【摘" 要】 隨著晝夜節(jié)律相關(guān)研究的不斷深入,時(shí)鐘基因與機(jī)體代謝之間的緊密聯(lián)系日益受到學(xué)術(shù)界的關(guān)注。擇時(shí)運(yùn)動(dòng)是一種基于時(shí)間生物學(xué)理論,依據(jù)機(jī)體生物節(jié)律選擇運(yùn)動(dòng)時(shí)間的運(yùn)動(dòng)方法,已被證實(shí)在特定時(shí)段進(jìn)行能夠?qū)μ侵x產(chǎn)生更佳效果,且這一效果與時(shí)鐘基因的調(diào)節(jié)密切相關(guān)。然而,目前尚缺乏對(duì)此領(lǐng)域的系統(tǒng)綜述。因此,該文綜述了擇時(shí)運(yùn)動(dòng)介導(dǎo)時(shí)鐘基因調(diào)節(jié)糖脂代謝的相關(guān)研究,旨在深入探究擇時(shí)運(yùn)動(dòng)、時(shí)鐘基因與機(jī)體代謝之間的關(guān)系,為優(yōu)化代謝提供更為精準(zhǔn)的運(yùn)動(dòng)時(shí)段選擇及科學(xué)鍛煉的理論依據(jù)。
【關(guān)鍵詞】 擇時(shí)運(yùn)動(dòng)" 時(shí)鐘基因" 糖脂代謝" 晝夜節(jié)律
【中圖分類(lèi)號(hào)】 G8" """""""""""""""【文獻(xiàn)標(biāo)識(shí)碼】 A" """"""""""""【文章編號(hào)】 2095-2813(2025)05-0007-04
Research Progress on Chrono-Exercise Modiated Clock Gene Regulation of Glucose and Lipid Metabolism
CAO Wenyan1" FENG Yao1" WEN Xiaolong1" MAO Yuheng2" YUAN Yu2" WENG Xiquan1,2*
1.Graduate School, Guangzhou Sport University;2.School of Sports and Health, Guangzhou Sport University, Guangzhou, Guangdong Province, 510500 China
[Abstract] As research on circadian rhythms becomes increasingly in-depth, the close relationship between clock genes and metabolism is gaining more attention. Chrono-exercise is a method of exercise based on Chronobiology theory, which selects the time of exercise according to the body's biological rhythms, has been proven that exercising at specific times has better effects on glucose and lipid metabolism and this effect is closely related to the regulation of clock genes. However, there is currently a lack of systematic review in this field. Therefore, this article reviews the relevant research on how chrono-exercise mediates the regulation of clock genes to affect glucose and lipid metabolism. It aims to explore the relationship between chrono-exercise, clock genes, and metabolism in depth, and to provide a more accurate theoretical basis for selecting exercise periods and scientific exercise to optimize metabolism.
