(lái)的過(guò)量富Mg流體,圍繞同生成巖階段形成的白云石再進(jìn)行沉淀、膠結(jié),使得陰極發(fā)光具有昏暗發(fā)光中心和明亮紅光的環(huán)邊等特征,膠結(jié)物晶粒粒徑可達(dá)中晶級(jí)(圖5c、g—i)。
中成巖階段:在中埋藏環(huán)境中,膠結(jié)進(jìn)一步向孔隙中央沉淀,形成半自形—自形(視先期殘余孔隙大?。┑闹芯Ъ?jí)別的白云石膠結(jié)物,發(fā)明亮紅光或昏暗(圖5f),中晶白云石體積分?jǐn)?shù)為5%~70%。
晚成巖階段:在深埋藏環(huán)境中,經(jīng)多期流體的沉淀形成的白云石膠結(jié)物,陰極發(fā)光下見(jiàn)明暗交替的環(huán)帶,粒徑可達(dá)粗晶級(jí)(圖5j—l)。顆粒之間可見(jiàn)較粗大的鞍形白云石(圖5m—o)。鞍形白云石呈珍珠狀或乳白色,晶體表面見(jiàn)微裂縫及解理發(fā)育,晶面彎曲,呈鐮刀狀或階梯狀,正交偏光下具有波狀消光特征,在陰極發(fā)光下呈斑駁狀紅色光。另外,對(duì)來(lái)自GS23井的2個(gè)白云巖樣品溶孔內(nèi)的粗晶白云石(自形或異形)膠結(jié)物中的包裹體進(jìn)行測(cè)溫,平均均一溫度為168 ℃(圖6),且上文所述的氧同位素偏負(fù)。這些特征均反映該階段有熱液作用形成的白云石膠結(jié)物。粗—巨晶白云石的體積分?jǐn)?shù)為5%~100%。
3.3"白云石膠結(jié)物結(jié)構(gòu)
不同類型的膠結(jié)物在殘余粒間孔隙或溶蝕孔洞中形成了三種不同的結(jié)構(gòu):內(nèi)襯狀、橋接狀和鑲嵌狀。內(nèi)襯狀膠結(jié)物為殘余孔隙與圍巖之間呈環(huán)帶發(fā)育的膠結(jié)物,多為細(xì)—粉晶白云石組成,成因常見(jiàn)兩種:一是同生成巖階段海水環(huán)境的環(huán)邊膠結(jié)物被云化,保留原始環(huán)邊結(jié)構(gòu)的白云石膠結(jié)物;二是早成巖階段溶蝕孔洞中沉淀在洞壁的白云石膠結(jié)物。前者陰極發(fā)光昏暗,后者可中等發(fā)光,環(huán)壁狀的膠結(jié)物能夠支撐殘余孔隙(圖5g—i)。橋接狀膠結(jié)物之間為點(diǎn)或線接觸,由細(xì)—粉晶和中晶白云石共同組成,與內(nèi)襯狀膠結(jié)物相比,殘余孔隙相對(duì)減少,但膠結(jié)物晶體間相互頂接亦對(duì)殘余孔隙有保護(hù)作用,形成時(shí)間晚于內(nèi)襯狀膠結(jié)物,陰極發(fā)光更多以明亮發(fā)光為特征(圖5d—f、j—l)。鑲嵌狀膠結(jié)物在孔隙中呈鑲嵌狀緊密接觸,包含所有粒徑的白云石,可在早成巖階段由細(xì)—粉晶白云石膠結(jié)形成,也可在晚成巖階段深埋藏環(huán)境中受熱液的不斷膠結(jié)形成。陰極發(fā)光亦可從昏暗變化至明亮發(fā)光。該類結(jié)構(gòu)對(duì)孔隙的充填程度高,殘余孔隙極少(圖5a—c、m—o)。
3.4"白云石膠結(jié)物發(fā)育特征
