摘要: 動(dòng)響應(yīng)靈敏度分析廣泛應(yīng)用于轉(zhuǎn)子模型修正、參數(shù)識(shí)別和結(jié)構(gòu)優(yōu)化等問(wèn)題。本文提出了一種基于多復(fù)域攝動(dòng)的轉(zhuǎn)子動(dòng)響應(yīng)一階、二階和混合靈敏度分析方法。分別在兩個(gè)復(fù)數(shù)方向?qū)υO(shè)計(jì)參數(shù)進(jìn)行攝動(dòng),得到雙復(fù)數(shù)域的轉(zhuǎn)子系統(tǒng)動(dòng)力學(xué)方程,運(yùn)用柯西?黎曼矩陣將復(fù)數(shù)運(yùn)動(dòng)方程擴(kuò)維得到等價(jià)實(shí)數(shù)運(yùn)動(dòng)方程,求解等價(jià)實(shí)數(shù)運(yùn)動(dòng)方程,從而同時(shí)得到系統(tǒng)響應(yīng)、一階靈敏度和二階靈敏度,并獲得動(dòng)響應(yīng)靈敏度的Hessian矩陣。以單盤(pán)轉(zhuǎn)子系統(tǒng)和燃?xì)獍l(fā)生器轉(zhuǎn)子系統(tǒng)為研究對(duì)象進(jìn)行數(shù)值仿真分析,驗(yàn)證所提轉(zhuǎn)子動(dòng)響應(yīng)靈敏度分析方法的正確性。相較于傳統(tǒng)的有限差分法,多復(fù)域攝動(dòng)法對(duì)攝動(dòng)步長(zhǎng)引起誤差的不敏感,求解精度更高。
關(guān)鍵詞: 轉(zhuǎn)子動(dòng)響應(yīng); 多復(fù)域攝動(dòng)法; 二階靈敏度; 混合靈敏度
中圖分類(lèi)號(hào): O347.6 " "文獻(xiàn)標(biāo)志碼: A " "文章編號(hào): 1004-4523(2025)03-0469-11
DOI:10.16385/j.cnki.issn.1004-4523.2025.03.003
Multi-complex domain perturbation method for sensitivity analysis of rotor dynamic response
JIANG Dong1, WANG Zhenlu1, QIAN Hui1, HANG Xiaochen1, CAO Zhifu2, ZHU Rui3
(1.School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China;
2.College of Aerospace Engineering, Chongqing University, Chongqing 400044, China;
3.School of Engineering and Design, Technical University of Munich, Munich 80539, Germany)
Abstract: Rotor dynamic response sensitivity analysis is widely used in rotor model updating, parameter identification and structural optimization. In this paper, a first-order, second-order and mixed sensitivity analysis method for dynamic response of rotor system based on multi-complex domain perturbation method is proposed. The design parameters are perturbed in two complex directions respectively, and the motion equation of the rotor system in the double complex domain is obtained. Using the real matrix expression of the complex number, the complex motion equation is extended to obtain the equivalent real motion equation. By solving the equivalent real motion equation, the system response, first-order sensitivity and second-order sensitivity can be obtained simultaneously, and the Hessian matrix of dynamic response sensitivity can also be obtained. The numerical simulation analysis of single-disk rotor system and gas generator rotor system is carried out to verify the correctness of the rotor dynamic response sensitivity analysis method of multi-complex domain perturbation method. Compared with the traditional finite difference method, the multi-complex domain perturbation method shows insensitivity to the error caused by the perturbation step size, and the solution accuracy is higher.
