摘要: 采用基于移動Kriging插值的無網(wǎng)格法研究了多層納米板的動力學行為。建立了考慮層內(nèi)拉伸、層間剪切和單層彎曲的多層二硫化鉬動力學模型。通過與分子動力學模擬的結(jié)果比較表明,建立的多層納米板模型能夠很好地預測多層二硫化鉬的振動行為。多層二維結(jié)構(gòu)層間剪切和滑移導致其違背了經(jīng)典板理論的預測,主要歸因于二維結(jié)構(gòu)之間的層間剪切影響了其整體動力學行為。分析了層數(shù)和尺寸對振動頻率的影響,研究了層內(nèi)拉伸剛度、層間剪切模量和單層彎曲剛度對振動頻率的影響。
關(guān)鍵詞: 多層納米板; 層間剪切; 移動Kriging插值; 無網(wǎng)格法; 多層二硫化鉬
中圖分類號: TB383; O326 " "文獻標志碼: A " "文章編號: 1004-4523(2025)03-0623-08
DOI:10.16385/j.cnki.issn.1004-4523.2025.03.019
Vibration characteristics of multilayer nanoplates via meshfree moving Kriging interpolation method
HOU Dongchang1, ZHANG Jicheng2, WANG Lifeng2
(1. School of Civil Engineering and Architecture, Zhongyuan University of Technology, Zhengzhou 450007, China;
2. State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 China)
Abstract: A meshless method based on moving Kriging interpolation is used to study the dynamic behavior of multilayer nanoplates. A dynamical model of multilayer molybdenum disulfide (MoS2) is established considering intra - layer stretching, interlayer shear and single layer bending. Compared with the results of molecular dynamics simulation, it is shown that the present model can predict the vibration behavior of multilayer MoS2. The interlayer shear and slip of multilayer two-dimensional structures violate the prediction of classical plate theory, mainly due to the effect of interlayer shear and slip on the overall dynamic behavior of two-dimensional structures. The influence of different layer number and size on the frequency is investigated, and the influence of the three factors on the frequency is studied by changing the intralayer tensile stiffness, interlayer shear modulus and single layer bending stiffness.
Keywords: multilayer nanoplate; interlayer shear; moving Kriging interpolation; meshfree method; multilayer MoS2