對(duì)GS23井的96個(gè)樣品按照不同巖性進(jìn)行統(tǒng)計(jì),分析了孔隙內(nèi)不同充填物(各粒級(jí)白云石膠結(jié)物、瀝青和石英)的體積分?jǐn)?shù),以及白云石膠結(jié)物三種結(jié)構(gòu)的體積分?jǐn)?shù),結(jié)果見(jiàn)圖7。結(jié)果表明,細(xì)—粉晶白云石和中晶白云石膠結(jié)物更易在顆粒白云巖中發(fā)育,且體積分?jǐn)?shù)較高,粗—巨晶白云石膠結(jié)物在顆粒白云巖中體積分?jǐn)?shù)較低,在晶粒白云巖中反之(圖7a—c、i—k)。瀝青及石英在顆粒和晶粒白云巖中體積分?jǐn)?shù)均較低(圖7d、e、l、m)。鑲嵌狀結(jié)構(gòu)在顆粒白云巖和晶粒白云巖中均較發(fā)育,顆粒白云巖內(nèi)中—粗晶白云石膠結(jié)物的體積分?jǐn)?shù)越大,則鑲嵌狀結(jié)構(gòu)越發(fā)育,但在晶粒白云巖內(nèi),各粒級(jí)膠結(jié)物的體積分?jǐn)?shù)均與該結(jié)構(gòu)發(fā)育有正相關(guān)性。內(nèi)襯狀結(jié)構(gòu)和橋接狀結(jié)構(gòu)更易在顆粒白云巖中發(fā)育,且隨細(xì)—粉晶白云石膠結(jié)物體積分?jǐn)?shù)的增大而更發(fā)育,但在晶粒白云巖中少見(jiàn)。具體特征如下。
顆粒白云巖中白云石膠結(jié)物三種結(jié)構(gòu)的發(fā)育頻率(發(fā)育某種結(jié)構(gòu)的顆粒白云巖樣品數(shù)/顆粒白云巖樣品總數(shù))以鑲嵌狀最大(89.5%,34片),橋接狀(73.7%,28片)、內(nèi)襯狀(55.2%,21片)稍低;且內(nèi)襯狀、橋接狀和鑲嵌狀結(jié)構(gòu)的體積分?jǐn)?shù)主要分別為0~15%、25%~50%和50%~100%(圖7f—h)。晶粒白云巖中白云石膠結(jié)物結(jié)構(gòu)較單一。內(nèi)襯狀(8.6%,5片)和橋接狀(22.4%,13片)發(fā)育頻率低,主要以鑲嵌狀為主(48.3%,28片),體積分?jǐn)?shù)也主要為50%~100%(圖7n—p)。
白云石膠結(jié)物的粒級(jí)與膠結(jié)物結(jié)構(gòu)的類型有相關(guān)性。對(duì)于顆粒白云巖:內(nèi)襯狀結(jié)構(gòu)的體積分?jǐn)?shù)與細(xì)—粉晶白云石膠結(jié)物體積分?jǐn)?shù)正相關(guān),與中晶白云石、粗-巨晶白云石膠結(jié)物的體積分?jǐn)?shù)負(fù)相關(guān)(圖8a—c),表明內(nèi)襯狀結(jié)構(gòu)主要由早期形成的晶粒較小的細(xì)—粉晶白云石膠結(jié)物構(gòu)成,后期圍繞先期細(xì)粉晶白云石膠結(jié)物繼續(xù)沉淀的白云石膠結(jié)物或單獨(dú)沉淀的中晶和粗—巨晶白云石膠結(jié)物破壞內(nèi)襯狀結(jié)構(gòu);橋接狀結(jié)構(gòu)體積分?jǐn)?shù)與各粒級(jí)白云石膠結(jié)物體積分?jǐn)?shù)的相關(guān)性與內(nèi)襯狀類似,但相關(guān)性有一定降低(圖8d—f);鑲嵌狀結(jié)構(gòu)體積分?jǐn)?shù)與中晶白云石、粗—巨晶白云石體積分?jǐn)?shù)正相關(guān),與細(xì)—粉晶白云石體積分?jǐn)?shù)負(fù)相關(guān)(圖8g—i),表明鑲嵌狀結(jié)構(gòu)的形成主要與中晶和粗—巨晶白云石膠結(jié)物體積分?jǐn)?shù)的增大有關(guān)。相對(duì)而言,晶粒白云巖中內(nèi)襯狀結(jié)構(gòu)和橋接狀結(jié)構(gòu)體積分?jǐn)?shù)與各粒徑白云石膠結(jié)物體積分?jǐn)?shù)無(wú)明顯的相關(guān)性(圖8j—o),但鑲嵌狀結(jié)構(gòu)體積分?jǐn)?shù)與各粒級(jí)白云石膠結(jié)物體積分?jǐn)?shù)有弱正相關(guān)性(圖8p—r)。上述特征可能是因?yàn)榫Я0自茙r溶蝕弱,孔隙少,流體更易先膠結(jié)完其孔隙,內(nèi)襯狀結(jié)構(gòu)和橋接狀結(jié)構(gòu)的近乎缺失,鑲嵌狀結(jié)構(gòu)更易發(fā)育。