[Keywords] Chrono-exercise; Clock genes; Glucose and lipid metabolism; Circadian rhythm
在自然界中,生物體的行為活動(dòng)和生理變化展現(xiàn)出明顯的晝夜節(jié)律性,這些節(jié)律性變化受內(nèi)在的生物鐘系統(tǒng)調(diào)控[1]。生物鐘系統(tǒng)通過(guò)一系列時(shí)鐘基因,如生物鐘循環(huán)輸出蛋白基因(Circadian Locomotor Output Cycles Kaput,CLOCK)和腦與肌肉芳香烴受體核轉(zhuǎn)運(yùn)樣蛋白1(Brain and Muscle Arnt-Like 1,BMAL1)等,維持約24 h的周期性變化,從而與外界環(huán)境的光暗周期保持同步[2]。近年來(lái),隨著分子生物學(xué)和時(shí)間醫(yī)學(xué)的發(fā)展,時(shí)鐘基因的研究已從單一的生物節(jié)律擴(kuò)展到代謝性疾病、睡眠障礙、心血管疾病等多個(gè)領(lǐng)域[3-5],其中,時(shí)鐘基因與糖脂代謝的相互作用成為當(dāng)前研究熱點(diǎn)。運(yùn)動(dòng)作為一種有效的非藥物療法,其對(duì)糖脂代謝的積極影響已獲廣泛認(rèn)可。越來(lái)越多的證據(jù)表明,規(guī)律的體育活動(dòng)不僅能改善心血管健康、增強(qiáng)肌肉功能、促進(jìn)體重管理,還能調(diào)節(jié)代謝,預(yù)防和治療多種代謝性疾病,而這些效果可能通過(guò)時(shí)鐘基因相關(guān)機(jī)制實(shí)現(xiàn)。盡管已有眾多學(xué)者進(jìn)行相關(guān)研究,但系統(tǒng)綜述尚缺。因此,本綜述旨在總結(jié)現(xiàn)有研究成果,揭示擇時(shí)運(yùn)動(dòng)如何通過(guò)時(shí)鐘基因相關(guān)機(jī)制改善糖、脂代謝,并促進(jìn)整體代謝健康。這些發(fā)現(xiàn)不僅有助于深入理解擇時(shí)運(yùn)動(dòng)與糖脂代謝之間的聯(lián)系,也為開(kāi)發(fā)新的代謝疾病預(yù)防和治療策略提供了科學(xué)依據(jù)。
1" 時(shí)鐘基因與糖脂代謝
1.1" 時(shí)鐘基因
晝夜節(jié)律機(jī)制幾乎存在于全身所有細(xì)胞中,并被定義為調(diào)控轉(zhuǎn)錄-翻譯反饋環(huán)路(Transcription-Translation Feedback Loop,TTFL)[6]。該反饋環(huán)路的正向調(diào)節(jié)部分由轉(zhuǎn)錄因子的基本螺旋-環(huán)-螺旋家族(Basic Helix-Loop-Helix/Per-Arnt-Sim,bHLH-PAS)成員CLOCK和BMAL1組成,它們異二聚化并與負(fù)向調(diào)節(jié)基因啟動(dòng)子內(nèi)的E盒元件結(jié)合,促進(jìn)周期蛋白(Period 1/2/3,PER1/2/3)和隱花色素(Cryptochrome,CRY1/2)基因的轉(zhuǎn)錄[7]。一旦翻譯,PERs和CRYs二聚化,轉(zhuǎn)位回細(xì)胞核并抑制CLOCK:BMAL1復(fù)合物的轉(zhuǎn)錄活性,促進(jìn)反饋環(huán)路的負(fù)向調(diào)節(jié)。其他調(diào)節(jié)蛋白包括核受體亞家族1組D成員1/2(Nuclear Receptor Subfamily 1,Group D,Member 1/2,REV-ERBα/β)和視黃酸相關(guān)孤兒受體(Retinoic Acid Receptor-Related Orphan Receptor α/β/γ,RORα/β/γ)[8],它們分別競(jìng)爭(zhēng)與BMAL1啟動(dòng)子內(nèi)的ROR響應(yīng)元件(ROR Response Element,RORE)結(jié)合,抑制或激活BMAL1轉(zhuǎn)錄。這種基本機(jī)制在大約24 h內(nèi)循環(huán),是晝夜節(jié)律所必需的[9]。