多層二維結(jié)構(gòu)的層間相互作用可以顯著影響層內(nèi)鍵合,能帶結(jié)構(gòu)和晶格振動,表現(xiàn)出與層相關(guān)的電子、光學、熱、機械和振動特性[1]。多層二維結(jié)構(gòu)的拉伸荷載通過層間剪切傳遞,因此,充分掌握二維結(jié)構(gòu)層間剪切規(guī)律,對于需精準操縱和控制的二維結(jié)構(gòu)柔性電子器件[2]和應變半導體[3]等技術(shù)的應用至關(guān)重要。多層二維結(jié)構(gòu)的彎曲剛度與經(jīng)典板理論的預測結(jié)果不符,主要歸因于層間剪切和滑移,二維結(jié)構(gòu)之間的層間剪切和滑移與層內(nèi)拉伸和彎曲變形存在競爭,并影響整體力學響應。早期的研究通常將多層二維結(jié)構(gòu)等效為單層板[4?6],顯然上述效應在經(jīng)典板理論中是不存在的,經(jīng)典板理論的基本假設不包含層間滑動[7]。已有基于摩擦顯微鏡[8?9]和原子力顯微鏡[10?11]的實驗研究揭示了二維結(jié)構(gòu)層間剪切行為。然而這些研究對多層二維結(jié)構(gòu)的層間變形和破壞機制的解釋有限,且并未給出層間剪切的定量表征。即使是已獲得廣泛關(guān)注的石墨烯,對其層間剪切剛度的測量研究也是相對匱乏的。YAMASHITA等[12]對高度各向異性的天然石墨進行靜態(tài)實驗,測得層間剪切剛度τ在0.25~0.75 MPa之間。BLACKSLEE等[13]測量得到壓縮退火熱解石墨層間的剪切剛度τ為0.9~2.5 MPa。LIU等[14]通過對石墨臺面上微米石墨薄片的自縮回運動[15]和微米超潤滑現(xiàn)象[16]的觀察得到τ大約為0.14 GPa。使用傳統(tǒng)的靜態(tài)力學實驗測量層間抗剪強度的主要挑戰(zhàn)是無法獲得足夠大的單晶石墨[17]。分子動力學模擬的準確性取決于勢函數(shù)的選?。?8?19]。LEBEDEVA等[20]指出,使用Lennard?Jones(L?J)勢計算多層石墨烯層間相互作用能時,其大小被低估了一個數(shù)量級。SHEN等[18]對雙層石墨烯進行了滑動模擬,并計算了層間剪切模量,通過修改AI?REBO電位中的L?J參數(shù)以擬合實驗結(jié)果?;谝陨戏治霾浑y發(fā)現(xiàn)建立合理的考慮層間剪切的連續(xù)介質(zhì)模型對研究多層二維結(jié)構(gòu)力學行為至關(guān)重要[21]。LIU等[22]提出了一個忽略層內(nèi)拉伸而考慮層間剪切的多層梁模型,該模型將層間剪切角簡化為撓度的一階導數(shù)。HUANG等[23]建立了考慮層內(nèi)拉伸、層間剪切和單層彎曲的多層板模型,構(gòu)建的通用分析框架可直觀地展示層內(nèi)拉伸、層間剪切和單層彎曲三者主導變形的轉(zhuǎn)變和競爭機制。LIU等[24]采用分子動力學模擬并結(jié)合建立的考慮層間剪切的非線性夾層板模型研究了雙層二硫化鉬的非線性振動行為。ZHANG等[25]研究了層間剪切對雙層二維結(jié)構(gòu)振動的影響。通過扭轉(zhuǎn)雙層二硫化鉬的角度,使結(jié)構(gòu)的固有頻率出現(xiàn)了異乎尋常的結(jié)果,由此提出了層間負剪切的概念來解釋這一現(xiàn)象。隨后ZHANG等[26]采用分子動力學模擬研究了不同堆垛的雙層黑磷的振動行為,并建立了正交各向異性層合板模型。通過層合板模型得到了層間剪切方向和高階模態(tài)形狀與對應頻率之間的關(guān)系。LIU等[27]通過分子動力學和考慮非均勻?qū)娱g剪切的夾層板模型研究了扭轉(zhuǎn)雙層二硫化鉬的動力學行為。結(jié)果表明,在很小的扭轉(zhuǎn)角下,莫爾條紋會導致層間范德華能在幾十納米尺度上的對稱性被破壞,并導致扭曲的雙層二硫化鉬的動態(tài)行為表現(xiàn)出很強的位置依賴性。
從以上分析不難看出,建立可描述層間剪切的多層納米板模型對研究多層二維納米結(jié)構(gòu)的力學行為至關(guān)重要。同時此類模型的求解通常較為復雜,很難獲得其解析解,因此往往需要借助數(shù)值方法求解。無網(wǎng)格法構(gòu)造高階形函數(shù)時所展現(xiàn)出來的優(yōu)勢深受學者們的青睞[28?29]。文獻[30?31]采用基于移動最小二乘近似的無網(wǎng)格法,結(jié)合高階Cauchy?Born準則研究了碳納米管的屈曲。YAN等[32?33]采用移動Kriging插值研究了碳納米管的屈曲。