3.5"膠結(jié)物對(duì)孔隙發(fā)育的影響
GS23井龍王廟組取心83.58 m(占地層厚度的91%)。對(duì)殘余孔隙具有保護(hù)作用的內(nèi)襯狀結(jié)構(gòu)和橋接狀結(jié)構(gòu)更易在顆粒白云巖發(fā)育。實(shí)測(cè)物性及測(cè)井解釋良好段與橋接狀結(jié)構(gòu)和內(nèi)襯狀結(jié)構(gòu)發(fā)育段具有一致性(圖9)。晶粒白云巖及顆粒白云巖的孔隙度均隨橋接狀結(jié)構(gòu)和內(nèi)襯狀結(jié)構(gòu)體積分?jǐn)?shù)的增大而升高,隨鑲嵌狀結(jié)構(gòu)體積分?jǐn)?shù)的增大而降低。以實(shí)測(cè)孔隙度與對(duì)應(yīng)深度薄片膠結(jié)物特征參數(shù)為例,在深度4 735.89、4 669.32、4 683.89 m,內(nèi)襯狀結(jié)構(gòu)體積分?jǐn)?shù)依次為0、30%、20%,橋接狀結(jié)構(gòu)體積分?jǐn)?shù)依次為0、70%、45%,鑲嵌狀結(jié)構(gòu)體積分?jǐn)?shù)依次為100%、0、35%,對(duì)應(yīng)孔隙度依次為3.5%、3.7%、4.8%(表1)。
綜合薄片參數(shù)和實(shí)測(cè)物性參數(shù),發(fā)育內(nèi)襯狀和橋接狀結(jié)構(gòu)為主的深度段孔隙度平均值為3.9%,發(fā)育鑲嵌狀結(jié)構(gòu)為主的深度段孔隙度平均值為2.6%,前者相對(duì)后者提升50.7%。
具體特征如下。
1)4 675 m~4 680 m,巖性為鮞粒白云巖,該段細(xì)粉晶白云石膠結(jié)物體積分?jǐn)?shù)高,內(nèi)襯狀結(jié)構(gòu)和橋接狀結(jié)構(gòu)發(fā)育。各薄片內(nèi)白云石膠結(jié)物結(jié)構(gòu)中內(nèi)襯狀體積分?jǐn)?shù)為10%~55%,平均值約為24%、橋接狀體積分?jǐn)?shù)為20%~35%,平均值約為29%、鑲嵌狀體積分?jǐn)?shù)為10%~70%,平均值約為47%。內(nèi)襯狀結(jié)構(gòu)和橋接狀結(jié)構(gòu)發(fā)育程度類似,鑲嵌狀結(jié)構(gòu)亦發(fā)育;孔隙度為1.0%~3.7%,平均值約為2.5%,透率平均值為0.4 mD,孔滲良好。
2)4 705 m~4 722 m,巖性為粉晶白云巖夾少量鮞粒白云巖或砂屑白云巖,白云石膠結(jié)物結(jié)構(gòu)中內(nèi)襯狀體積分?jǐn)?shù)為0~15%,平均值約為1%,橋接狀體積分?jǐn)?shù)為0~50%,平均值約為4%,鑲嵌狀體積分?jǐn)?shù)為35%~100%,平均值約為94%;孔隙度為0.4%~6.2%,平均值約為2.0%。滲透率平均值約為1.3 mD,孔滲較差。
3.6"孔隙發(fā)育模式
不同成巖階段和成巖環(huán)境形成各粒級(jí)的膠結(jié)物,并在孔隙中形成不同的膠結(jié)物結(jié)構(gòu),其類型和體積分?jǐn)?shù)對(duì)殘余孔隙的有效性有不同的作用和意義:同生成巖階段及早成巖階段可形成內(nèi)襯狀和橋接狀結(jié)構(gòu)保護(hù)殘余孔隙(圖10a—d),局部可形成對(duì)殘余孔隙具有破壞作用的鑲嵌狀結(jié)構(gòu);中成巖階段和晚成巖階段主要形成鑲嵌狀結(jié)構(gòu),局部發(fā)育橋接狀結(jié)構(gòu)(圖10e)。