Keywords: rotor dynamic response;multi-complex domain perturbation method;second-order sensitivity;mixed sensitivity
轉(zhuǎn)子動(dòng)響應(yīng)靈敏度可定量反映設(shè)計(jì)參數(shù)變化對(duì)動(dòng)響應(yīng)的影響,在轉(zhuǎn)子系統(tǒng)模型修正[1?3]、參數(shù)識(shí)別[4?5]和動(dòng)力學(xué)優(yōu)化[6]等問(wèn)題中至關(guān)重要。轉(zhuǎn)子系統(tǒng)在實(shí)際運(yùn)行時(shí)經(jīng)常會(huì)伴隨著噪聲以及系統(tǒng)自身的振動(dòng)[7],高效準(zhǔn)確的轉(zhuǎn)子動(dòng)響應(yīng)靈敏度分析至關(guān)重要。
轉(zhuǎn)子系統(tǒng)研制是一個(gè)迭代和多學(xué)科的過(guò)程[8?11],轉(zhuǎn)子響應(yīng)對(duì)參數(shù)靈敏度分析是動(dòng)力學(xué)優(yōu)化設(shè)計(jì)的前提。PUGACHEV[8]在轉(zhuǎn)子系統(tǒng)輕量化設(shè)計(jì)優(yōu)化中應(yīng)用基于梯度的優(yōu)化方法,以某典型渦輪轉(zhuǎn)子系統(tǒng)為例,利用伴隨矩陣法進(jìn)行了靈敏度分析。蘇長(zhǎng)青等[12]推導(dǎo)了三盤(pán)轉(zhuǎn)子系統(tǒng)隨機(jī)響應(yīng)和動(dòng)響應(yīng)靈敏度公式,分析了轉(zhuǎn)子系統(tǒng)設(shè)計(jì)參數(shù)對(duì)響應(yīng)的影響。潘宏剛等[13]針對(duì)汽輪機(jī)組中轉(zhuǎn)子質(zhì)量和質(zhì)心位置變化導(dǎo)致臨界轉(zhuǎn)速變化影響系統(tǒng)運(yùn)行的問(wèn)題,運(yùn)用靈敏度分析方法分析參數(shù)變化對(duì)臨界轉(zhuǎn)速的影響,指導(dǎo)現(xiàn)場(chǎng)調(diào)試。TAHERKHANI等[14]采用基于靈敏度分析進(jìn)行參數(shù)選擇方法和合適的采樣方法進(jìn)行隨機(jī)模型修正,研究了復(fù)雜渦輪壓縮機(jī)轉(zhuǎn)子?軸承系統(tǒng)動(dòng)態(tài)特性,獲得了理想的參數(shù)識(shí)別結(jié)果。WANG等[15]對(duì)柔性轉(zhuǎn)子系統(tǒng)的前兩階臨界轉(zhuǎn)速進(jìn)行了靈敏度分析,提高了優(yōu)化效率,縮短了設(shè)計(jì)周期。CHEN等[16]研究發(fā)現(xiàn)應(yīng)用靈敏度分析方法能夠快速選取相應(yīng)的軸系節(jié)點(diǎn)及參數(shù)以進(jìn)行修正,在模型修正過(guò)程中起到良好的作用??梢?jiàn)靈敏度分析在轉(zhuǎn)子系統(tǒng)優(yōu)化設(shè)計(jì)、模型修正等問(wèn)題中具有十分重要的地位。
靈敏度分析方法主要包括:直接微分法、有限差分法和復(fù)變量求導(dǎo)法。直接積分法是求解靈敏度最直接的方法,它是通過(guò)求解時(shí)域動(dòng)響應(yīng)對(duì)系統(tǒng)參數(shù)的導(dǎo)數(shù)來(lái)計(jì)算。CAO等[17?19]推導(dǎo)了直接微分法的時(shí)域響應(yīng)靈敏度,通過(guò)最小化測(cè)量響應(yīng)和計(jì)算響應(yīng)之間的殘差進(jìn)行模型修正。