1.2" 時(shí)鐘基因與糖脂代謝的關(guān)聯(lián)
核心時(shí)鐘基因參與大量基因的轉(zhuǎn)錄調(diào)控,這些基因?qū)θ粘<?xì)胞生理學(xué)至關(guān)重要。GABRIEL B M等人[10]的研究表明,在小鼠骨骼肌中,BMAL1:CLOCK與染色質(zhì)內(nèi)的5 000多個(gè)位點(diǎn)結(jié)合,通過(guò)這些位點(diǎn)時(shí)鐘基因可直接或間接調(diào)控機(jī)體代謝。MARCHEVA B等人的研究表明,CLOCK和BMAL1基因突變小鼠均表現(xiàn)出葡萄糖耐量受損、胰島素分泌量下降以及胰島形態(tài)和功能缺陷[11-12]。GóMEZ-ABELLáN P等人的研究顯示,時(shí)鐘基因BMAL1、PER2和CRY1與總膽固醇(Total Cholesterol,TC)和低密度脂蛋白膽固醇(Low-Density Lipoprotein Cholesterol,LDL-C)呈顯著負(fù)相關(guān)[13]。PER2還參與糖尿病心肌損傷、骨代謝調(diào)節(jié)相關(guān)機(jī)制[14-15]。CHIOU Y Y等人[16]的研究顯示,CRY能抑制糖酵解基因,尤其是丙酮酸脫氫酶激酶1(Pyruvate Dehydrogenase Kinase 1,PDK1),從而提高葡萄糖利用率。REV-ERBα與多種代謝密切相關(guān)。DING G等人[17-18]的綜述表明,REV-ERBα敲除小鼠表現(xiàn)出高血糖、脂代謝基因紊亂、血脂異常,同時(shí)氨基酸代謝相關(guān)基因顯著變化以及肝臟同型半胱氨酸水平降低。MANSINGH S等人[19]的研究表明,無(wú)論是在體外還是體內(nèi)抑制RORα都會(huì)導(dǎo)致代謝失調(diào),表現(xiàn)為肌肉中胰島素信號(hào)傳導(dǎo)和葡萄糖耐量的改變。肌肉特異性RORα缺失導(dǎo)致運(yùn)動(dòng)表現(xiàn)、代謝能力、能量平衡和肌肉纖維類(lèi)型的改變。綜上所述,時(shí)鐘基因與機(jī)體代謝密切相關(guān),可能成為治療代謝性疾病的靶點(diǎn)。
2" 擇時(shí)運(yùn)動(dòng)介導(dǎo)時(shí)鐘基因調(diào)控糖脂代謝
2.1" 擇時(shí)運(yùn)動(dòng)介導(dǎo)時(shí)鐘基因時(shí)相影響代謝
行為和生理時(shí)間的協(xié)調(diào)及其與光明-黑暗周期的一致性至關(guān)重要,因?yàn)樗鼈兊腻e(cuò)位與疾病的發(fā)展密切相關(guān)。SCHROEDER A M等人[20]的研究表明,在深夜(Zeitgeber Time 18-24,即小鼠活動(dòng)期晚期)進(jìn)行自主跑輪活動(dòng)可使血管活性腸肽(Vasoactive Intestinal Peptide,VIP)缺陷小鼠視交叉上核(Suprachiasmatic nucleus,SCN)中的PER2節(jié)律振幅增加至與安靜組相當(dāng)?shù)乃剑@表明即便缺乏VIP,SCN中的細(xì)胞間同步性也能得到改善。此外,夜間自主跑輪活動(dòng)還延遲了VIP缺陷小鼠心臟和肝臟中PER2的時(shí)間,使其與對(duì)照組小鼠相比不再處于晚期,從而改善了外周組織與SCN的相位關(guān)系。KEMLER D等人[21]的研究則顯示,單次1 h的跑步機(jī)運(yùn)動(dòng)會(huì)顯著引起骨骼肌晝夜節(jié)律時(shí)鐘的相移。進(jìn)一步地,在一天中的3個(gè)不同時(shí)間點(diǎn)(休息期中期、休息期結(jié)束和活躍期中期)進(jìn)行急性運(yùn)動(dòng),會(huì)對(duì)肌肉生物鐘產(chǎn)生不同的影響。具體而言,非活動(dòng)期的運(yùn)動(dòng)會(huì)引發(fā)相位延遲或相位提前,而活動(dòng)期的運(yùn)動(dòng)則可能不會(huì)改變晝夜節(jié)律,但可能會(huì)對(duì)其產(chǎn)生雙向調(diào)節(jié)作用[22]。
2.2" 擇時(shí)運(yùn)動(dòng)介導(dǎo)時(shí)鐘基因調(diào)節(jié)糖、脂代謝