研究區(qū)龍王廟組孔隙演化的主要地質(zhì)過(guò)程為:石灰?guī)r完全白云石化、溶蝕→細(xì)粉晶白云石膠結(jié)→圍繞細(xì)—粉晶白云石繼續(xù)沉淀、膠結(jié)→石英、瀝青、中晶白云石充填→粗—巨晶白云石(熱液)封堵。以孔隙主要發(fā)育的顆粒白云巖為例,在同生成巖階段至早成巖階段,灰質(zhì)沉積物經(jīng)滲透回流白云石化作用并受短期高頻旋回的暴露溶蝕形成孔隙(圖10f—g)。淺埋藏環(huán)境中溶蝕孔隙內(nèi)主要膠結(jié)細(xì)—粉晶白云石(圖10h),后期見(jiàn)圍繞細(xì)粉晶白云石繼續(xù)沉淀(圖10i),主要形成內(nèi)襯狀和橋接狀結(jié)構(gòu)。中埋藏環(huán)境中,白云石化流體不斷改造,殘余孔隙內(nèi)沉淀的白云石增多,礦物粒徑增大,發(fā)育橋接狀結(jié)構(gòu)(圖10j)。深埋藏環(huán)境中熱液(圖10k—l)進(jìn)一步膠結(jié),殘余孔隙內(nèi)白云石主要呈鑲嵌狀緊密排列,孔隙度降低。
4"結(jié)論
1)白云石膠結(jié)物晶體粒徑有細(xì)—粉晶、中晶和粗—巨晶,形態(tài)上有半菱形、菱形、環(huán)帶狀、鞍狀等,并形成了內(nèi)襯狀、橋接狀、鑲嵌狀三種結(jié)構(gòu)。白云巖孔隙中內(nèi)襯狀結(jié)構(gòu)最不發(fā)育(發(fā)育頻率為8.6%~55.2%),橋接狀結(jié)構(gòu)發(fā)育中等(22.4%~73.7%),鑲嵌狀結(jié)構(gòu)最為發(fā)育(48.3%~89.5%),三種結(jié)構(gòu)體積分?jǐn)?shù)分別為0~15%、25%~50%和50%~100%。鑲嵌狀結(jié)構(gòu)發(fā)育程度與中晶及以上粒徑的白云石膠結(jié)物體積分?jǐn)?shù)呈正相關(guān);內(nèi)襯狀結(jié)構(gòu)和橋接狀結(jié)構(gòu)發(fā)育程度與細(xì)—粉晶白云石的體積分?jǐn)?shù)正相關(guān),與中粗晶、巨晶白云石體積分?jǐn)?shù)負(fù)相關(guān)。
2)白云石膠結(jié)物均傾向于封堵破壞殘余孔隙,但其形成三種結(jié)構(gòu)對(duì)孔隙有不同的影響。內(nèi)襯狀和橋接狀結(jié)構(gòu)有利于保護(hù)殘余孔隙,而鑲嵌狀結(jié)構(gòu)破壞殘余孔隙。發(fā)育內(nèi)襯狀和橋接狀結(jié)構(gòu)為主的深度段平均孔隙度可提高約50%(相對(duì)主要發(fā)育鑲嵌狀結(jié)構(gòu))。
3)同生成巖階段及早成巖階段的白云石化和溶蝕是形成孔隙的基礎(chǔ),此階段沉淀的細(xì)—粉晶白云石膠結(jié)物可形成保護(hù)殘余孔隙的內(nèi)襯狀和橋接狀結(jié)構(gòu)。中成巖階段沉淀的白云石粒徑開(kāi)始增大,主要形成橋接狀結(jié)構(gòu),晚成巖階段沉淀的粗—巨晶熱液白云石致使孔隙幾乎完全被充填,主要形成鑲嵌狀結(jié)構(gòu)。
參考文獻(xiàn)(References):
[1] 李璐萍, 梁金同, 劉四兵, 等. 川中地區(qū)寒武系洗象池組白云巖儲(chǔ)層成巖作用及孔隙演化[J]. 巖性油氣藏, 2022,34(3):39-48.