陳敏等[2]利用有限差分獲得的一階參數(shù)靈敏度,使用增強(qiáng)響應(yīng)靈敏度法進(jìn)行參數(shù)識(shí)別。BAYBORDI等[20]將動(dòng)響應(yīng)靈敏度計(jì)算轉(zhuǎn)換為求解頻響函數(shù)靈敏度問(wèn)題,再通過(guò)傅里葉逆變換得到時(shí)域動(dòng)響應(yīng)靈敏度,并應(yīng)用于模型修正與損傷識(shí)別。劉廣等[21]將通過(guò)直接微分法得到非線性系統(tǒng)時(shí)域響應(yīng)對(duì)物理參數(shù)的靈敏度矩陣用于參數(shù)識(shí)別反問(wèn)題。胡智強(qiáng)等[22]和張磊等[23]先后研究了靈敏度計(jì)算過(guò)程中微分和離散的先后順序造成的響應(yīng)靈敏度的一致性誤差。復(fù)變量求導(dǎo)法的突出特點(diǎn)是以較小的步長(zhǎng)沿著虛軸對(duì)設(shè)計(jì)參數(shù)進(jìn)行擾動(dòng),導(dǎo)數(shù)由不做減法運(yùn)算的虛部響應(yīng)得到。因此,該方法對(duì)攝動(dòng)步長(zhǎng)不敏感,結(jié)果精度高[24]。LANTOINE等[25]將復(fù)變量微分法擴(kuò)展為廣義多復(fù)數(shù)步長(zhǎng)法,用于計(jì)算全純函數(shù)的任意高階導(dǎo)數(shù)。GARZA等[24]運(yùn)用多復(fù)域Newmark?β時(shí)間積分法計(jì)算簡(jiǎn)單結(jié)構(gòu)響應(yīng)一階、二階靈敏度,并說(shuō)明此方法精度高且便捷。田宇等[26]使用復(fù)變量求導(dǎo)法求解頻響函數(shù)靈敏度,解決了頻響函數(shù)本身存在復(fù)域時(shí)無(wú)法使用復(fù)變量求導(dǎo)法的問(wèn)題。
本文提出一種基于多復(fù)域攝動(dòng)法的轉(zhuǎn)子系統(tǒng)動(dòng)響應(yīng)一階、二階和混合靈敏度分析方法。對(duì)設(shè)計(jì)參數(shù)在兩個(gè)不同復(fù)域上分別進(jìn)行參數(shù)攝動(dòng)得到雙復(fù)數(shù)運(yùn)動(dòng)方程,使用復(fù)數(shù)在實(shí)數(shù)域的矩陣表達(dá)將復(fù)數(shù)方程轉(zhuǎn)化為實(shí)數(shù)域上擴(kuò)維后的方程,最終通過(guò)Newmark?β法求解擴(kuò)維后的實(shí)數(shù)域運(yùn)動(dòng)方程,同時(shí)得到原響應(yīng)、一階靈敏度、二階靈敏度和混合靈敏度。以單盤(pán)轉(zhuǎn)子系統(tǒng)、燃?xì)獍l(fā)生器模擬轉(zhuǎn)子為例,使用本文方法計(jì)算轉(zhuǎn)子動(dòng)響應(yīng)的一階靈敏度、二階靈敏度和混合靈敏度,并在燃發(fā)轉(zhuǎn)子算例中用本文方法求解Hessian矩陣。以直接微分法結(jié)果作為動(dòng)響應(yīng)靈敏度的近似準(zhǔn)確值,將多復(fù)域攝動(dòng)法與有限差分法的結(jié)果進(jìn)行誤差比較,證明本文方法的可行性和準(zhǔn)確性。
1 理論基礎(chǔ)
1.1 多復(fù)域攝動(dòng)法與復(fù)數(shù)的實(shí)數(shù)矩陣表達(dá)
1.1.1 一階靈敏度
復(fù)變量求導(dǎo)法是一種計(jì)算精度高且不受攝動(dòng)步長(zhǎng)影響的數(shù)值靈敏度求解方法,該方法在單復(fù)域上進(jìn)行攝動(dòng)求解一階靈敏度,其單復(fù)數(shù)的定義為:
式中,s_i^c表示每個(gè)時(shí)間點(diǎn)靈敏度計(jì)算值;si p表示每個(gè)時(shí)間點(diǎn)靈敏度的精確值;N_ω為總的時(shí)間節(jié)點(diǎn)數(shù)數(shù)目。
圖4為有限差分法和多復(fù)域攝動(dòng)法在不同攝動(dòng)系數(shù)下一、二階靈敏度分析結(jié)果誤差,隨著攝動(dòng)系數(shù)數(shù)量級(jí)的減小求解的靈敏度精度逐漸提高。求解一階靈敏度誤差結(jié)果顯示,有限差分法在攝動(dòng)系數(shù)為10-3時(shí)達(dá)到最準(zhǔn)確結(jié)果,誤差的數(shù)量級(jí)能達(dá)到10-6;多復(fù)域攝動(dòng)法的相對(duì)誤差在攝動(dòng)系數(shù)為10-5時(shí)達(dá)到最準(zhǔn)確結(jié)果,誤差的數(shù)量級(jí)能達(dá)到10-13。二階靈敏度誤差結(jié)果顯示,有限差分法在攝動(dòng)系數(shù)為10-2時(shí)達(dá)到最準(zhǔn)確結(jié)果,誤差的數(shù)量級(jí)為10-3;多復(fù)域攝動(dòng)法的相對(duì)誤差在攝動(dòng)系數(shù)為10-6時(shí)達(dá)到最準(zhǔn)確結(jié)果,誤差的數(shù)量級(jí)能達(dá)到10-13。多復(fù)域攝動(dòng)法的最小誤差遠(yuǎn)小于有限差分法的最小誤差,多復(fù)域攝動(dòng)法具有更高的精度。
2.2 燃?xì)獍l(fā)生器模擬轉(zhuǎn)子
參考真實(shí)航空發(fā)動(dòng)機(jī)構(gòu)造燃?xì)獍l(fā)生器模擬轉(zhuǎn)子如圖5(a)所示。由于主要研究轉(zhuǎn)子振動(dòng)問(wèn)題,忽略氣動(dòng)性能,去除了葉片等部件。
模擬轉(zhuǎn)子主要由五級(jí)輪盤(pán)和中心拉桿組成。外部從左至右分別為壓氣機(jī)一級(jí)盤(pán)、二級(jí)盤(pán)、三級(jí)盤(pán)、離心葉輪盤(pán)和燃?xì)鉁u輪盤(pán),由內(nèi)部的中心拉桿壓緊固定;支承位置位于轉(zhuǎn)子的兩端。
模擬轉(zhuǎn)子有限元模型采用Timoshenko梁?jiǎn)卧?,各部分的模型參?shù)如表2所示。五級(jí)輪盤(pán)劃分為21個(gè)軸段,22個(gè)節(jié)點(diǎn),節(jié)點(diǎn)編號(hào)從左到右依次為1~22,各軸段參數(shù)如表3所示;考慮盤(pán)單元的轉(zhuǎn)動(dòng)慣量和陀螺效應(yīng),簡(jiǎn)化為集中質(zhì)量點(diǎn)添加到輪盤(pán)軸段對(duì)應(yīng)節(jié)點(diǎn)處,如圖5(b)所示。
簡(jiǎn)化后盤(pán)集中質(zhì)量點(diǎn)參數(shù)如表4所示。其中離心葉輪盤(pán)沿軸向分布距離較長(zhǎng),且半徑變化較大,將其簡(jiǎn)化為兩個(gè)盤(pán)單元。中心拉桿被劃分為15個(gè)軸段,16個(gè)節(jié)點(diǎn),節(jié)點(diǎn)編號(hào)從左到右依次為1~16,各參數(shù)如表5所示。根據(jù)燃?xì)獍l(fā)生器轉(zhuǎn)子的實(shí)際配合關(guān)系,五級(jí)輪盤(pán)梁模型的節(jié)點(diǎn)5、節(jié)點(diǎn)14、節(jié)點(diǎn)15、節(jié)點(diǎn)20分別與中心拉桿的節(jié)點(diǎn)1、節(jié)點(diǎn)9、節(jié)點(diǎn)10、節(jié)點(diǎn)16采用近似剛性連接。綜上所述,所建立的燃?xì)獍l(fā)生器模擬轉(zhuǎn)子的有限元模型共有36個(gè)軸段、38個(gè)節(jié)點(diǎn)。系統(tǒng)阻尼采用瑞利阻尼,計(jì)算方法同式(22)。兩側(cè)支承以彈簧模擬,其剛度分別為17 kN/mm、25 kN/mm。