隨后YAN等[34]采用移動Kriging插值研究了圓形石墨烯扭轉(zhuǎn)中波紋幅度、波數(shù)和起皺角度的可控性。ROQUE等[35]采用徑向點插值的無網(wǎng)格法獲得了基于修正的偶應力理論的各向同性納米板彎曲的數(shù)值解。THAI等[36]采用移動Kriging插值研究了基于應變梯度理論的磁電耦合功能梯度納米板的自由振動。隨后THAI等[37]又將非局部應變梯度理論,高階剪切理論以及移動Kriging插值的無網(wǎng)格法相結(jié)合,建立了一種非局部應變梯度無網(wǎng)格法用于研究夾層納米板的彎曲和自由振動。WANG等[38?39]基于移動最小二乘發(fā)展了一種高階一致性的節(jié)點積分方案求解一系列應變梯度薄梁/板問題,數(shù)值結(jié)果表明,一致性積分在收斂性、精度以及計算效率方面都優(yōu)于標準高斯積分。ALSHENAWY等[40]采用移動Kriging插值研究了在軸向機械荷載、外電驅(qū)動和溫度共同作用下,功能梯度壓電納米圓柱殼的屈曲模態(tài)轉(zhuǎn)變現(xiàn)象。YANG等[41]采用移動Kriging插值研究了基于偶應力理論的復合材料納米圓柱殼的后屈曲行為。LIU等[42]采用移動Kriging插值的無網(wǎng)格法研究了隨機增強納米復合材料制成的微圓柱殼在軸向和側(cè)向壓縮組合作用下的非線性屈曲和后屈曲。
本文采用基于移動Kriging插值的無網(wǎng)格法研究多層納米板的動力學行為。首先建立考慮層內(nèi)拉伸、層間剪切和單層彎曲的多層二硫化鉬動力學模型。隨后將所建立的模型與分子動力學,等效單層Kirchhoff板模型和Mindlin板模型的結(jié)果進行比較。分析不同層數(shù)和尺寸對振動頻率的影響,并通過改變層內(nèi)拉伸剛度、層間剪切模量和單層彎曲剛度的大小,研究三者對振動頻率的影響。
1 考慮層間剪切的多層板模型
多層二維納米結(jié)構(gòu)之間既沒有超潤滑,也沒有完全貼合,每一層厚度方向的尺度僅一個或幾個原子,而長、寬方向的尺度遠大于厚度方向,因此將其等效為多層薄板堆疊模型,如圖1所示。當其發(fā)生橫向振動時會伴隨著層間剪切和滑移,因此傳統(tǒng)板模型中平截面假定不再適用。多層板模型厚度方向依舊遠小于長、寬方向的尺寸,即假設每層板具有相同的撓度,因此該模型中每層板z方向的變形可等效為一個w,而每一層板的面內(nèi)位移包括u和v兩部分。
考慮層內(nèi)拉伸、層間剪切和彎曲變形的多層二維結(jié)構(gòu)自由振動的總勢能包括以下三部分:
3 考慮層間剪切的多層板模型振動
本節(jié)的納米板以二硫化鉬為研究對象,其物理參數(shù)見表1。為驗證所建立模型的準確性,將分子動力學模擬的結(jié)果與所建立多層板模型的結(jié)果進行比對。本節(jié)分子動力學采用Lammps程序包進行模擬,通過第二代Brenner經(jīng)驗勢來描述二硫化鉬原子間的相互作用。
對于多層二硫化鉬結(jié)構(gòu)可近似為各向同性材料,其xz和yz面內(nèi)的剪切模量分別為Gx=Gy=7.54 GPa,層間厚度為h1=0.64 nm[24]。模型的長為a=6 nm ,寬為b=8 nm,邊界條件為四邊固支。
圖2分別為采用分子動力學(MD),多層納米板模型(MPSM)以及多層納米板等效單層Kirchhoff板模型(KPM)和Mindlin板模型(MPM)計算得到的1~6層二硫化鉬的前4階振動頻率ω。
圖3為分子動力學和多層納米板模型的前4階振型??梢钥闯龇肿觿恿W的振動頻率與振型和本文所建立的多層納米板模型的結(jié)果吻合得非常好,而等效的單層Kirchhoff板模型和Mindlin板模型的振動頻率都高于分子動力學結(jié)果。這表明多層二維結(jié)構(gòu)層間剪切和滑移導致經(jīng)典板理論不再適用。主要歸因于二維結(jié)構(gòu)之間的層間剪切和滑移與層內(nèi)變形(拉伸和彎曲)存在競爭,并影響其整體動力學行為。
圖4為不同長度多層納米板的振動頻率,可以看出,隨著長度的增加,多層納米板的振動頻率逐漸減小。隨著層數(shù)的增加,同一長度對應的同一階振動頻率逐漸增加,與此同時振動頻率增加的絕對值逐漸減小。該結(jié)論與非局部硬化模型的結(jié)論是一致的,因為隨著長度的增加,無量綱非局部效應因子減小,此時振動頻率也隨之減小,即頻率隨著非局部因子的增大而提高[43?44]。