擇時(shí)運(yùn)動(dòng)能夠介導(dǎo)時(shí)鐘基因?qū)χx的調(diào)節(jié)。PENDERGRAST L A等人[23-24]的研究表明,在晚上(Zeitgeber Time 15-16,即小鼠早期活動(dòng)期)進(jìn)行運(yùn)動(dòng)會(huì)引起與類(lèi)固醇和糖皮質(zhì)激素受體活性相關(guān)的轉(zhuǎn)錄物倍數(shù)增加,以及脂肪組織褐變和產(chǎn)熱相關(guān)基因的特異性上調(diào)。這表明早期活動(dòng)期運(yùn)動(dòng)對(duì)這些刺激的敏感性更高,而這種敏感性可能由核受體亞家族4A組成員1(NR4A1)等節(jié)律因素所驅(qū)動(dòng)。相反,在早期休息階段(Zeitgeber Time 3-4)進(jìn)行運(yùn)動(dòng)并未顯著改變相關(guān)基因表達(dá),且游離脂肪酸的釋放減弱。因此,早期休息期的特點(diǎn)是對(duì)運(yùn)動(dòng)缺乏轉(zhuǎn)錄組學(xué)和脂解可塑性,而早期活躍期則在這些方面表現(xiàn)出較高的運(yùn)動(dòng)反應(yīng)性。此外,活動(dòng)期運(yùn)動(dòng)還增加了環(huán)磷酸腺苷反應(yīng)元件調(diào)節(jié)劑(cAMP response element modulator,CREM)的表達(dá),CREM是環(huán)磷酸腺苷反應(yīng)元件結(jié)合蛋白(CREB)轉(zhuǎn)錄因子家族的一員[25]。CREB的磷酸化是產(chǎn)熱相關(guān)基因的調(diào)節(jié)因子,其在活性期呈現(xiàn)較高趨勢(shì),并受到時(shí)鐘基因PER1和PER2的調(diào)控[26]。因此,CREM可能是時(shí)鐘基因調(diào)控脂質(zhì)代謝的機(jī)制之一。
對(duì)于血糖的調(diào)節(jié),與早上(Zeitgeber Time 3-4,即小鼠休息期早期)運(yùn)動(dòng)相比,晚上(Zeitgeber Time 15-16,即小鼠活動(dòng)期早期)運(yùn)動(dòng)可誘導(dǎo)骨骼肌中缺氧誘導(dǎo)因子-1α亞基(HIF1α)及其糖酵解靶基因血管內(nèi)皮生長(zhǎng)因子A(VEGFA)、乳酸脫氫酶A(LDHA)和丙酮酸激酶M2型(PKM)的富集[27]。核心時(shí)鐘基因BMAL1和CLOCK可進(jìn)一步調(diào)控HIF1α的表達(dá),從而有利于血糖的下降[28]。ZHANG Z等人[29]的研究表明,夜間(Zeitgeber Time 13-14,即小鼠活動(dòng)期早期)運(yùn)動(dòng)不僅能夠改善糖尿病引起的CLOCK表達(dá)受損,而且還降低了CLOCK的表達(dá)水平,這表明夜間運(yùn)動(dòng)在減輕2型糖尿?。═ype 2 Diabetes Mellitus,T2DM)誘導(dǎo)的CLOCK表達(dá)受損方面優(yōu)于晨練(Zeitgeber Time 1-2,即小鼠休息期早期)。該研究推測(cè),夜間運(yùn)動(dòng)更符合小鼠的生物節(jié)律。此外,該研究還發(fā)現(xiàn),T2DM上調(diào)了肝臟中CLOCK的表達(dá),并下調(diào)了視神經(jīng)萎縮蛋白1(Optic atrophy type" 1,OPA1)和線(xiàn)粒體分裂蛋白1(Mitochondrial Fission 1 Protein,F(xiàn)IS1)的表達(dá),其中OPA1和FIS1的表達(dá)與CLOCK的表達(dá)呈負(fù)相關(guān)。OPA1和FIS1在線(xiàn)粒體融合與分裂過(guò)程中起到關(guān)鍵作用,而FIS1參與在運(yùn)動(dòng)期間維持富含線(xiàn)粒體的慢肌的正常線(xiàn)粒體自噬[30]。因此,CLOCK-OPA1/FIS1-線(xiàn)粒體自噬可能是擇時(shí)運(yùn)動(dòng)治療糖尿病的一個(gè)新的重要靶點(diǎn)。
3" 結(jié)語(yǔ)