以左支承剛度為目標(biāo)參數(shù),分別使用直接微分法、有限差分法和多復(fù)域攝動(dòng)法求解位移響應(yīng)對(duì)左支承剛度(k1)的一、二階靈敏度。將直接微分法求解時(shí)的步長(zhǎng)相較于其他兩種方法減小兩個(gè)數(shù)量級(jí),以此得到的結(jié)果作為動(dòng)響應(yīng)靈敏度的近似準(zhǔn)確值,使用2.1節(jié)誤差統(tǒng)計(jì)方法對(duì)多復(fù)域攝動(dòng)法與有限差分法進(jìn)行誤差對(duì)比,其對(duì)比結(jié)果如圖6所示。
圖6所示的8幅圖左側(cè)為對(duì)應(yīng)節(jié)點(diǎn)響應(yīng)的一階靈敏度,右側(cè)為二階靈敏度。首先每幅圖結(jié)果都表明使用本文所提多復(fù)域方法獲得的最佳精度都遠(yuǎn)優(yōu)于有限差分法。有限差分法的一、二靈敏度最優(yōu)精度在左支承節(jié)點(diǎn)、一級(jí)盤(pán)節(jié)點(diǎn)、三級(jí)盤(pán)節(jié)點(diǎn)和燃?xì)鉁u輪節(jié)點(diǎn)處依次降低,特別是三級(jí)盤(pán)節(jié)點(diǎn)處二階靈敏度、燃?xì)鉁u輪節(jié)點(diǎn)處一、二階靈敏度誤差巨大。這是由于越遠(yuǎn)離左支承節(jié)點(diǎn)的動(dòng)響應(yīng)對(duì)左支承剛度靈敏度越低,而過(guò)小的靈敏度代表攝動(dòng)后動(dòng)響應(yīng)與原響應(yīng)的差值越小,在有限差分法計(jì)算時(shí)兩動(dòng)響應(yīng)結(jié)果差值小于計(jì)算機(jī)最低計(jì)算精度的時(shí)刻越多,造成誤差越大。有限差分法獲得的最優(yōu)結(jié)果的攝動(dòng)系數(shù)不穩(wěn)定,攝動(dòng)系數(shù)過(guò)大會(huì)造成有限差分法過(guò)大的截?cái)嗾`差,而過(guò)小的攝動(dòng)系數(shù)又會(huì)造成過(guò)大的舍入誤差。與之相比,多復(fù)變量求導(dǎo)法(MVDM)的最優(yōu)誤差的數(shù)量級(jí)穩(wěn)定控制在10-10以下,精度較高,且隨著攝動(dòng)系數(shù)減小不會(huì)發(fā)散維持高精度。這種特點(diǎn)在使用時(shí)能便捷地選取攝動(dòng)系數(shù)取得高精度的靈敏度值。
根據(jù)式(21),對(duì)左支承剛度(k1)和離心葉輪質(zhì)量(m1)分別在不同復(fù)域進(jìn)行攝動(dòng),求解轉(zhuǎn)子系統(tǒng)位移響應(yīng)對(duì)左支承剛度的一階靈敏度、對(duì)離心葉輪質(zhì)量的一階靈敏度和對(duì)兩參數(shù)的混合靈敏度,并使用有限差分法(FDM)分別求解上述靈敏度進(jìn)行對(duì)比。圖7(a)、(b)分別為對(duì)兩參數(shù)的一階靈敏度。
MVDM計(jì)算響應(yīng)對(duì)支承剛度和離心葉輪質(zhì)量的二階靈敏度和混合靈敏度可組集為響應(yīng)對(duì)兩參數(shù)的Hessian矩陣G。組合后的Hessian矩陣為:
式中,?^2 x(t)/?k_1^2 、?^2 x(t)/?m_1^2分別為轉(zhuǎn)子動(dòng)響應(yīng)對(duì)左支承剛度和離心葉輪質(zhì)量的二階靈敏度;?^2 x(t)/(?k_1 ?m_1)、?^2 x(t)/(?m_1 δk_1)為轉(zhuǎn)子動(dòng)響應(yīng)對(duì)左支承剛度和離心葉輪質(zhì)量的混合靈敏度。