Li Luping, Liang Jintong, Liu Sibing, et al. Dolomite Reservoirs of Cambrian Xixiangchi Formation in Central Sichuan Basin[J]. Lithologic Reservoirs, 2022,34(3):39-48.
[2] 劉詩(shī)琦, 陳森然, 劉波, 等. 基于原位溶蝕模擬實(shí)驗(yàn)的四川盆地二疊系棲霞組—茅口組白云巖孔隙演化[J]. 石油與天然氣地質(zhì), 2021,42(3):702-716.
Liu Shiqi, Chen Senran, Liu Bo, et al. Pore Evolution of the Permian Qixia-Maokou Formations Dolomite in Sichuan Basin Based on In-Situ Dissolution Simulation Experiment[J]. Oil amp; Gas Geology, 2021,42(3):702-716.
[3] 鄭劍鋒, 沈安江, 楊翰軒, 等. 塔里木盆地西北緣震旦系微生物白云巖地球化學(xué)、年代學(xué)特征及其地質(zhì)意義[J]. 巖石學(xué)報(bào), 2021,37(7):2189-2202.
Zheng Jianfeng, Shen Anjiang, Yang Hanxuan, et al. Geochemistry and Geochronology Characteristics and Their Geological Significance of Microbial Dolomite in Upper Sinian, NW Tarim Basin[J]. Acta Petrologica Sinica, 2021,37(7):2189-2202.
[4] 劉大衛(wèi), 蔡春芳, 扈永杰, 等. 深層白云巖多期白云石化及其對(duì)孔隙演化的影響:以川中地區(qū)下寒武統(tǒng)龍王廟組為例[J]. 中國(guó)礦業(yè)大學(xué)學(xué)報(bào), 2020,49(6):1150-1165.
Liu Dawei, Cai Chunfang, Hu Yongjie, et al. Multistage Dolomitization Process of Deep Burial Dolostones and Its Influence on Pore Evolution:A Case Study of Longwangmiao Formation in the Lower Cambrian of Central Sichuan Basin[J]. Journal of China University of Mining amp; Technology, 2020,49(6):1150-1165.
[5] Weyl P K. Porosity Through Dolomitization Conservation of Mass Requirements[J]. Journal of Sedimentary Research, 1960,30(1):85-90.
[6] Murray R C, Pray L C. Dolomitization and Limestone Diagenesis an Introduction[J]. Special Publications, 1965,13:1-2.
[7] Halley R B, Schmoker J W. High-Porosity Cenozoic Carbonate Rocks of South Florida: Progressive Loss of Porosity with Depth[J]. AAPG Bulletin, 1983,67(2):191-200.
[8] Lucia F J, Major R P. Porosity Evolution Through Hypersaline Reflux Dolomitization[M]//Bruce P,Maurice T,Donald Z. Dolomites: A Volume in Honour of Dolomieu. Oxford: Blackwell, 1994: 325-341.
[9] Melzer S E, Budd D A. Retention of High Permeability During Shallow Burial (300 to 500 m) of Carbonate Gramstones[J]. Journal of Sedimentary Research, 2008,78(7/8):548-561.
[10] 畢義泉, 田海芹. 論泥晶套與次生白云巖原巖結(jié)構(gòu)特征的恢復(fù)及意義[J]. 巖石學(xué)報(bào), 2001,17(3):491-496.
Bi Yiquan, Tian Haiqin. On the Micrite Envelope to Restoration of Primary Texture Character of Secondary Dolomites and Its Significance[J]. Acta Petrologica Sinica, 2001,17(3):491-496.
[11] Heydari E V C J. Porosity Loss, Fluid Flow, and Mass Transfer in Limestone Reservoirs: Application to the Upper Jurassic Smackover Formation, Mississippi[J]. AAPG Bulletin, 2000,84(1):100-118.
[12] 周躍宗, 雷卞軍, 趙永剛, 等. 川中川南過(guò)渡帶嘉二段成巖作用及其儲(chǔ)層發(fā)育[J]. 西南石油學(xué)院學(xué)報(bào), 2006,46(2):11-15.