時(shí)鐘基因在晝夜節(jié)律中發(fā)揮著關(guān)鍵作用,而晝夜節(jié)律紊亂與代謝紊亂均涉及時(shí)鐘基因的節(jié)律紊亂。在特定時(shí)段進(jìn)行運(yùn)動(dòng)以達(dá)到更好的運(yùn)動(dòng)效果,這和時(shí)鐘基因的調(diào)控密切相關(guān)。因此,時(shí)鐘基因的正常節(jié)律可以作為評(píng)價(jià)晝夜節(jié)律的指標(biāo)。未來(lái)需要進(jìn)一步的驗(yàn)證研究,以深入探究運(yùn)動(dòng)、時(shí)鐘基因、時(shí)間與糖脂代謝之間的關(guān)系。
參考文獻(xiàn)
[1] MOHAWK J A,GREEN C B,TAKAHASHI J S.Central and peripheral circadian clocks in mammals[J].Annu Rev Neurosci,2012,35:445-462.
[2] ROENNEBERG T,MERROW M.The Circadian Clock and Human Health[J].Curr Biol,2016,26(10):R432-443.
[3] MARTIN R A,VIGGARS M R,ESSER K A.Metabolism and exercise:the skeletal muscle clock takes centre stage[J].Nat Rev Endocrinol,2023,19(5):272-284.
[4] HUANG W,RAMSEY K M,MARCHEVA B,et al.Circadian rhythms,sleep,and metabolism[J].J Clin Invest,2011,121(6):2133-2141.
[5] RIJO-FERREIRA F,TAKAHASHI J S.Genomics of circadian rhythms in health and disease[J].Genome Med,2019,11(1):82.
[6] MARTIN R A,ESSER K A.Time for Exercise?Exercise and Its Influence on the Skeletal Muscle Clock[J].J Biol Rhythms,2022,37(6):579-592.
[7] RICHARDS J,GUMZ M L.Mechanism of the circadian clock in physiology[J].Am J Physiol Regul Integr Comp Physiol,2013,304(12):R1053-1064.
[8] 狄凌云,田振軍.生物鐘Bmal1基因與慢性代謝性疾病及其運(yùn)動(dòng)干預(yù)研究進(jìn)展[J].生物化學(xué)與生物物理進(jìn)展,2022,49(3):468-480.
[9] TAKAHASHI J S,HONG H K,KO C H,et al.The genetics of mammalian circadian order and disorder:implications for physiology and disease[J].Nat Rev Genet,2008,9(10):764-775.
[10]" GABRIEL B M,ALT?NTA? A,SMITH J A B,et al.Disrupted circadian oscillations in type 2 diabetes are linked to altered rhythmic mitochondrial metabolism in skeletal muscle[J].Sci Adv,2021,7(43):eabi9654.
[11]" MARCHEVA B,RAMSEY K M,BUHR E D,et al.Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes[J].Nature,2010,466(7306):627-631.
[12]" 范曉靜,邱海霞,王穎,等.光對(duì)生物鐘和糖脂代謝的影響[J].中國(guó)激光醫(yī)學(xué)雜志,2021,30(4):216-222.