圖5給出了不同層間剪切模量對振動頻率的影響,圖中橫坐標φ1代表剪切模量增加的倍數(shù)。結(jié)果表明,隨著剪切模量的增加,頻率逐漸增大。
圖6為層內(nèi)拉伸剛度與頻率的關(guān)系,圖中橫坐標φ2代表層內(nèi)拉伸剛度增加的倍數(shù)??梢钥闯鲭S著層內(nèi)拉伸剛度的增加,頻率幾乎不發(fā)生改變。
圖7為單層板彎曲剛度與頻率的關(guān)系,圖中橫坐標φ3代表層內(nèi)彎曲剛度增加的倍數(shù)。可以看出隨著單層彎曲剛度的增加,頻率逐漸增大。綜上,層間剪切模量和單層彎曲剛度對橫向振動頻率的影響較大,而層內(nèi)拉伸剛度的增加對橫向振動頻率幾乎沒有影響。
4 結(jié) "論
本文首先建立了考慮層內(nèi)拉伸、層間剪切和單層彎曲的多層納米板動力學模型。以二硫化鉬為研究對象,并基于移動Kriging插值的無網(wǎng)格法計算了多層納米板模型的振動頻率,以及多層二硫化鉬等效為單層Kirchhoff板和Mindlin板的振動頻率。通過與分子動力學模擬的結(jié)果比較表明,建立的多層納米板模型能夠很好地預測多層二硫化鉬的振動行為。這也說明多層二維結(jié)構(gòu)層間剪切和滑移導致其違背了經(jīng)典板理論的預測,主要歸因于,二維結(jié)構(gòu)之間的層間剪切影響了其整體動力學行為。隨后分析了不同層數(shù)和尺寸對振動頻率的影響,并通過改變層內(nèi)拉伸剛度、層間剪切模量和單層彎曲剛度的大小來研究三者對振動頻率的影響。研究表明,改變層內(nèi)拉伸剛度幾乎不改變多層納米板的振動頻率,而改變層間剪切模量和單層彎曲剛度對振動頻率的影響較大。
參考文獻:
[1] ZHAO Y D, QIAO J S, YU P, et al. Extraordinarily strong interlayer interaction in 2D layered PtS2[J]. Advanced Materials, 2016, 28(12): 2399-2407.
[2] ZHAN H, GUO D, XIE G X. Two-dimensional layered materials: from mechanical and coupling properties towards applications in electronics[J]. Nanoscale, 2019, 11(28): 13181-13212.
[3] DAI Z H, LIU L Q, ZHANG Z. Strain engineering of 2D materials: issues and opportunities at the interface[J]. Advanced Materials, 2019, 31(45): 1805417.
[4] CONLEY H, LAVRIK N V, PRASAI D, et al. Graphene bimetallic-like cantilevers: probing graphene/substrate interactions[J]. Nano Letters, 2011, 11(11): 4748-4752.
[5] BERTOLAZZI S, BRIVIO J, KIS A. Stretching and breaking of ultrathin MoS2[J]. ACS Nano, 2011, 5(12): 9703-9709.
[6] KOENIG S P, BODDETI N G, DUNN M L, et al. Ultrastrong adhesion of graphene membranes[J]. Nature Nanotechnology, 2011, 6(9): 543-546.
[7] WANG G R, DAI Z H, XIAO J K, et al. Bending of multilayer van der Waals materials[J]. Physical Review Letters, 2019, 123(11): 116101.
[8] DENG Z, SMOLYANITSKY A, LI Q Y, et al. Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale[J]. Nature Materials, 2012, 11(12): 1032-1037.