Zhou Yuezong, Lei Bianjun, Zhao Yonggang, et al. Diagenesis in the 2-Section of Jialingjiang of the Transitioned Zone Between the Center Part and the Southern Part of Sichuan Basin Andits Effect to Reservoir Development[J]. Journal of Southwest Petroleum Institute, 2006,46(2):11-15.
[13] Moore C H. Carbonate Reservoirs:Porosity Evolution and Diagenesis in a Sequence Stratigraphic Framework[M]. San Diego: Elsevier Science, 2001: 460.
[14] Wagner P D, Matthews R K. Porosity Preservation in the Upper Smackover (Jurassic) Carbonate Grainstone, Walker Creek Field, Arkansas; Response of Paleophreatic Lenses to Burial Processes[J]. Journal of Sedimentary Research, 1982,52(1):3-18.
[15] Heydari E. Meteoric Versus Burial Control on Porosity Evolution of the Smackover Formation[J]. AAPG Bulletin, 2003,87(11):1779-1797.
[16] Croizé D, Ehrenberg S N, Bjrlykke K, et al. Petrophysical Properties of Bioclastic Platform Carbonates: Implications for Porosity Controls During Burial[J]. Marine and Petroleum Geology, 2010,27(8):1765-1774.
[17] Sun S Q. Dolomite Reservoirs: Porosity Evolution and Reservoir Characteristics[J]. AAPG Bulletin, 1995,79(2):186-204.
[18] Keramati M, Moallemi S A, Eberli G P, et al. Porosity-Permeability Relationships in Interlayered Limestone-Dolostone Reservoirs[J]. AAPG Bulletin, 2006,90(1):91-114.
[19] Amthor J E, Mountjoy E W, Machel H G. Regional-Scale Porosity and Permeability Variations in Upper Devonian Leduc Buildups: Implications for Reservoir Development and Prediction in Carbonates[J]. AAPG Bulletin, 1994,78(10):1541-1559.
[20] 張學(xué)豐, 石開(kāi)波, 劉波, 等. 保持性成巖作用與深部碳酸鹽巖儲(chǔ)層孔隙的保存[J]. 地質(zhì)科技情報(bào), 2014,33(2):80-85.
Zhang Xuefeng, Shi Kaibo, Liu Bo, et al. Retention Processes and Porosity Preservation in Deep Carbonate Reservoirs[J]. Geological Science and Technology Information, 2014,33(2):80-85.
[21] 鄒才能, 杜金虎, 徐春春, 等. 四川盆地震旦系—寒武系特大型氣田形成分布、資源潛力及勘探發(fā)現(xiàn)[J]. 石油勘探與開(kāi)發(fā), 2014,41(3):278-293.
Zou Caineng, Du Jinhu, Xu Chunchun, et al. Formation,Distribution,Resource Potential and Discovery of the Sinian-Cambrian Giant Gas Field,Sichuan Basin,SW China[J]. Petroleum Exploration and Development, 2014,41(3):278-293.
[22] 杜金虎, 鄒才能, 徐春春, 等. 川中古隆起龍王廟組特大型氣田戰(zhàn)略發(fā)現(xiàn)與理論技術(shù)創(chuàng)新[J]. 石油勘探與開(kāi)發(fā), 2014,41(3):268-277.
Du Jinhu, Zou Caineng, Xu Chunchun, et al. Theoretical and Technical Innovations in Strategic Discovery of Agiant Gas Field in Cambrian Longwangmiao Formation of Central Theoretical and Technical Innovations in Strategic Discovery of Agiant Gas Field in Cambrian Longwangmiao Formation of Central Sichuan Paleo-Uplift, Sichuan Basin[J]. Petroleum Exploration and Development, 2014,41(3):268-277.
[23] 魏國(guó)齊, 杜金虎, 徐春春, 等. 四川盆地高石梯—磨溪地區(qū)震旦系—寒武系大型氣藏特征與聚集模式[J]. 石油學(xué)報(bào), 2015,36(1):1-12.
Wei Guoqi, Du Jinhu, Xu Chunchun, et al. Characteristics and Accumulation Modes of Large Gas Reservoirs in Sinian-Cambrian of Gaoshiti-Moxi Region,Sichuan Basin[J]. Acta Petrolei Sinica, 2015,36(1):1-12.