[13]" GóMEZ-ABELLáN P,HERNáNDEZ-MORANTE J J,LUJáN J A,et al.Clock genes are implicated in the human metabolic syndrome[J].Int J Obes (Lond),2008,32(1):121-128.
[14]" 黃琴,夏中元,雷少青,等.糖尿病對(duì)心肌時(shí)鐘基因Bmal1/Per2晝夜表達(dá)影響的研究[J].醫(yī)學(xué)綜述,2018,24(24):4953-4957,4963.
[15]" WANG C,ZHANG Y,WANG Z,et al.Stabilization of hypoxia-inducible factor-1α alleviates osteoarthritis via interacting with Per2 and resetting the circadian clock[J].Tissue Cell,2022,79:101942.
[16]" CHIOU Y Y,LEE C Y,YANG H W,et al.Circadian modulation of glucose utilization via CRY1-mediated repression of Pdk1 expression[J].J Biol Chem,2024,300(2):105637.
[17]" DING G,LI X,HOU X,et al.REV-ERB in GABAergic neurons controls diurnal hepatic insulin sensitivity[J].Nature,2021,592(7856):763-767.
[18]" 冒姝羽,趙昌睿,劉暢.核受體REV-ERBα整合生物鐘與能量代謝[J].遺傳,2023,45 (2):99-114.
[19]" MANSINGH S,MAIER G,DELEZIE J,et al.More than the clock:distinct regulation of muscle function and metabolism by PER2 and RORα[J].J Physiol,2024,602(23):6373-6402.
[20]" SCHROEDER A M,TRUONG D,LOH D H,et al.Voluntary scheduled exercise alters diurnal rhythms of behaviour,physiology and gene expression in wild-type and vasoactive intestinal peptide-deficient mice[J].J Physiol,2012,590(23):6213-6226.
[21]" KEMLER D,WOLFF C A,ESSER K A.Time-of-day dependent effects of contractile activity on the phase of the skeletal muscle clock[J].J Physiol,2020,598(17):3631-3644.
[22]" THOMAS J M,KERN P A,BUSH H M,et al.Circadian rhythm phase shifts caused by timed exercise vary with chronotype[J].JCI Insight,2020,5(3):e134270.
[23]" PENDERGRAST L A,LUNDELL L S,EHRLICH A M,et al.Time of day determines postexercise metabolism in mouse adipose tissue[J].Proc Natl Acad Sci U S A,2023,120(8):e2218510120.
[24]" PENDERGRAST L A,ASHCROFT S P,EHRLICH A M,et al.Metabolic plasticity and obesity-associated changes in diurnal postexercise metabolism in mice[J].Metabolism,2024,155:155834.
[25]" BRINDLE P K,MONTMINY M R.The CREB family of transcription activators[J].Curr Opin Genet Dev,1992,2(2):199-204.
[26]" O'NEILL J S,MAYWOOD E S,CHESHAM J E,et al.cAMP-dependent signaling as a core component of the mammalian circadian pacemaker[J].Science,2008,320(5878):949-953.
[27]" SATO S,BASSE A L,SCH?NKE M,et al.Time of Exercise Specifies the Impact on Muscle Metabolic Pathways and Systemic Energy Homeostasis[J].Cell Metab,2019,30(1):92-110.e4.
[28]" PEEK C B,LEVINE D C,CEDERNAES J,et al.Circadian Clock Interaction with HIF1α Mediates Oxygenic Metabolism and Anaerobic Glycolysis in Skeletal Muscle[J].Cell Metab,2017,25(1):86-92.
[29]" ZHANG Z,LI X,ZHANG J,et al.Chrono-Aerobic Exercise Optimizes Metabolic State in DB/DB Mice through CLOCK-Mitophagy-Apoptosis[J].Int J Mol Sci,2022,23(16):9308.
[30]" ZHANG Z,SLITER D A,BLECK C K E,et al.Fis1 deficiencies differentially affect mitochondrial quality in skeletal muscle[J].Mitochondrion,2019,49:217-226.