[9] FILLETER T, MCCHESNEY J L, BOSTWICK A, et al. Friction and dissipation in epitaxial graphene films[J]. Physical Review Letters, 2009, 102(8): 086102.
[10] FALIN A, CAI Q, SANTOS E J G, et al. Mechanical properties of atomically thin boron nitride and the role of interlayer interactions[J]. Nature Communications, 2017, 8: 15815.
[11] WEI X D, MENG Z X, RUIZ L, et al. Recoverable slippage mechanism in multilayer graphene leads to repeatable energy dissipation[J]. ACS Nano, 2016, 10(2): 1820-1828.
[12] YAMASHITA K, WAKE N, ARAKI T, et al. Human lymphocyte antigen expression in hydatidiform mole: androgenesis following fertilization by a haploid sperm[J]. American Journal of Obstetrics and Gynecology, 1979, 135(5): 597-600.
[13] BLAKSLEE O L, PROCTOR D G, SELDIN E J, et al. Elastic constants of compression-annealed pyrolytic graphite[J]. Journal of Applied Physics, 1970, 41(8): 3373-3382.
[14] LIU Z, ZHANG S M, YANG J R, et al. Interlayer shear strength of single crystalline graphite[J]. Acta Mechanica Sinica, 2012, 28(4): 978-982.
[15] ZHENG Q S, JIANG B, LIU S P, et al. Self-retracting motion of graphite microflakes[J]. Physical Review Letters, 2008, 100(6): 067205.
[16] LIU Z, YANG J R, GREY F, et al. Observation of microscale superlubricity in graphite[J]. Physical Review Letters, 2012, 108(20): 205503.
[17] BOSAK A, KRISCH M, MOHR M, et al. Elasticity of single-crystalline graphite: inelastic X-ray scattering study[J]. Physical Review B, 2007, 75(15): 153408.
[18] SHEN Y K, WU H G. Interlayer shear effect on multilayer graphene subjected to bending[J]. Applied Physics Letters, 2012, 100(10): 101909.
[19] ZHANG K, TADMOR E B. Energy and moiré patterns in 2D bilayers in translation and rotation: a study using an efficient discrete-continuum interlayer potential[J]. Extreme Mechanics Letters, 2017, 14: 16-22.
[20] LEBEDEVA I V, KNIZHNIK A A, POPOV A M, et al. Interlayer interaction and relative vibrations of bilayer graphene[J]. Physical Chemistry Chemical Physics, 2011, 13(13): 5687-5695.
[21] LIU D Y, CHEN W Q, ZHANG C. Improved beam theory for multilayer graphene nanoribbons with interlayer shear effect[J]. Physics Letters A, 2013, 377(18): 1297-1300.
[22] LIU Y L, XU Z P, ZHENG Q S. The interlayer shear effect on graphene multilayer resonators[J]. Journal of the Mechanics and Physics of Solids, 2011, 59(8): 1613-1622.
[23] HUANG Z Z, HE Z Z, ZHU Y B, et al. A general theory for the bending of multilayer van der Waals materials[J]. Journal of the Mechanics and Physics of Solids, 2023, 171: 105144.
[24] LIU R M, WANG L F. Nonlinear forced vibration of bilayer van der Waals materials drum resonator[J]. Journal of Applied Physics, 2020, 128(14): 145105.
[25] ZHANG J C, LIU R M, WANG L F. Negative interlayer shear effect on a double-layered van der Waals material resonator[J]. Physical Review B, 2021, 104(8): 085437.
[26] ZHANG J C, HOU D C, LIU R M, et al. Effect of stacking order on the vibration properties of bilayer black phosphorus[J]. Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences, 2022, 478(2263): 20220294.
[27] LIU R M, HE J Y, ZHANG J C, et al. Moiré tuning of the dynamic behavior of a twisted bilayer van der Waals material resonator[J]. Journal of Applied Mechanics, 2022, 89(12): 121001.
[28] CHEN Y H, ALIABADI M H. Meshfree-based micromechanical modelling of twill woven composites[J]. Composites Part B:Engineering, 2020, 197: 108190.