[24] 郝彬, 趙文智, 胡素云, 等. 川中地區(qū)寒武系龍王廟組瀝青成因與油氣成藏史[J]. 石油學(xué)報(bào), 2017,38(8):863-875.
Hao Bin, Zhao Wenzhi ,Hu Suyun, et al. Bitumen Genesis and Hydrocarbon Accumulation History of the Cambrian Longwangmiao Formation in Central Sichuan Basin[J]. Acta Petrolei Sinica, 2017,38(8):863-875.
[25] 邢夢(mèng)妍, 胡明毅, 高達(dá), 等. 高磨地區(qū)龍王廟組灘相儲(chǔ)層特征及主控因素[J]. 桂林理工大學(xué)學(xué)報(bào), 2017,37(1):37-46.
Xing Mengyan, Hu Mingyi, Gao Da, et al. Characteristics and Main Controlling Factors of Lower Cambrian Longwangmiao Formation Beach-Facies Reservoirs in Gaoshiti-Moxi Area, Central Sichuan Basin[J]. Journal of Guilin University of Technology, 2017,37(1):37-46.
[26] 楊雪飛, 王興志, 代林呈, 等. 川中地區(qū)下寒武統(tǒng)龍王廟組沉積相特征[J]. 巖性油氣藏, 2015,27(1):95-101.
Yang Xuefei, Wang Xingzhi, Dai Lincheng, et al. Sedimentary Features of the Lower Cambrian Longwangmiao Formation in the Central Sichuan Basin[J]. Lithologic Reservoirs, 2015,27(1):95-101.
[27] 韓波, 李新, 鐘曉勤, 等. 中上揚(yáng)子地區(qū)龍王廟組儲(chǔ)層特征及白云石化作用[J]. 西安石油大學(xué)學(xué)報(bào)(自然科學(xué)版), 2021,36(1):1-12.
Han Bo, Li "Xin, Zhong Xiaoqin, et al. Reservoir Characteristics and Dolomitization of Carbonate in Lower Cambrian Longwangmiao Formation in the Middle and Upper Yangtze Area[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2021,36(1):1-12.
[28] 余晶潔, 宋金民, 劉樹(shù)根, 等. 川東北地區(qū)下寒武統(tǒng)龍王廟組白云巖成因分析[J]. 沉積學(xué)報(bào), 2020,38(6):1284-1295.
Yu Jingjie, Song Jinmin, Liu Shugen, et al. Genesis of Dolomite in the Lower Cambrian Longwangmiao Formation,Northeastern Sichuan """"Basin[J]. Acta Sedimentologica Sinica, 2020,38(6):1284-1295.
[29] 謝武仁, 楊威, 李熙喆, 等. 四川盆地川中地區(qū)寒武系龍王廟組顆粒灘儲(chǔ)層成因及其影響[J]. 天然氣地球科學(xué), 2018,29(12):1715-1726.
Xie Wuren, Yang Wei, Li Xizhe, et al. The Origin and Influence of the Grain Beach Reservoirs of Cambrian Longwangmiao Formation in Central Sichuan Area, Sichuan Basin[J]. Natural Gas Geoscience, 2018,29(12):1715-1726.
[30] 張?zhí)旄叮?付小東, 李文正, 等. 四川盆地安岳特大型氣田不同產(chǎn)能狀態(tài)下龍王廟組的儲(chǔ)層特征[J]. 石油學(xué)報(bào), 2020,41(9):1049-1059,1116.
Zhang Tianfu, Fu Xiaodong, Li Wenzheng, et al. Reservoir Characteristics of Longwangmiao Formation Under Different Productivity Conditions in the Anyue Giant Gas Field,Sichuan Basin[J]. Acta Petrolei Sinica, 2020,41(9):1049-1059,1116.
[31] 林雪梅, 袁海鋒, 朱聯(lián)強(qiáng), 等. 川中安岳構(gòu)造寒武系龍王廟組油氣成藏史[J]. 地質(zhì)學(xué)報(bào), 2020,94(3):916-930.
Lin Xuemei, Yuan Haifeng, Zhu Lianqiang, et al. Hydrocarbon Accumulation History of the Cambrian Longwangmiao Formation in the Anyue Structure of the Central Sichuan Basin[J]. Acta Geologica Sinica, 2020,94(3):916-930.