四條靈敏度曲線如圖8所示。四條靈敏度曲線中同一時(shí)刻的靈敏度值填入式(28)中對(duì)應(yīng)位置,即為轉(zhuǎn)子系統(tǒng)時(shí)域響應(yīng)對(duì)k1和m1的Hessian矩陣。
3 結(jié) 論
本文提出一種基于多復(fù)域攝動(dòng)法的轉(zhuǎn)子系統(tǒng)動(dòng)響應(yīng)一階、二階和混合靈敏度分析方法。多復(fù)域攝動(dòng)法使用雙復(fù)域拓展復(fù)變量微分法,延續(xù)了復(fù)變量微分法高精度和對(duì)攝動(dòng)步長(zhǎng)不敏感的優(yōu)點(diǎn),并通過(guò)多復(fù)數(shù)的實(shí)數(shù)矩陣表達(dá)使其在求解轉(zhuǎn)子動(dòng)響應(yīng)靈敏度時(shí)能夠方便應(yīng)用。以單盤(pán)轉(zhuǎn)子系統(tǒng)、燃?xì)獍l(fā)生器模擬轉(zhuǎn)子為例,使用本文方法計(jì)算動(dòng)響應(yīng)的一階靈敏度、二階靈敏度和混合靈敏度。并以直接微分法求解時(shí)步長(zhǎng)相較于有限差分法和多復(fù)域方法小多個(gè)數(shù)量級(jí)作為準(zhǔn)確值,與有限差分法進(jìn)行誤差比較,證明本文方法的可行性和準(zhǔn)確性。
相較于有限差分法,本文所提多復(fù)域攝動(dòng)法計(jì)算精度穩(wěn)定,不受攝動(dòng)步長(zhǎng)和靈敏度本身大小影響,能為轉(zhuǎn)子系統(tǒng)模型修正、結(jié)構(gòu)優(yōu)化等提供準(zhǔn)確的高階靈敏度。以此方法繼續(xù)在復(fù)域擴(kuò)展,能對(duì)參數(shù)進(jìn)行更多復(fù)域的攝動(dòng),從而求解更高階靈敏度。
參考文獻(xiàn):
[1] CAO Z, FEI Q, JIANG D, et al. A sensitivity-based nonlinear finite element model updating method for nonlinear engineering structures[J]. Applied Mathematical Modelling, 2021, 100: 632-655.
[2] 陳敏, 劉廣, 汪利, 等. 基于增強(qiáng)響應(yīng)靈敏度法的多體系統(tǒng)參數(shù)識(shí)別[J]. 振動(dòng)與沖擊, 2022, 41(21): 121-128.
CHEN Min,LIU Guang,WANG Li, "et al. Parametric identification of multibody system based on enhanced response sensitivity method[J]. Journal of Vibration and Shock, 2022, 41(21): 121-128.
[3] HE J, JIANG D, ZHANG D, et al. Interval model validation for rotor support system using Kmeans Bayesian method[J]. Probabilistic Engineering Mechanics, 2022, 70: 103364.
[4] 李佳靖, 朱宏平, 翁順, 等. 動(dòng)力特征解靈敏度分析的結(jié)構(gòu)關(guān)鍵區(qū)域判別[J]. 振動(dòng)工程學(xué)報(bào), 2022, 35(5): 1181-1187.