[29] DEHGHAN M, NARIMANI N. The element-free Galerkin method based on moving least squares and moving Kriging approximations for solving two-dimensional tumor-induced angiogenesis model[J]. Engineering with Computers, 2020, 36(4): 1517-1537.
[30] SUN Y Z, LIEW K M. The buckling of single-walled carbon nanotubes upon bending: the higher order gradient continuum and mesh-free method[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(33-40): 3001-3013.
[31] SUN Y Z, LIEW K M. Application of the higher-order Cauchy-Born rule in mesh-free continuum and multiscale simulation of carbon nanotubes[J]. International Journal for Numerical Methods in Engineering, 2008, 75(10): 1238-1258.
[32] YAN J W, LIEW K M, HE L H. Analysis of single-walled carbon nanotubes using the moving Kriging interpolation[J]. Computer Methods in Applied Mechanics and Engineering, 2012, 229: 56-67.
[33] YAN J W, LIEW K M, HE L H. A mesh-free computational framework for predicting buckling behaviors of single-walled carbon nanocones under axial compression based on the moving Kriging interpolation[J]. Computer Methods in Applied Mechanics and Engineering, 2012, 247: 103-112.
[34] YAN J W, LAI S K. Superelasticity and wrinkles controlled by twisting circular graphene[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 338: 634-656.
[35] ROQUE C M C, FERREIRA A J M, REDDY J N. Analysis of Mindlin micro plates with a modified couple stress theory and a meshless method[J]. Applied Mathematical Modelling, 2013, 37(7): 4626-4633.
[36] THAI C H, HUNG P T, NGUYEN-XUAN H, et al. A size-dependent meshfree approach for magneto-electro-elastic functionally graded nanoplates based on nonlocal strain gradient theory[J]. Engineering Structures, 2023, 292: 116521.
[37] THAI C H, FERREIRA A J M, NGUYEN-XUAN H, et al. A nonlocal strain gradient analysis of laminated composites and sandwich nanoplates using meshfree approach[J]. Engineering with Computers, 2023, 39: 5-21.
[38] WANG B B, LU C S, FAN C Y, et al. A stable and efficient meshfree Galerkin method with consistent integration schemes for strain gradient thin beams and plates[J]. Thin-Walled Structures, 2020, 153: 106791.
[39] WANG B B, LU C S, FAN C Y, et al. A meshfree method with gradient smoothing for free vibration and buckling analysis of a strain gradient thin plate[J]. Engineering Analysis with Boundary Elements, 2021, 132: 159-167.
[40] ALSHENAWY R, SAFAEI B, SAHMANI S, et al. Buckling mode transition in nonlinear strain gradient-based stability behavior of axial-thermal-electrical loaded FG piezoelectric cylindrical panels at microscale[J]. Engineering Analysis with Boundary Elements, 2022, 141: 36-64.
[41] YANG Z C, SAFAEI B, SAHMANI S, et al. A couple-stress-based moving Kriging meshfree shell model for axial postbuckling analysis of random checkerboard composite cylindrical microshells[J]. Thin-Walled Structures, 2022, 170: 108631.
[42] LIU H W, SAFAEI B, SAHMANI S. Combined axial and lateral stability behavior of random checkerboard reinforced cylindrical microshells via a couple stress-based moving Kriging meshfree model[J]. Archives of Civil and Mechanical Engineering, 2021, 22(1): 15.
[43] LIM C W. On the truth of nanoscale for nanobeams based on nonlocal elastic stress field theory: equilibrium, governing equation and static deflection[J]. Applied Mathematics and Mechanics, 2010, 31(1): 37?54.
[44] LI C. A nonlocal analytical approach for torsion of cylindrical nanostructures and the existence of higher-order stress and geometric boundaries[J]. Composite Structures, 2014, 118: 607-621.
第一作者: 侯東昌(1991―)中文作者簡介:男,博士研究生。E-mail: houdongchang@nuaa.edu.cn
通信作者: 王立峰(1977―),男,博士,教授。
E-mail: walfe@nuaa.edu.cn