[32] 王東, 王海軍, 王瑩, 等. 川西南井研地區(qū)龍王廟組儲(chǔ)層特征及主控因素[J]. 斷塊油氣田, 2022,29(1):14-19.
Wang Dong, Wang Haijun, Wang Ying, et al. Reservoirs Characteristics and Main Controlling Factors of Longwangmiao Formation in Jingyan Area,Southwestern Sichuan Basin[J]. Fault-Block Oil amp; Gas Field, 2022,29(1):14-19.
[33] 金民東, 曾偉, 譚秀成, 等. 四川磨溪—高石梯地區(qū)龍王廟組灘控巖溶型儲(chǔ)集層特征及控制因素[J]. 石油勘探與開(kāi)發(fā), 2014,41(6):650-660.
Jin Mindong, Zeng Wei, Tan Xiucheng, et al. Characteristics and Controlling Factors of Beach-Controlled Karst Reservoirs in Cambrian Longwangmiao Formation,Moxi-Gaoshiti Area,Sichuan Basin,NW China[J]. Petroleum Exploration and Development, 2014,41(6):650-660.
[34] 楊曦冉, 曹脊翔, 肖伯夷, 等. 四川盆地簡(jiǎn)陽(yáng)地區(qū)須家河組斷縫體油氣成藏特征分析[J]. 地質(zhì)科學(xué), 2025,60(1):78-89.
Yang Xiran, Cao Jixiang, Xiao Boyi, et al. Analysis of Hydrocarbon Accumulation Characteristics of Fault-Fracture Reservoirs in Xujiahe Formation in Jianyang Area, Sichuan Basin[J]. Chinese Journal of Geology, 2025,60 (1):78-89.
[35] 劉樹(shù)根, 鄧賓, 孫瑋, 等. 四川盆地:周緣活動(dòng)主控下形成的疊合盆地[J]. 地質(zhì)科學(xué), 2018,53(1):308-326.
Liu Shugen, Deng Bin, Sun Wei, et al. Sichuan Basin: A Superimposed Sedimentary Basin Mainly Controlled by Its Peripheric Tectonics[J]. Chinese Journal of Geology, 2018,53(1):308-326.
[36] 張滿郎, 謝增業(yè), 李熙喆, 等. 四川盆地寒武紀(jì)巖相古地理特征[J]. 沉積學(xué)報(bào), 2010,28(1):128-139.
Zhang Manlang, Xie Zengye, Li Xizhe, et al. Characteristics of Lithofacies Paleogeography of Cambrian in Sichuan Basin[J]. Acta Sedimentologica Sinica, 2010,28(1):128-139.
[37] 劉泠杉, 胡明毅, 高達(dá), 等. 四川磨溪—高石梯地區(qū)龍王廟組層序劃分及儲(chǔ)層預(yù)測(cè)[J]. 大慶石油地質(zhì)與開(kāi)發(fā), 2016,35(5):42-47.
Liu Lingshan, Hu Mingyi, Gao Da, et al. Sequence Strata and Reservoir Prediction for Longwangmiao Formation in Sichuan Moxi-Gaoshiti Area[J]. Petroleum Geology amp; Oilfield Development in Daqing, 2016,35(5):42-47.
[38] 高達(dá), 胡明毅, 李安鵬, 等. 川中地區(qū)龍王廟組高頻層序與沉積微相及其對(duì)有利儲(chǔ)層的控制[J]. 地球科學(xué), 2021,46(10):3520-3534.
Gao Da, Hu Mingyi, Li Anpeng, et al. High-Frequency Sequence and Microfacies and Their lmpacts on Favorable Reservoir of Longwangmiao Formation in Central Sichuan Basin[J]. Earth Science, 2021,46(10):3520-3534.
[39] 韓波, 何治亮, 任娜娜, 等. 四川盆地東緣龍王廟組碳酸鹽巖儲(chǔ)層特征及主控因素[J]. 巖性油氣藏, 2018,30(1):75-85.
Han Bo, He Zhiliang, Ren Nana, et al. Characteristics and Main Controlling Factors of Carbonate Reservoirs of Longwangmiao Formation in Eastern Sichuan Basin[J]. Lithologic Reservoirs, 2018,30(1):75-85.