LI Jiajing,ZHU Hongping,WENG Shun, et al. Evaluation of critical region based on dynamic eigensensitivity analysis[J]. Journal of Vibration Engineering, 2022, 35(5): 1181-1187.
[5] 林榮洲, 侯磊, 孫傳宗, 等. 某航空發(fā)動(dòng)機(jī)整機(jī)系統(tǒng)非線性振動(dòng)特性分析[J]. 振動(dòng)工程學(xué)報(bào), 2022, 35(3): 557-568.
LIN Rongzhou, HOU Lei, SUN Chuanzong, et al. Nonlinear vibration analysis of the overall aeroengine system[J]. Journal of Vibration Engineering, 2022, 35(3): 557-568.
[6] HELD A. On design sensitivities in the structural analysis and optimization of flexible multibody systems[J]. Multibody System Dynamics, 2022, 54(1): 53-74.
[7] 高朋, 侯磊, 陳予恕. 雙轉(zhuǎn)子-中介軸承系統(tǒng)非線性振動(dòng)特性[J]. 振動(dòng)與沖擊, 2019, 38(15): 1-10.
GAO Peng, HOU Lei, CHEN Yushu. Nonlinear vibration characteristics of a dual-rotor system with inter-shaft bearing[J]. Journal of Vibration and Shock, 2019, 38(15): 1-10.
[8] PUGACHEV A O. Application of gradient-based optimization methods for a rotor system with static stress, natural frequency,and harmonic response constraints[J]. Structural and Multidisciplinary Optimization, "2013, 47(6): 951-962.
[9] 羅忠, 劉家希, 劉凱寧, 等. 彈性環(huán)式支承結(jié)構(gòu)動(dòng)剛度分析及其對(duì)轉(zhuǎn)子系統(tǒng)的影響[J]. 東北大學(xué)學(xué)報(bào)(自然科學(xué)版), 2022, 43(5): 667-673.
LUO Zhong, LIU Jiaxi, LIU Kaining, et al. Analysis of dynamic stiffness of the elastic ring support structure and its influence on the rotor system[J]. Journal of Northeastern University (Natural Science) , 2022, 43(5): 667-673.
[10] 李坤, 曾勁, 于明月, 等. 考慮螺栓連接剛度不確定性的帶法蘭-圓柱殼結(jié)構(gòu)頻響函數(shù)分析[J]. 振動(dòng)工程學(xué)報(bào), 2020, 33(3): 517-524.
LI Kun, ZENG Jin, YU Mingyue, et al. Frequency response function analysis of flanged cylindrical shell structure with uncertainty of bolted connection stiffness[J]. Journal of Vibration Engineering, 2020, 33(3): 517-524.
[11] XU Y, LIU J, WAN Z, et al. Rotor fault diagnosis using domain-adversarial neural network with time-frequency analysis[J]. Machines, 2022, 10(8): 610.
[12] 蘇長(zhǎng)青, 郭凡逸, 潘廣權(quán), 等. 多盤(pán)轉(zhuǎn)子系統(tǒng)的隨機(jī)響應(yīng)靈敏度分析[J]. 中國(guó)工程機(jī)械學(xué)報(bào), 2018, 16(1): 10-16.
SU Changqing, GUO Fanyi, PAN Guangquan, et al. Random response sensitivity of multi-plates system[J]. Chinese Journal of Construction Machinery, 2018, 16(1): 10-16.
[13] 潘宏剛, 袁惠群, 趙天宇, 等. 輪盤(pán)質(zhì)量和位置對(duì)轉(zhuǎn)子臨界轉(zhuǎn)速靈敏度分析[J]. 振動(dòng).測(cè)試與診斷, 2017, 37(3): 532-538.
PAN Honggang, YUAN Huiqun, ZHAO Tianyu, et al. Sensitivity analysis of wheel quality and location on rotor critical speed[J]. Journal of Vibration,Measurement amp; Diagnosis, 2017, 37(3): 532-538.
[14] TAHERKHANI Z, AHMADIAN H. Stochastic model updating of rotor support parameters using Bayesian approach[J]. Mechanical Systems and Signal Processing, 2021, 158: 107702.
[15] WANG J Y, ZHAO Y C, WANG C. The dynamic response and sensitivity analysis of the SFD-sliding bearing flexible rotor system[J]. Advanced Materials Research, 2012, 472-475: 1460-1464.
[16] CHEN Y, ZHU R, JIN G, et al. A new mathematical modeling method for four-stage helicopter main gearbox and dynamic response optimization[J]. Complexity, 2019, 2019: 5274712.
[17] CAO Z, FEI Q, JIANG D, et al. Sensitivity analysis of nonlinear transient response based on perturbation in the complex domain[J]. Journal of Computational and Nonlinear Dynamics, ASME, 2021, 16(1): 011001.
[18] CAO Z, FEI Q, JIANG D, et al. Dynamic sensitivity-based finite element model updating for nonlinear structures using time-domain responses[J]. International Journal of Mechanical Sciences, 2020, 184: 105788.
[19] CAO Z, FEI Q, JIANG D, et al. Model updating of a stitched sandwich panel based on multistage parameter selection[J]. Mathematical Problems in Engineering, 2019, 2019: 1584953.
[20] BAYBORDI S, ESFANDIARI A. Model updating and damage detection of jacket type platform using explicit and exact time domain sensitivity equation[J]. Ocean Engineering, 2023, 269: 113551.
[21] 劉廣, 劉濟(jì)科, 呂中榮. 基于時(shí)域響應(yīng)靈敏度分析的非線性系統(tǒng)參數(shù)識(shí)別[J]. 振動(dòng)與沖擊, 2018, 37(21): 213-219.
LIU Guang, LIU Jike, LYU Zhongrong. Parametric recognition of a nonlinear system based on time domain response sensitivity analysis[J]. Journal of Vibration and Shock, 2018, 37(21): 213-219.
[22] 胡智強(qiáng), 馬海濤. 結(jié)構(gòu)動(dòng)力響應(yīng)靈敏度分析伴隨法一致性問(wèn)題研究[J]. 振動(dòng)與沖擊, 2015, 34(20): 167-173.
HU Zhiqiang, MA Haitao. On the consistency issue of adjoint methods for sensitivity analysis of dynamic responses[J]. Journal of Vibration and Shock, 2015, 34(20): 167-173.
[23] 張磊, 張嚴(yán), 丁喆. 黏性阻尼系統(tǒng)時(shí)域響應(yīng)靈敏度及其一致性研究[J]. 力學(xué)學(xué)報(bào), 2022, 54(4): 1113-1124.
ZHANG Lei, ZHANG Yan, DING Zhe, Adjoint sensitivity methods for transient responses of viscously damped systems and their consistency issues[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 1113-1124.
[24] GARZA J, MILLWATER H. Multicomplex Newmark-Beta time integration method for sensitivity analysis in structural dynamics[J]. AIAA Journal, 2015, 53(5): 1188-1198.
[25] LANTOINE G, RUSSELL R P, DARGENT T. Using multicomplex variables for automatic computation of high-order derivatives[J]. ACM Transactions on Mathematical Software, 2012, 38(3): 16.
[26] 田宇, 曹芝腑, 姜東. 基于多復(fù)域的頻響函數(shù)靈敏度分析[J]. 振動(dòng)與沖擊, 2021, 40(18): 156-163.
TIAN Yu, CAO Zhifu, JIANG Dong. Sensitivity analysis of frequency response functions based on multicomplex domain[J]. Journal of Vibration and Shock, 2021, 40(18): 156-163.
[27] PRICE G B. An Introduction to Multicomplex Spaces and Functions[M]. New York: "Marcel Dekker Inc., 1991.
通信作者: 姜 東(1985—),男,博士,副教授。E?mail: jiangdong@njfu.edu.cn